SlideShare a Scribd company logo
Pushover Analysis
an
Inelastic Static Analysis Methods
courtesy of Barış Binici
Target Performance
Dictated by codes (DBYBHY 2007, Section 1.2.1):
“....The objective of seismic resistant design is
to have no structural/nonstructural damage
in low magnitude earthquakes, limited and
repairable damage in moderate earthquakes
and life safety for extreme earthquakes...”
Current Status
)(
)(
1
1
TR
TAW
V
a
t 
• Equivalent Lateral Force Procedure
- Assume global ductility (Ra)
- Detail accordingly
• Modal Superposition Procedure
- Include higher mode effects
• Time History Analysis
- Rarely used
- Tedious and requires hysteretic models
Critique of Current Practice
Advantages :
- Simple to use
- Have proven to work
- Became a tradition all over the world
- Uncertainty is lumped and easier to deal with
Disadvantages :
- No clear connection between capacity and demand
- No option for interfering with the target performance
- No possibility of having the owner involved in the decision
process
- Not easily applicable to seismic assessment of existing
structures
DBYBHY 2007 (Chapter 7)
- Evaluation and Strengthening of Existing Buildings
is based on structural performances.
- Steps:
• Collect information from an existing structure
• Assess whether info is dependable and penalize accordingly
• Conduct structural analysis
- Linear static analysis
- Nonlinear static analysis (Pushover analysis)
- Incremental pushover analysis
- Time history analysis
• Identify for each member the damage level
• Decision based on number of elements at certain damage levels
Time History?
- Actual earthquake response is hard to predict anyways.
- Closest estimate can be found using inelastic time-history analysis.
- Difficulties with inelastic time history analysis:
- Suitable set of ground motion (Description of demand)
- hysteretic behavior models (Description of capacity)
- Computation time (Time)
- Post processing (Time and understanding)
Alternative approach is pushover analysis.
Düzce Ground Motion
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0 5 10 15 20 25 30
Sec.
Acceleration(g)
Pushover Analysis
• Definition: Inelastic static analysis of a
structure using a specified (constant or
variable) force pattern from zero load to a
prescribed ultimate displacement.
• Use of it dates back to 1960s to1970s to
investigate stability of steel frames.
• Many computer programs were developed
since then with many features and limitations.
Available Computer Programs
• Design Oriented:
SAP 2000, GTSTRUDL, RAM etc.
• Research Oriented:
Opensees, IDARC, SeismoStrut etc.
What is different?
• User interface capabilities
• Analysis options
• Member behavior options
Section Damage Levels
Damage levels are established based on concrete outermost
compressive fiber strain and steel strain (for nonlinear analysis
procedure).
Section Damage Levels
How should these values be decided?
- Construction practice
- Experience of engineers
- Input of academicians
Curvature demand at target curvatures
Φp = θp / Lp
Φt = Φy + Φp
0
100
200
300
400
500
600
0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200
Eğrilik
(rad/m)
Moment
(kN.m)
AK
GV GÇ
(Φt)(Φy)
How do we estimate strains from
a structural analysis?
Strain
Moment
Curvature
Moment
My
øy øu
Moment
Plastic
Rotations
My
θpu
θpu =(øu – øy) Lp OR
θp =(ø – øy) Lp
Where Lp = 0.5h
Utilize this idealized
moment-rotation
response in inelastic
structural analysis
Definition of Potential Plastic Hinges
• End regions of columns and beams (center for gravity loads)
are the potential plastic hinges
• Plastic hinges are hinges capable of resisting My (not
significantly more, hardening allowed) undergoing plastic
rotations
h
Lp
Elastic
Beam-
Column
Element
Plastic
Hinges
Rigid End
zones
Elastic Parts
For regions other than plastic hinging occurs, cracking is expected therefore
use of cracked stiffness is customary (0.4-0.8) EIo
Eğrilik
Moment
EIo
0.4-0.8EIo
Curvature
Pushover Analysis
Steps of Pushover Analysis:
A Simple Incremental Procedure
1. Build a computational model of the structure
Steps of Pushover Analysis
2. Define member behavior
– Beams: Moment-rotation relations
– Columns: Moment-rotation and Interaction Diagrams
– Beam-column joints: Assume rigid (DBYBHY 2007 )
– Walls: Model as beam columns but introduce a shear
spring to model shear deformations
– Use cracked rigidities for elastic portions
Steps of Pushover Analysis
3. Apply gravity loads
1.0 G + n Q n=0.3 (live load reduction factor)
(if the interaction diagrams will not be used a good
estimate of the moment capacity of column hinges
needs to be made)
Possibilities:
- Based on initial gravity load analysis
- Based on a beam hinging mechanism
- Based on elastic lateral force analysis with an
assumed reasonable Ra value.
