SlideShare a Scribd company logo
Trigonometry
Ericson D. Dimaunahan, ECE
“Chance favors
only the prepared
mind”
Louis Pasteur (1822 - 1895)
1.1 Plane Angle & Angle Measurements
1.2 Solution to Right Triangles
1.3 The Six Trigonometric Functions
1.4 Solution to Oblique Triangles
1.5 Area of Triangles
1.6 Trigonometric Identities
1.7 Inverse Trigonometric Functions
1.8 Spherical Trigonometry
Trigonometry
Plane Angle & Angle Measurements
A plane angle is determined by rotating a ray (half-line)
about its endpoint called vertex.
Conversion Factors:
1 revolution = 360 degrees
= 2π radians
= 400 gradians
= 6400 mils
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
Types of Angles
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
Q-1 The measure of 2.25 revolutions
counterclockwise is
A. -835º C. -810º
B. 805º D. 810º
Conversion Factors:
1 revolution = 360 degrees
= 2π radians
= 400 gradians
= 6400 mils
Q-2 4800 mils is equivalent to
__________degrees.
A. 135 C. 235
B. 270 D. 142
Conversion Factors:
1 revolution = 360 degrees
= 2π radians
= 400 gradians
= 6400 mils
A. degree C. radian
B. mil D. grad
Q-3 An angular unit equivalent to 1/400 of the
circumference of a circle is called:
Conversion Factors:
1 revolution = 360 degrees
= 2π radians
= 400 gradians
= 6400 mils
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
Q-4 Find the complement of the angle whose
supplement is 152º.
A. 28º C. 118º
B. 62º D. 38º
Q-5 A certain angle has an explement 5 times
the supplement. Find the angle. [ECE Board
Nov.2002]
A. 67.5 degrees C. 135 degrees
B. 108 degrees D. 58.5 degrees
Q-6 What is the reference angle and one
coterminal angle , respectively of 135º.
A. -45º, -225º
B. -45º, 225º
C. 45º, 225º
D. 45º, -225º
RELATED ANGLES – angles
that have the same absolute
values for their trigonometric
functions. The acute angle is the
reference angle.
Ex. 20, 160, 200, 340
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
327759387-Trigonometry-Tipqc.ppt
Right Triangles
The Pythagorean Theorem:
“In a right triangle, the square of the length
of the hypotenuse is equal to the sum of
the squares of the lengths of the legs”
c2 = a2 + b2
Note:
In any triangle, the sum of any two sides must be
greater than the third side; otherwise no triangle can
be formed.
If, 2 2 2
2 2 2
2 2 2
c a b The triangle is right
c a b The triangle is obtuse
c a b The triangle is acute
  
  
  
Trigonometric Functions
     
     
     
opposite o adjacent a
sin cot
hypotenuse h opposite o
adjacent a hypotenuse h
cos sec
hypotenuse h adjacent a
opposite o hypotenuse h
tan csc
adjacent a opposite o
SOH-CAH-TOA
  
opposite o
sin
hypotenuse h
Sine Functions
Q-7 The sides of a triangular lot are130 m,
180 m and 190 m. This lot is to be divided by a
line bisecting the longest side and drawn from
the opposite vertex. Find the length of this line.
A. 120 m C. 122 m
B. 130 m D. 125 m
Altitude – perpendicular to opposite side (Intersection: ORTHOCENTER)
Angle Bisector – bisects angle (Intersection: INCENTER)
Median – vertex to midpoint of opposite side (Intersection: CENTROID)
2 2 2
1
2 2
2
median side side opposite
  
327759387-Trigonometry-Tipqc.ppt
A. 59.7 C. 69.3
B. 28.5 D. 47.6
Q-8 The angle of elevation of the top of the
tower from a point 40 m. from its base is the
complement of the angle of elevation of the
same tower at a point 120 m. from it. What is
the height of the tower?
 90 


A. 10 C. 25
B. 15 D. 20
Q-9 One leg of a right triangle is 20 cm and
the hypotenuse is 10 cm longer that the other
leg. Find the length of the hypotenuse.
A. 76.31 m C. 73.16 m
B. 73.31 m D. 73.61 m
Q-10 A man finds the angle of elevation of the
top of a tower to be 30 degrees. He walks 85
m nearer the tower and finds its angle of
elevation to be 60 degrees. What is the height
of the tower ? [ECE Board Apr. 1998]
30 60
30
Oblique Triangles
a b c
sinA sinB sinC
 