Steps of Pushover Analysis
4. Specify a Lateral Load Profile:
(Inverted triangular, constant, first mode shape are some of the
possibilities)
It is a good idea to have a spreadsheet page ready
indicating all members, current load increment
5. Lateral Load Incrementing:
Step 1:
Elastic analysis is valid up to the formation of the first hinge,
i.e. when the first critical location reaches its moment
capacity.
• Find the lateral loads that cause first hinge formation (V1).
• Record all member forces and deformations (F1, d1).
Steps of Pushover Analysis
Step 2:
Beyond Step 1, yielded element’s critical location cannot
take any further moment. Therefore place an actual
hinge at that location. Conduct an analysis increment for
this modified structure. This load increment should be
selected such that upon summing the force resultant
from this incremental step and previous step, second
hinge formation is reached.
V2 = V1 + ΔV
F2 = F1 + ΔF
d2 = d1 + Δd
Results from Step 1 + Results from an
incremental analysis with a hinge placed at
first yield location = Second Hinge formation
Steps of Pushover Analysis
.
.
Step i:
Similar to step 2 but additional hinges form and
incremental analysis steps are conducted for systems
with more hinges. Results are added to those from the
previous step
Vi = Vi-1 + ΔV
Fi = Fi-1 + ΔF
di = di-1 + Δd
Results from Step i-1 + Results from an
incremental analysis with a hinge placed at i-1th
yield location = ith hinge formation
Steps of Pushover Analysis
Step n:
Sufficient number of plastic hinges have formed and
system has reached a plastic mechanism. Note that this
could be a partial collapse mechanism as well. Beyond
this point system rotates as a rigid body.
ANALYSIS DONE
- Plot Base Shear- Roof Displacement
- Check member rotations and identify performance levels
Example Application: 3 Story- 2 Bay
RC Frame (Courtesy of Ahmet Yakut)
M O D E L
3m
3m
3m
1
2
3
10
11
12
13
14
15
4
5
6
7
8
9
6m 6m
J1
J2
J3
J4
J8
J7
J6
J5 J9
J10
J11
J12
Assumptions
Assume
• Constant Axial Load on Columns for Analysis Steps
• Rigid-plastic with no hardening or softening moment-rotation behavior for
columns and beams
• plastic hinging occurs when moment capacity is within 5% tolerance
• Load combinations 1.0 DL + 0.3 LL and 1.0 DL + 0.3 LL+1.0EQ to compute
axial load levels
DL=10kN/m
DL=15kN/m
DL=15kN/m
LL=2kN/m
LL=2kN/m
LL=2kN/m
EQ=60kN
EQ=40kN
EQ=20kN
SABİT YÜK HAREKETLİ YÜK YATAY YÜK
DATA
10-f10
60cm
60cm
Columns
3-f10
3-f10
25cm
50cm
Beams
Steel (fyd=495 Mpa)
Concrete (fcd=25 Mpa)
Clear cover=5 cm
E=2.779E+4 MPa
M+ is the same as M-
Note that if this is a seismic evaluation problem strength values obtained
at site should be used!