The Sine Law
When to use Sine Law:
• Given two angles and any side.
• Given two sides and an angle opposite one of them .
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
2 2 2
Standard Form : Alternative Form :
b c a
a b c 2bcCosA cosA
2bc
a c b
b a c 2acCosB cosB
2ac
a b c
c b c 2bccosC cosC
2ab
 
   
 
   
 
   
The Cosine Law
Use the Laws of Cosine if:
Given three sides
Given two sides and their included angle
Q-11 In a triangle, find the side c if angle C
= 100 , side b = 20 and side a = 15
A. 28 C. 29
B. 27 D. 26
Q-12 Points A and B 1000 m apart are plotted on
a straight highway running east and west. From
A , the bearing of a tower C is 32 degrees W of N
and from B the bearing of C is 26 degrees N of
E . Approximate the shortest distance of tower C
to the highway. [ECE Board Apr. 1998:]
A. 364 m C. 394 m
B. 374 m D. 384 m
Q-13 A PLDT tower and a monument stand on a
level plane . The angles of depression of the top
and bottom of the monument viewed from the top
of the PLDT tower are 13 and 35 respectively.
The height of the tower is 50 m. Find the height
of the monument.
A. 33.51 m C. 47.30 m
B. 7.58 m D. 30.57 m
13
35
50
Area of Triangles
327759387-Trigonometry-Tipqc.ppt
Q-14 Given a right triangle ABC. Angle C is the
right angle. BC = 4 and the altitude to the
hypotenuse is 1 unit. Find the area of the
triangle. ECE Board Apr.2001:
A. 2.0654 sq. u. C.1.0654 sq. u.
B. 3.0654 sq. u. D.4.0654 sq. u.
Q-15 In a given triangle ABC, the angle C is
34°, side a is 29 cm, and side b is 40 cm.
Solve for the area of the triangle.
A. 324.332 cm2 C. 317.15 cm2
B. 344.146 cm2 D. 343.44 cm2
Q-16 A right triangle is inscribed in a circle such
that one side of the triangle is the diameter of a
circle. If one of the acute angles of the triangle
measures 60 degrees and the side opposite that
angle has length 15, what is the area of the
circle? ECE Board Nov. 2002
A. 175.15 C. 235.62
B. 223.73 D. 228.61
Q-17 The sides of a triangle are 8 cm , 10 cm,
and 14 cm. Determine the radius of the
inscribed and circumscribing circle.
A. 3.45, 7.14 C. 2.45, 8.14
B. 2.45, 7.14 D. 3.45, 8.14
Q-18 Two triangles have equal bases. The altitude
of one triangle is 3 cm more than its base while
the altitude of the other is 3 cm less than its base.
Find the length of the longer altitude if the areas of
the triangle differ by 21 square centimeters.
A. 10 C. 14
B. 20 D. 15
Trigonometric Identities
 
 
 
2 2
Reciprocal relation :
1 1 1
sinu cosu tanu
csc u sec u cot u
Quotient relation
sinu
tanu
cosu
Pythagorean relation
sin u cos u 1
Addition & subtraction formula
sin u v sinucos v cosu sin v
cos u v cosucos v sinu sin v
tan u v
  

 
  
 
 
2
2
tanu tan v
1 tanu tan v
Double Angle formula :
sin 2u 2 sinucosu
cos 2u 2cos u 1
2 tanu
tan 2u
1 tan u


 


Inverse Trigonometric Functions
The Inverse Sine Function
y = arc sin x iff sin y = x
The Inverse Cosine Function
y = arc cos x iff cos y = x
The Inverse Tangent Function
y = arc tan x iff tan y = x
Q-19 If sec 2A = 1 / sin 13A, determine the
angle A in degrees
A. 5 degrees C. 3 degrees
B. 6 degrees D. 7 degrees
 
 
 
 
sin cos 90
cos sin(90 )
tan cot 90
sec csc 90
csc sec 90
 
 
 
 
 
 
 
 
 
 
COFUNCTION RELATIONS
 
1
sec2
sin13
1 1
cos2 sin13
sin13 cos2
sin13 sin 90 2
13 90 2
6
A
A
A A
A A
cofunction
A A
A A
A