Section Capacities
Eğrilik
Moment
fy
My
fult
Eleman N My Φy
Φ u l t
kN kNm rad/m rad/m
1 -83,786 124 0,0055 0,111
2 -51,347 115,5 0,0056 0,115
3 -19,872 107,5 0,0056 0,119
4 -253,392 166 0,0059 0,085
5 -158,905 143 0,0060 0,099
6 -64,797 119 0,0060 0,113
7 -124,104 133,5 0,0056 0,105
8 -77,747 122 0,0057 0,112
9 -31,201 110 0,0054 0,118
10 5,606 49 0,0073 0,103
11 1,421 50 0,0069 0,102
12 -17,233 53 0,0069 0,099
13 5,606 49 0,0073 0,103
14 1,421 50 0,0069 0,102
15 -17,233 53 0,0069 0,099
Elemnaların Moment-eğrilik ilişkileri
elasto-plastik, pekleşmesiz
To be conservative smaller axial load from two load
combinations can be selected (as long as N<Nb)
Idealized member moment curvature
relations for estimated axial load level
Member
Effect of Axial Force
• Compute the moment
capacity by accounting for
axial force variation
• Always remain on the yield
surface
Step 1
DL=10kN/m
DL=15kN/m
DL=15kN/m
LL=2kN/m
LL=2kN/m
LL=2kN/m
EQ=3kN
EQ=2kN
EQ=1kN
COMBO2: 1.0 DL + 0.3 LL + 1.0 EQ
Detection of first yield (moment
reaches My±5%My )
6
Frame Joint Myield M
Element Label kNm kNm
J1 124.0 -4.33
J2 124.0 20.60
J2 115.5 -22.14
J3 115.5 21.00
J3 107.5 -22.23
J4 107.5 27.35
J5 166.0 6.23
J6 166.0 -0.60
J6 143.0 3.50
J7 143.0 -2.94
J7 119.0 1.52
J8 119.0 -3.29
J9 133.5 16.03
J10 133.5 -20.07
J10 122.0 26.88
J11 122.0 -24.83
J11 110.0 22.95
J12 110.0 -30.82
J2 49.0 -42.74
J6 49.0 -49.58 YIELDED
J3 50.0 -43.24
J7 50.0 -49.28
J4 53.0 -27.35
J8 53.0 -34.34
J6 49.0 -45.48
J10 49.0 -46.95
J7 50.0 -44.83
J11 50.0 -47.79
J8 53.0 -31.05
J12 53.0 -30.82
0.2947
11
12
6
7
4
14
15
Condition
13
5
8
9
3
10
1
2
First yielding stage
Total Base Shear (kN)=
Lateral Disp. at J4 (mm)=
J4 (monitored node )
Step 2 (Incremental)
ΔEQ=3kN
ΔEQ=2kN
ΔEQ=1kN
Actual hinge at previously yielded
location for the incremental analysis
New
locations at
which yield
moments
within
tolerance are
reached
6
12
0.2865
Total Lateral Disp. at J4 (mm)= 0.5812
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
-4.33 6.39 2.06
20.60 0.76 21.36
-22.14 2.05 -20.10
21.00 -2.18 18.82
-22.23 0.24 -21.99
27.35 -1.82 25.53
6.23 6.47 12.71
-0.60 0.39 -0.21
3.50 2.79 6.29
-2.94 -3.15 -6.09
1.52 1.56 3.08
-3.29 -3.43 -6.72
16.03 6.48 22.51
-20.07 0.20 -19.87
26.88 2.57 29.45
-24.83 -2.26 -27.09
22.95 0.15 23.10
-30.82 -1.80 -32.62
-42.74 1.29 -41.46
-49.58 0.00 -49.58 YIELDED
-43.24 2.42 -40.82
-49.28 -2.36 -51.64 YIELDED
-27.35 1.82 -25.53
-34.34 -1.73 -36.07
-45.48 2.40 -43.08
-46.95 -2.38 -49.33 YIELDED
-44.83 2.35 -42.48
-47.79 -2.41 -50.19 YIELDED
-31.05 1.71 -29.34
-30.82 -1.80 -32.62
13
14
15
9
10
11
12
5
6
7
8
1
2
3
4
Inc. Lateral Disp. at J4 (mm)=
Total Base Shear (kN) =
Total Incremental Load (kN)=
Condition
Step 3 (Incremental)
Actual hinges at previously yielded
location for the incremental analysis
New location
at which yield
moment within
tolerance are
reached
ΔEQ=21kN
ΔEQ=14kN
ΔEQ=7kN
42
54
2.94
Total Lateral Disp. at J4 (mm)= 3.5212
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
2.06 57.79 59.85
21.36 12.12 33.48
-20.10 24.68 4.58
18.82 -16.19 2.64
-21.99 -2.12 -24.11
25.53 -18.94 6.58
12.71 56.85 69.56
-0.21 12.18 11.97
6.29 24.58 30.87
-6.09 -13.41 -19.49
3.08 0.99 4.07
-6.72 -34.94 -41.67
22.51 53.65 76.16
-19.87 18.00 -1.88
29.45 18.00 47.45
-27.09 -8.15 -35.24
23.10 -8.15 14.95