 
 

SOLUTION:
Q-20 ECE Board Nov.2003
Simplify the expression
4 cos y sin y (1 – 2 sin2y).
A. sec 2y C. tan 4y
B. cos 2y D. sin 4y
2
2 2 2 2
sin 2 2sin cos
2tan
tan 2
1 tan
cos2 cos sin 1 2sin 2cos 1
  



    



     
 
  
2
2
4cos sin 1 2sin
2 2sin cos 1 2sin
2sin 2 cos2
sin 4
y y y
y y y
y y
y

 


Q-21 ECE Board Nov. 1996:
If sin A = 2.511x , cos A = 3.06x and sin 2A
= 3.939x , find the value of x?
A. 0.265 C. 0.562
B. 0.256 D. 0.625
Q-22
Solve for x if tan 3x = 5 tanx
A. 20.705 C. 15.705
B. 30.705 D. 35.705
3
2
3
2
3 3
2
2
3tan tan
tan3
1 3tan
tan3 5tan
3tan tan
5tan
1 3tan
3tan tan 5tan 15tan
14tan 2tan
2
tan
14
20.705
x x
x x
x
x
x x x x
x x
x
x
 









  



Q-23 If arctan2x + arctan3x = 45 degrees,
what is the value of x?
ECE Nov. 2003
A. 1/6 C.1/5
B. 1/3 D.1/4
   
 
 
  
2
arctan 2 arctan 3 45
, tan 2 ;tan 3
arctan tan arctan tan 45
45
tan 45
tan tan 45
tan tan
tan 45
1 tan tan
2 3
1
1 2 3
6 5 1 0
0.1666 & 1
x x
let A x B x
SUBSTITUTE
A B
A B
A B
A B
A B
A B
SUBSTITUTE
x x
x x
x x
x
 
 
 
 
 
 






  
 
Spherical Trigonometry
The study of properties of spherical triangles
and their measurements.
The Terrestrial
Sphere
1minute of arc 1nautical mile
1nautical mile 6080 ft.
1nautical mile 1.1516 statue mile
1statue mile 5280 ft.
1knot 1nautical mile per hour





Conversion Factors
Spherical Triangle
A spherical triangle is the triangle enclosed by arcs of three great
circles of a sphere.
 
 
Sum of Three vertex angle :
A B C 180
A B C 540
Sum of any two sides :
b c a
a c b
a b c
Sum of three sides :
0 a b c 360
Spherical Excess :
E A B C 180
Spherical Defect :
D 360 a b c
   
   
 
 
 
     
    
    
①
②
③
④
⑤
sin sin sin
sin sin sin
a b c
A B C
 
cos cos cos sin sin cos
cos cos cos sin sin cos
cos cos cos sin sin cos
a b c b c A
b a c a c B
c a b a b C
 
 
 
SPHERICAL TRIANGLES:
Law of sines:
Law of cosines (FOR SIDES):
Q-26 A spherical triangle ABC has sides a =
50°, c = 80°, and an angle C = 90°. Find
the third side “b” of the triangle in degrees.
A. 75.33 degrees C. 74.33 degrees
B. 77.25 degrees D. 73.44 degrees
       
cos cos cos sin sin cos
cos 80 cos 50 cos sin 50 sin cos 90
0.1736 0.6
74.3
428cos
3
0
c a b a b C
b
b b
b
 
 

 
Q-27 Given an isosceles triangle with angle
A=B=64 degrees, and side b=81 degrees .
What is the value of angle C?
A. C.
B. D.
144 26'
135 10'
120 15'
150 25'
cos cos cos sin sin cos
cos cos cos sin sin cos
cos cos cos sin sin cos
A B C B C a
B A C A C b
C A B A B c
  
  
  
COSINE LAW FOR ANGLES:
 
cos cos cos sin sin cos
cos64 cos(64)cos sin 64sin cos81
0.4384 0.4384cos 0.1406sin
0.4384 0.4384cos(144 26') 0.1406sin 144 26'
0.4384 0.4384
B A C A C b
C C
C C
SUBSTITUTE
  
  
  
  

END...