-32.62 -18.38 -51.00
-41.46 12.56 -28.90
-49.58 0.00 -49.58 YIELDED
-40.82 14.07 -26.75
-51.64 0.00 -51.64 YIELDED
-25.53 18.94 -6.58
-36.07 -17.61 -53.68 YIELDED
-43.08 12.40 -30.68
-49.33 0.00 -49.33 YIELDED
-42.48 14.40 -28.08
-50.19 0.00 -50.19 YIELDED
-29.34 17.33 -12.01
-32.62 -18.38 -51.00
12
13
14
15
8
9
10
11
1
2
3
4
5
6
7
Inc. Lateral Disp. at J4 (mm)=
Total Base Shear (kN) =
Condition
Total Incremental Load (kN)=
ΔEQ=3kN
ΔEQ=2kN
ΔEQ=1kN
Step 4 (Incremental)
Actual hinges at previously yielded
location for the incremental analysis
New location
at which yield
moment within
tolerance are
reached
6
60
0.4692
Total Lateral Disp. at J4 (mm)= 3.9904
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
59.85 8.59 68.44
33.48 2.00 35.48
4.58 3.91 8.49
2.64 -1.96 0.67
-24.11 0.29 -23.82
6.58 -1.96 4.63
69.56 8.43 77.99
11.97 2.07 14.04
30.87 3.95 34.82
-19.49 -1.77 -21.26
4.07 0.50 4.57
-41.67 -3.40 -45.07
76.16 7.95 84.12
-1.88 2.90 1.02
47.45 2.90 50.35
-35.24 -0.50 -35.74
14.95 -0.50 14.45
-51.00 -3.35 -54.36
-28.90 1.91 -26.99
-49.58 0.00 -49.58 YIELDED
-26.75 2.26 -24.49
-51.64 0.00 -51.64 YIELDED
-6.58 1.96 -4.63
-53.68 0.00 -53.68 YIELDED
-30.68 1.88 -28.79
-49.33 0.00 -49.33 YIELDED
-28.08 2.27 -25.81
-50.19 0.00 -50.19 YIELDED
-12.01 3.40 -8.61
-51.00 -3.35 -54.36 YIELDED
13
14
15
9
10
11
12
5
6
7
8
1
2
3
4
Condition
Inc. Lateral Disp. at J4 (mm)=
Total Base Shear (kN) =
Total Incremental Load (kN)=
ΔEQ=18kN
ΔEQ=12kN
ΔEQ=6kN
Step 5 (Incremental)
36
96
3.41
Total Lateral Disp. at J4 (mm)= 7.4004
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
68.44 55.34 123.78
35.48 15.86 51.34
8.49 28.66 37.15
0.67 -6.38 -5.71
-23.82 10.42 -13.40
4.63 -15.82 -11.19
77.99 54.50 132.49
14.04 16.03 30.06
34.82 28.70 63.52
-21.26 -6.00 -27.26
4.57 10.75 15.33
-45.07 -15.83 -60.90
84.12 51.48 135.60 YIELDED
1.02 21.43 22.45
50.35 21.43 71.78
-35.74 1.18 -34.57
14.45 1.18 15.62
-54.36 0.00 -54.36
-26.99 12.80 -14.19
-49.58 0.00 -49.58 YIELDED
-24.49 16.80 -7.69
-51.64 0.00 -51.64 YIELDED
-4.63 15.82 11.19
-53.68 0.00 -53.68 YIELDED
-28.79 12.68 -16.12
-49.33 0.00 -49.33 YIELDED
-25.81 16.75 -9.05
-50.19 0.00 -50.19 YIELDED
-8.61 15.83 7.22
-54.36 0.00 -54.36 YIELDED
12
13
14
15
8
9
10
11
1
2
3
4
5
6
7
Condition
Inc. Lateral Disp. at J4 (mm)=
Total Base Shear (kN) =
Total Incremental Load (kN)=
Step 6 (Incremental)
ΔEQ=0.06kN
ΔEQ=0.04kN
ΔEQ=0.02kN
0.12
96.12
0.01277
Total Lateral Disp. at J4 (mm)= 7.41317
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
123.78 0.25 124.03 YIELDED
51.34 0.03 51.38
37.15 0.08 37.23
-5.71 -0.03 -5.74
-13.40 0.03 -13.37
-11.19 -0.06 -11.25
132.49 0.26 132.75
30.06 0.02 30.09
63.52 0.07 63.60
-27.26 -0.02 -27.29
15.33 0.04 15.36
-60.90 -0.06 -60.96
135.60 0.00 135.60 YIELDED
22.45 0.09 22.54
71.78 0.09 71.87
-34.57 0.00 -34.57
15.62 0.00 15.63
-54.36 0.00 -54.36
-14.19 0.05 -14.14
-49.58 0.00 -49.58 YIELDED
-7.69 0.06 -7.63
-51.64 0.00 -51.64 YIELDED
11.19 0.06 11.25
-53.68 0.00 -53.68 YIELDED
-16.12 0.05 -16.07
-49.33 0.00 -49.33 YIELDED
-9.05 0.06 -8.99
-50.19 0.00 -50.19 YIELDED
7.22 0.06 7.28
-54.36 0.00 -54.36 YIELDED
13
14
15
9
10
11
12
5
6
7
8
1
2
3
4
Condition
Inc. Lateral Disp. at J4 (mm)=
Total Base Shear (kN) =
Total Incremental Load (kN)=
Step 7 (Incremental)
ΔEQ=4.8kN
ΔEQ=3.2kN
ΔEQ=1.6kN
9.6
105.72
1.3
Total Lateral Disp. at J4 (mm)= 8.71317
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
124.03 0.00 124.03 YIELDED
51.38 4.04 55.42
37.23 8.81 46.05
-5.74 -3.63 -9.37
-13.37 2.07 -11.30
-11.25 -5.15 -16.40
132.75 35.16 167.90 YIELDED
30.09 -3.63 26.45
63.60 2.03 65.63
-27.29 -2.56 -29.84
15.36 3.01 18.38
-60.96 -5.18 -66.14
135.60 0.00 135.60 YIELDED
22.54 5.95 28.49
71.87 5.95 77.82
-34.57 -1.02 -35.58
15.63 -1.02 14.61
-54.36 0.00 -54.36
-14.14 4.77 -9.37
-49.58 0.00 -49.58 YIELDED
-7.63 5.70 -1.93
-51.64 0.00 -51.64 YIELDED
11.25 5.15 16.40
-53.68 0.00 -53.68 YIELDED
-16.07 5.67 -10.40
-49.33 0.00 -49.33 YIELDED
-8.99 5.57 -3.42
-50.19 0.00 -50.19 YIELDED
7.28 5.18 12.46
-54.36 0.00 -54.36 YIELDED
12
13
14
15
8
9
10
11
1
2
3
4
5
6
7
Total Base Shear (kN) =
Total Incremental Load (kN)=
Condition
Inc. Lateral Disp. at J4 (mm)=
Step 9 (Incremental)
39
144.72
12.69
Total Lateral Disp. at J4 (mm)= 21.40317
M ΔM M + ∆M
kNm kNm (kNm)
124.03 0.00 124.03 YIELDED
55.42 -46.64 8.78
46.05 5.74 51.79
-9.37 -44.15 -53.51
-11.30 1.29 -10.01
-16.40 -38.69 -55.09
167.90 0.00 167.90 YIELDED
26.45 -46.22 -19.76
65.63 6.05 71.68
-29.84 -43.74 -73.58
18.38 1.72 20.10
-66.14 -38.78 -104.91
135.60 0.00 135.60 YIELDED
28.49 -24.15 4.35
77.82 -24.15 53.68
-35.58 -21.98 -57.57
14.61 -21.98 -7.37
-54.36 0.00 -54.36
-9.37 52.37 43.00
-49.58 0.00 -49.58 YIELDED
-1.93 45.43 43.51
-51.64 0.00 -51.64 YIELDED
16.40 38.69 55.09 YIELDED
-53.68 0.00 -53.68 YIELDED
-10.40 52.27 41.87
-49.33 0.00 -49.33 YIELDED
-3.42 45.46 42.03
-50.19 0.00 -50.19 YIELDED
12.46 38.78 51.24
-54.36 0.00 -54.36 YIELDED
Condition
Total Incremental Load (kN)=
Total Base Shear (kN) =
Inc. Lateral Disp. at J4 (mm)=
ΔEQ=19.5kN
ΔEQ=13kN
ΔEQ=6.5kN
Step 9 (Incremental)
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
124.03 0.00 124.03 YIELDED
8.78 -1.83 6.95
51.79 0.44 52.22
-53.51 -1.74 -55.25
-10.01 0.30 -9.71
-55.09 0.00 -55.09
167.90 0.00 167.90 YIELDED
-19.76 -1.82 -21.59
71.68 0.44 72.12
-73.58 -1.44 -75.02
20.10 0.64 20.74
-104.91 -1.86 -106.77
135.60 0.00 135.60 YIELDED
4.35 -0.84 3.50
53.68 -0.84 52.83
-57.57 -0.54 -58.11
-7.37 -0.54 -7.91
-54.36 0.00 -54.36
43.00 2.27 45.27
-49.58 0.00 -49.58 YIELDED
43.51 2.03 45.54
-51.64 0.00 -51.64 YIELDED
55.09 0.00 55.09 YIELDED
-53.68 0.00 -53.68 YIELDED
41.87 2.26 44.13
-49.33 0.00 -49.33 YIELDED
42.03 2.08 44.11
-50.19 0.00 -50.19 YIELDED
51.24 1.86 53.10 YIELDED
-54.36 0.00 -54.36 YIELDED
12
13
14
15
8
9
10
11
1
2
3
4
5
6
7
Condition
ΔEQ=0.75kN
ΔEQ=0.50kN
ΔEQ=0.25kN
Step 10 (Incremental)
4.2
150.42
1.94
Total Lateral Disp. at J4 (mm)= 23.90917
Frame M ΔM M + ∆M
Element kNm kNm (kNm)
124.03 0.00 124.03 YIELDED
6.95 -5.34 1.61
52.22 2.18 54.40
-55.25 -4.04 -59.29
-9.71 3.14 -6.57
-55.09 0.00 -55.09
167.90 0.00 167.90 YIELDED
-21.59 -5.17 -26.76
72.12 2.35 74.47
-75.02 -4.19 -79.21
20.74 3.00 23.73
-106.77 0.00 -106.77
135.60 0.00 135.60 YIELDED
3.50 -2.09 1.41
52.83 -2.09 50.74
-58.11 0.16 -57.95
-7.91 0.16 -7.75
-54.36 0.00 -54.36
45.27 7.52 52.79 YIELDED
-49.58 0.00 -49.58 YIELDED
45.54 7.18 52.72 YIELDED
-51.64 0.00 -51.64 YIELDED
55.09 0.00 55.09 YIELDED
-53.68 0.00 -53.68 YIELDED
44.13 7.52 51.65 YIELDED
-49.33 0.00 -49.33 YIELDED
44.11 7.18 51.30 YIELDED
-50.19 0.00 -50.19 YIELDED
53.10 0.00 53.10 YIELDED