More Related Content

PPTX
Arc Length & Area of a Sector.pptx
PPTX
Theorems on kite
PPTX
Law of Sines ppt
PDF
8.1 Special Right Triangles
PPTX
circles- maths-class 10th-ppt
PPT
5 2 triangle inequality theorem
PDF
6 1 2 law of sines and cosines
PPT
Right triangle similarity
Arc Length & Area of a Sector.pptx
Theorems on kite
Law of Sines ppt
8.1 Special Right Triangles
circles- maths-class 10th-ppt
5 2 triangle inequality theorem
6 1 2 law of sines and cosines
Right triangle similarity

What's hot (20)

PPT
4.3-5 Triangle Congruence
PDF
Introduction to Basic Geometry
PPTX
0_Law of sine and cosine PPT.pptx
PPTX
Linear pair
PPT
Trigonometric Ratios
PPTX
Oblique Triangle
PPT
Isosceles Triangles
PPTX
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
PPTX
Neutral Geometry_part2.pptx
PPT
11 2 arcs and central angles lesson
PDF
2.5.6 Perpendicular and Angle Bisectors
PDF
TRIGONOMETRIC RATIOS OF SOME SPECIAL ANGLES
PDF
Families of curves
PDF
Trigonometry - The Six Trigonometric Ratios
PPTX
Word Problems Involving Right Triangles
PDF
Circular Functions
PDF
6.14.1 Arcs and Chords
PDF
Trig cheat sheet
PPSX
Trigo the sine and cosine rule
PDF
Obj. 18 Isosceles and Equilateral Triangles
4.3-5 Triangle Congruence
Introduction to Basic Geometry
0_Law of sine and cosine PPT.pptx
Linear pair
Trigonometric Ratios
Oblique Triangle
Isosceles Triangles
Mathematics 7 - Triangles (Classification of Triangles according to Interior ...
Neutral Geometry_part2.pptx
11 2 arcs and central angles lesson
2.5.6 Perpendicular and Angle Bisectors
TRIGONOMETRIC RATIOS OF SOME SPECIAL ANGLES
Families of curves
Trigonometry - The Six Trigonometric Ratios
Word Problems Involving Right Triangles
Circular Functions
6.14.1 Arcs and Chords
Trig cheat sheet
Trigo the sine and cosine rule
Obj. 18 Isosceles and Equilateral Triangles
Ad

Similar to 327759387-Trigonometry-Tipqc.ppt (20)

PDF
C2 st lecture 8 pythagoras and trigonometry handout
PDF
14 right angle trigonometry
PDF
Law of Sines
PPTX
Law of sine and cosines
PDF
Semana 1 geo y trigo
PPTX
MATH 2021 Preboard Compilation Review.pptx
PPTX
Trigonometry by mstfdemirdag
PDF
Class 9 Cbse Maths Sample Paper Term 2 Model 1
PPT
Trigonometry
DOCX
Solution of triangles
PDF
Module 1 triangle trigonometry
PPTX
Trigonometry and trigonometric ratios angles
DOCX
Ekstra matematika
PDF
2013 sp sa_2_09_mathematics_01_kvs
PPTX
trigonometry_2.pptx
PPT
law_of_sines.ppt
PPT
law_of_sines.ppt
PPT
Law Of Cosines Presentation
PPT
Trigonometry
DOCX
ag assign1.0.docx
C2 st lecture 8 pythagoras and trigonometry handout
14 right angle trigonometry
Law of Sines
Law of sine and cosines
Semana 1 geo y trigo
MATH 2021 Preboard Compilation Review.pptx
Trigonometry by mstfdemirdag
Class 9 Cbse Maths Sample Paper Term 2 Model 1
Trigonometry
Solution of triangles
Module 1 triangle trigonometry
Trigonometry and trigonometric ratios angles
Ekstra matematika
2013 sp sa_2_09_mathematics_01_kvs
trigonometry_2.pptx
law_of_sines.ppt
law_of_sines.ppt
Law Of Cosines Presentation
Trigonometry
ag assign1.0.docx
Ad

Recently uploaded (20)

PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PPTX
Pharmacology of Heart Failure /Pharmacotherapy of CHF
PDF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
PPTX
Pharma ospi slides which help in ospi learning
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PDF
Insiders guide to clinical Medicine.pdf
PPTX
Lesson notes of climatology university.
PDF
Sports Quiz easy sports quiz sports quiz
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
Pre independence Education in Inndia.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
Basic Mud Logging Guide for educational purpose
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
FourierSeries-QuestionsWithAnswers(Part-A).pdf
O5-L3 Freight Transport Ops (International) V1.pdf
Pharmacology of Heart Failure /Pharmacotherapy of CHF
ANTIBIOTICS.pptx.pdf………………… xxxxxxxxxxxxx
Pharma ospi slides which help in ospi learning
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
Insiders guide to clinical Medicine.pdf
Lesson notes of climatology university.
Sports Quiz easy sports quiz sports quiz
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
TR - Agricultural Crops Production NC III.pdf
Complications of Minimal Access Surgery at WLH
O7-L3 Supply Chain Operations - ICLT Program
human mycosis Human fungal infections are called human mycosis..pptx
Pre independence Education in Inndia.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Anesthesia in Laparoscopic Surgery in India
Basic Mud Logging Guide for educational purpose
Renaissance Architecture: A Journey from Faith to Humanism