-54.36 0.00 -54.36 YIELDED
13
14
15
9
10
11
12
5
6
7
8
1
2
3
4
Total Incremental Load (kN)=
Total Base Shear (kN) =
Inc. Lateral Disp. at J4 (mm)=
Condition
ΔEQ=2.1kN
ΔEQ=1.4kN
ΔEQ=0.7kN
Collapse Mechanism
S Y S T E M I S U N S T A B L E
Beam sway mechanism is observed
No further lateral load incrementing
possible (only rigid body motion)
0
20
40
60
80
100
120
140
160
0 5 10 15 20 25 30
Roof Displacement (mm)
BaseShear(kN)
What did we obtain?
• A simple representation of the capacity curve
• Plastic mechanism and sequence of hinge formation
• Lateral load and displacement capacity
• Ductility and plastic rotation demand
0
20
40
60
80
100
120
140
160
0 5 10 15 20 25 30
Top Displacement (mm)
TotalBaseShear(kN)
Incremental
SAP2000
SAP 2000 built in pushover
analysis options include:
• hardening/loss of strength
• P-M interaction
• Systematic stiffness approach
Concluding Remarks
• Nonlinear analysis is becoming a part of
the profession
• It gives us information on displacements
which are indicators of damage
• Never forget that estimating deformations
is harder compared to estimating strength
• Never replace engineering judgment with
any analysis procedure

More Related Content

PPT
The Pushover Analysis from basics - Rahul Leslie
PDF
Direct analysis method - Sap2000
PPTX
Soil structure interaction
PDF
T beam TYPES
PDF
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
PDF
Non linear static pushover analysis
PDF
PERFORMANCE BASED DESIGN structural analysis and design
The Pushover Analysis from basics - Rahul Leslie
Direct analysis method - Sap2000
Soil structure interaction
T beam TYPES
Designing a Cold-Formed Steel Beam Using AS4600:2018 and 2005 - Webinar
Non linear static pushover analysis
PERFORMANCE BASED DESIGN structural analysis and design

What's hot (20)

PPTX
Seismic Analysis
PDF
Etabs notes-pdf
PPTX
CE 72.52 - Lecture 5 - Column Design
PPT
Performance Based Design Presentation By Deepak Bashetty
PPT
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
PPTX
CE 72.52 - Lecture 7 - Strut and Tie Models
PPTX
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
PDF
Analysis and design of multi-storey building using staad.Pro
PDF
How to model and analyse structures using etabs
PPT
Design of columns biaxial bending as per IS 456-2000
PDF
Matching base shear in Etabs 2016
PPTX
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
DOCX
Basics of sap2000
PDF
Design of One-Way Slab
PPT
1223989 static pushover analysis
PDF
Importance of Ductility in Structural Performance Analysis
PDF
Etabs presentation
PPT
Shear wall and its design guidelines
PPT
Limit state of serviceability
PPTX
ANALYSIS AND DESIGN OF G+3 STOREY BUILDING USING STAAD PRO vi8 Software
Seismic Analysis
Etabs notes-pdf
CE 72.52 - Lecture 5 - Column Design
Performance Based Design Presentation By Deepak Bashetty
Modelling Building Frame with STAAD.Pro & ETABS - Rahul Leslie
CE 72.52 - Lecture 7 - Strut and Tie Models
CE72.52 - Lecture 3b - Section Behavior - Shear and Torsion
Analysis and design of multi-storey building using staad.Pro
How to model and analyse structures using etabs
Design of columns biaxial bending as per IS 456-2000
Matching base shear in Etabs 2016
Part-II: Seismic Analysis/Design of Multi-storied RC Buildings using STAAD.Pr...