327759387-Trigonometry-Tipqc.ppt

  • 1. Trigonometry Ericson D. Dimaunahan, ECE “Chance favors only the prepared mind” Louis Pasteur (1822 - 1895)
  • 2. 1.1 Plane Angle & Angle Measurements 1.2 Solution to Right Triangles 1.3 The Six Trigonometric Functions 1.4 Solution to Oblique Triangles 1.5 Area of Triangles 1.6 Trigonometric Identities 1.7 Inverse Trigonometric Functions 1.8 Spherical Trigonometry Trigonometry
  • 3. Plane Angle & Angle Measurements A plane angle is determined by rotating a ray (half-line) about its endpoint called vertex. Conversion Factors: 1 revolution = 360 degrees = 2π radians = 400 gradians = 6400 mils
  • 11. Q-1 The measure of 2.25 revolutions counterclockwise is A. -835º C. -810º B. 805º D. 810º Conversion Factors: 1 revolution = 360 degrees = 2π radians = 400 gradians = 6400 mils
  • 12. Q-2 4800 mils is equivalent to __________degrees. A. 135 C. 235 B. 270 D. 142 Conversion Factors: 1 revolution = 360 degrees = 2π radians = 400 gradians = 6400 mils
  • 13. A. degree C. radian B. mil D. grad Q-3 An angular unit equivalent to 1/400 of the circumference of a circle is called: Conversion Factors: 1 revolution = 360 degrees = 2π radians = 400 gradians = 6400 mils
  • 17. Q-4 Find the complement of the angle whose supplement is 152º. A. 28º C. 118º B. 62º D. 38º
  • 18. Q-5 A certain angle has an explement 5 times the supplement. Find the angle. [ECE Board Nov.2002] A. 67.5 degrees C. 135 degrees B. 108 degrees D. 58.5 degrees
  • 19. Q-6 What is the reference angle and one coterminal angle , respectively of 135º. A. -45º, -225º B. -45º, 225º C. 45º, 225º D. 45º, -225º RELATED ANGLES – angles that have the same absolute values for their trigonometric functions. The acute angle is the reference angle. Ex. 20, 160, 200, 340
  • 23. Right Triangles The Pythagorean Theorem: “In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the legs” c2 = a2 + b2
  • 24. Note: In any triangle, the sum of any two sides must be greater than the third side; otherwise no triangle can be formed. If, 2 2 2 2 2 2 2 2 2 c a b The triangle is right c a b The triangle is obtuse c a b The triangle is acute         
  • 25. Trigonometric Functions                   opposite o adjacent a sin cot hypotenuse h opposite o adjacent a hypotenuse h cos sec hypotenuse h adjacent a opposite o hypotenuse h tan csc adjacent a opposite o SOH-CAH-TOA
  • 26.    opposite o sin hypotenuse h Sine Functions
  • 27. Q-7 The sides of a triangular lot are130 m, 180 m and 190 m. This lot is to be divided by a line bisecting the longest side and drawn from the opposite vertex. Find the length of this line. A. 120 m C. 122 m B. 130 m D. 125 m Altitude – perpendicular to opposite side (Intersection: ORTHOCENTER) Angle Bisector – bisects angle (Intersection: INCENTER) Median – vertex to midpoint of opposite side (Intersection: CENTROID) 2 2 2 1 2 2 2 median side side opposite   
  • 29. A. 59.7 C. 69.3 B. 28.5 D. 47.6 Q-8 The angle of elevation of the top of the tower from a point 40 m. from its base is the complement of the angle of elevation of the same tower at a point 120 m. from it. What is the height of the tower?  90   
  • 30. A. 10 C. 25 B. 15 D. 20 Q-9 One leg of a right triangle is 20 cm and the hypotenuse is 10 cm longer that the other leg. Find the length of the hypotenuse.
  • 31. A. 76.31 m C. 73.16 m B. 73.31 m D. 73.61 m Q-10 A man finds the angle of elevation of the top of a tower to be 30 degrees. He walks 85 m nearer the tower and finds its angle of elevation to be 60 degrees. What is the height of the tower ? [ECE Board Apr. 1998] 30 60 30
  • 32. Oblique Triangles a b c sinA sinB sinC   The Sine Law When to use Sine Law: • Given two angles and any side. • Given two sides and an angle opposite one of them .
  • 33. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 Standard Form : Alternative Form : b c a a b c 2bcCosA cosA 2bc a c b b a c 2acCosB cosB 2ac a b c c b c 2bccosC cosC 2ab                   The Cosine Law Use the Laws of Cosine if: Given three sides Given two sides and their included angle
  • 34. Q-11 In a triangle, find the side c if angle C = 100 , side b = 20 and side a = 15 A. 28 C. 29 B. 27 D. 26
  • 35. Q-12 Points A and B 1000 m apart are plotted on a straight highway running east and west. From A , the bearing of a tower C is 32 degrees W of N and from B the bearing of C is 26 degrees N of E . Approximate the shortest distance of tower C to the highway. [ECE Board Apr. 1998:] A. 364 m C. 394 m B. 374 m D. 384 m
  • 36. Q-13 A PLDT tower and a monument stand on a level plane . The angles of depression of the top and bottom of the monument viewed from the top of the PLDT tower are 13 and 35 respectively. The height of the tower is 50 m. Find the height of the monument. A. 33.51 m C. 47.30 m B. 7.58 m D. 30.57 m 13 35 50
  • 39. Q-14 Given a right triangle ABC. Angle C is the right angle. BC = 4 and the altitude to the hypotenuse is 1 unit. Find the area of the triangle. ECE Board Apr.2001: A. 2.0654 sq. u. C.1.0654 sq. u. B. 3.0654 sq. u. D.4.0654 sq. u.
  • 40. Q-15 In a given triangle ABC, the angle C is 34°, side a is 29 cm, and side b is 40 cm. Solve for the area of the triangle. A. 324.332 cm2 C. 317.15 cm2 B. 344.146 cm2 D. 343.44 cm2
  • 41. Q-16 A right triangle is inscribed in a circle such that one side of the triangle is the diameter of a circle. If one of the acute angles of the triangle measures 60 degrees and the side opposite that angle has length 15, what is the area of the circle? ECE Board Nov. 2002 A. 175.15 C. 235.62 B. 223.73 D. 228.61
  • 42. Q-17 The sides of a triangle are 8 cm , 10 cm, and 14 cm. Determine the radius of the inscribed and circumscribing circle. A. 3.45, 7.14 C. 2.45, 8.14 B. 2.45, 7.14 D. 3.45, 8.14
  • 43. Q-18 Two triangles have equal bases. The altitude of one triangle is 3 cm more than its base while the altitude of the other is 3 cm less than its base. Find the length of the longer altitude if the areas of the triangle differ by 21 square centimeters. A. 10 C. 14 B. 20 D. 15
  • 44. Trigonometric Identities       2 2 Reciprocal relation : 1 1 1 sinu cosu tanu csc u sec u cot u Quotient relation sinu tanu cosu Pythagorean relation sin u cos u 1 Addition & subtraction formula sin u v sinucos v cosu sin v cos u v cosucos v sinu sin v tan u v              2 2 tanu tan v 1 tanu tan v Double Angle formula : sin 2u 2 sinucosu cos 2u 2cos u 1 2 tanu tan 2u 1 tan u      
  • 45. Inverse Trigonometric Functions The Inverse Sine Function y = arc sin x iff sin y = x The Inverse Cosine Function y = arc cos x iff cos y = x The Inverse Tangent Function y = arc tan x iff tan y = x
  • 46. Q-19 If sec 2A = 1 / sin 13A, determine the angle A in degrees A. 5 degrees C. 3 degrees B. 6 degrees D. 7 degrees
  • 47.         sin cos 90 cos sin(90 ) tan cot 90 sec csc 90 csc sec 90                     COFUNCTION RELATIONS   1 sec2 sin13 1 1 cos2 sin13 sin13 cos2 sin13 sin 90 2 13 90 2 6 A A A A A A cofunction A A A A A         SOLUTION:
  • 48. Q-20 ECE Board Nov.2003 Simplify the expression 4 cos y sin y (1 – 2 sin2y). A. sec 2y C. tan 4y B. cos 2y D. sin 4y
  • 49. 2 2 2 2 2 sin 2 2sin cos 2tan tan 2 1 tan cos2 cos sin 1 2sin 2cos 1                          2 2 4cos sin 1 2sin 2 2sin cos 1 2sin 2sin 2 cos2 sin 4 y y y y y y y y y     
  • 50. Q-21 ECE Board Nov. 1996: If sin A = 2.511x , cos A = 3.06x and sin 2A = 3.939x , find the value of x? A. 0.265 C. 0.562 B. 0.256 D. 0.625
  • 51. Q-22 Solve for x if tan 3x = 5 tanx A. 20.705 C. 15.705 B. 30.705 D. 35.705
  • 52. 3 2 3 2 3 3 2 2 3tan tan tan3 1 3tan tan3 5tan 3tan tan 5tan 1 3tan 3tan tan 5tan 15tan 14tan 2tan 2 tan 14 20.705 x x x x x x x x x x x x x x                 
  • 53. Q-23 If arctan2x + arctan3x = 45 degrees, what is the value of x? ECE Nov. 2003 A. 1/6 C.1/5 B. 1/3 D.1/4
  • 54.            2 arctan 2 arctan 3 45 , tan 2 ;tan 3 arctan tan arctan tan 45 45 tan 45 tan tan 45 tan tan tan 45 1 tan tan 2 3 1 1 2 3 6 5 1 0 0.1666 & 1 x x let A x B x SUBSTITUTE A B A B A B A B A B A B SUBSTITUTE x x x x x x x                       
  • 55. Spherical Trigonometry The study of properties of spherical triangles and their measurements. The Terrestrial Sphere 1minute of arc 1nautical mile 1nautical mile 6080 ft. 1nautical mile 1.1516 statue mile 1statue mile 5280 ft. 1knot 1nautical mile per hour      Conversion Factors
  • 56. Spherical Triangle A spherical triangle is the triangle enclosed by arcs of three great circles of a sphere.     Sum of Three vertex angle : A B C 180 A B C 540 Sum of any two sides : b c a a c b a b c Sum of three sides : 0 a b c 360 Spherical Excess : E A B C 180 Spherical Defect : D 360 a b c                               ① ② ③ ④ ⑤
  • 57. sin sin sin sin sin sin a b c A B C   cos cos cos sin sin cos cos cos cos sin sin cos cos cos cos sin sin cos a b c b c A b a c a c B c a b a b C       SPHERICAL TRIANGLES: Law of sines: Law of cosines (FOR SIDES):
  • 58. Q-26 A spherical triangle ABC has sides a = 50°, c = 80°, and an angle C = 90°. Find the third side “b” of the triangle in degrees. A. 75.33 degrees C. 74.33 degrees B. 77.25 degrees D. 73.44 degrees
  • 59.         cos cos cos sin sin cos cos 80 cos 50 cos sin 50 sin cos 90 0.1736 0.6 74.3 428cos 3 0 c a b a b C b b b b       
  • 60. Q-27 Given an isosceles triangle with angle A=B=64 degrees, and side b=81 degrees . What is the value of angle C? A. C. B. D. 144 26' 135 10' 120 15' 150 25'
  • 61. cos cos cos sin sin cos cos cos cos sin sin cos cos cos cos sin sin cos A B C B C a B A C A C b C A B A B c          COSINE LAW FOR ANGLES:   cos cos cos sin sin cos cos64 cos(64)cos sin 64sin cos81 0.4384 0.4384cos 0.1406sin 0.4384 0.4384cos(144 26') 0.1406sin 144 26' 0.4384 0.4384 B A C A C b C C C C SUBSTITUTE             