Basics of sap2000
Design of One-Way Slab
1223989 static pushover analysis
Importance of Ductility in Structural Performance Analysis
Etabs presentation
Shear wall and its design guidelines
Limit state of serviceability
ANALYSIS AND DESIGN OF G+3 STOREY BUILDING USING STAAD PRO vi8 Software
Ad

Similar to 3.4 pushover analysis (20)

PDF
Efficient analytical and hybrid simulations using OpenSees
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
International Refereed Journal of Engineering and Science (IRJES)
PDF
D012211830
PDF
IRJET-Analysis of PT Flat Slab with Drop- Considering Seismic Effect
PPTX
Kinematic Mounting Scheme of Miniature Precision Elements for Mission Surviva...
PPTX
IN HOUSE TRAINING - LIFTING ANALYSIS.pptx
PPTX
Overview of Direct Analysis Method of Design for
PPTX
2016 uhpc iowa_bi-lienar_v1
PDF
Performing Pushover Analysis on High Rise Building With and Without Shear Wall
PDF
Design and analysis of slabs
PDF
P01254123131
PDF
Earthquake resistant design of nuclear power plant- S.m.ingole
PPTX
2017 shcc4 tu_dresden_2
PPTX
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
PPTX
nonlinear.pptx
PPT
welding defect assessment residual stress
PDF
WilliamLAI - From Rigid to Soft
PDF
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
Efficient analytical and hybrid simulations using OpenSees
International Refereed Journal of Engineering and Science (IRJES)
International Refereed Journal of Engineering and Science (IRJES)
D012211830
IRJET-Analysis of PT Flat Slab with Drop- Considering Seismic Effect
Kinematic Mounting Scheme of Miniature Precision Elements for Mission Surviva...
IN HOUSE TRAINING - LIFTING ANALYSIS.pptx
Overview of Direct Analysis Method of Design for
2016 uhpc iowa_bi-lienar_v1
Performing Pushover Analysis on High Rise Building With and Without Shear Wall
Design and analysis of slabs
P01254123131
Earthquake resistant design of nuclear power plant- S.m.ingole
2017 shcc4 tu_dresden_2
DYNAMIC RESPONSE OF SIMPLE SUPPORTED BEAM VIBRATED UNDER MOVING LOAD
nonlinear.pptx
welding defect assessment residual stress
WilliamLAI - From Rigid to Soft
CE 72.32 (January 2016 Semester) Lecture 3 - Design Criteria
Ad

Recently uploaded (20)

PDF
Encapsulation_ Review paper, used for researhc scholars
PDF
The Rise and Fall of 3GPP – Time for a Sabbatical?
PDF
Spectral efficient network and resource selection model in 5G networks
PDF
Dropbox Q2 2025 Financial Results & Investor Presentation
PPTX
Big Data Technologies - Introduction.pptx
PDF
NewMind AI Monthly Chronicles - July 2025
PDF
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Network Security Unit 5.pdf for BCA BBA.
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
A Presentation on Artificial Intelligence
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Modernizing your data center with Dell and AMD
PDF
Review of recent advances in non-invasive hemoglobin estimation
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Mobile App Security Testing_ A Comprehensive Guide.pdf
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
Encapsulation_ Review paper, used for researhc scholars
The Rise and Fall of 3GPP – Time for a Sabbatical?
Spectral efficient network and resource selection model in 5G networks
Dropbox Q2 2025 Financial Results & Investor Presentation
Big Data Technologies - Introduction.pptx
NewMind AI Monthly Chronicles - July 2025
Blue Purple Modern Animated Computer Science Presentation.pdf.pdf
Per capita expenditure prediction using model stacking based on satellite ima...
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Network Security Unit 5.pdf for BCA BBA.
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
20250228 LYD VKU AI Blended-Learning.pptx
A Presentation on Artificial Intelligence
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Modernizing your data center with Dell and AMD
Review of recent advances in non-invasive hemoglobin estimation
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Mobile App Security Testing_ A Comprehensive Guide.pdf
Diabetes mellitus diagnosis method based random forest with bat algorithm

3.4 pushover analysis

  • 1. Pushover Analysis an Inelastic Static Analysis Methods courtesy of Barış Binici
  • 2. Target Performance Dictated by codes (DBYBHY 2007, Section 1.2.1): “....The objective of seismic resistant design is to have no structural/nonstructural damage in low magnitude earthquakes, limited and repairable damage in moderate earthquakes and life safety for extreme earthquakes...”
  • 3. Current Status )( )( 1 1 TR TAW V a t  • Equivalent Lateral Force Procedure - Assume global ductility (Ra) - Detail accordingly • Modal Superposition Procedure - Include higher mode effects • Time History Analysis - Rarely used - Tedious and requires hysteretic models
  • 4. Critique of Current Practice Advantages : - Simple to use - Have proven to work - Became a tradition all over the world - Uncertainty is lumped and easier to deal with Disadvantages : - No clear connection between capacity and demand - No option for interfering with the target performance - No possibility of having the owner involved in the decision process - Not easily applicable to seismic assessment of existing structures
  • 5. DBYBHY 2007 (Chapter 7) - Evaluation and Strengthening of Existing Buildings is based on structural performances. - Steps: • Collect information from an existing structure • Assess whether info is dependable and penalize accordingly • Conduct structural analysis - Linear static analysis - Nonlinear static analysis (Pushover analysis) - Incremental pushover analysis - Time history analysis • Identify for each member the damage level • Decision based on number of elements at certain damage levels
  • 6. Time History? - Actual earthquake response is hard to predict anyways. - Closest estimate can be found using inelastic time-history analysis. - Difficulties with inelastic time history analysis: - Suitable set of ground motion (Description of demand) - hysteretic behavior models (Description of capacity) - Computation time (Time) - Post processing (Time and understanding) Alternative approach is pushover analysis. Düzce Ground Motion -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0 5 10 15 20 25 30 Sec. Acceleration(g)
  • 7. Pushover Analysis • Definition: Inelastic static analysis of a structure using a specified (constant or variable) force pattern from zero load to a prescribed ultimate displacement. • Use of it dates back to 1960s to1970s to investigate stability of steel frames. • Many computer programs were developed since then with many features and limitations.
  • 8. Available Computer Programs • Design Oriented: SAP 2000, GTSTRUDL, RAM etc. • Research Oriented: Opensees, IDARC, SeismoStrut etc. What is different? • User interface capabilities • Analysis options • Member behavior options
  • 9. Section Damage Levels Damage levels are established based on concrete outermost compressive fiber strain and steel strain (for nonlinear analysis procedure).
  • 10. Section Damage Levels How should these values be decided? - Construction practice - Experience of engineers - Input of academicians
  • 11. Curvature demand at target curvatures Φp = θp / Lp Φt = Φy + Φp 0 100 200 300 400 500 600 0.0000 0.0200 0.0400 0.0600 0.0800 0.1000 0.1200 Eğrilik (rad/m) Moment (kN.m) AK GV GÇ (Φt)(Φy)
  • 12. How do we estimate strains from a structural analysis? Strain Moment Curvature Moment My øy øu Moment Plastic Rotations My θpu θpu =(øu – øy) Lp OR θp =(ø – øy) Lp Where Lp = 0.5h Utilize this idealized moment-rotation response in inelastic structural analysis
  • 13. Definition of Potential Plastic Hinges • End regions of columns and beams (center for gravity loads) are the potential plastic hinges • Plastic hinges are hinges capable of resisting My (not significantly more, hardening allowed) undergoing plastic rotations h Lp Elastic Beam- Column Element Plastic Hinges Rigid End zones
  • 14. Elastic Parts For regions other than plastic hinging occurs, cracking is expected therefore use of cracked stiffness is customary (0.4-0.8) EIo Eğrilik Moment EIo 0.4-0.8EIo Curvature
  • 16. Steps of Pushover Analysis: A Simple Incremental Procedure 1. Build a computational model of the structure
  • 17. Steps of Pushover Analysis 2. Define member behavior – Beams: Moment-rotation relations – Columns: Moment-rotation and Interaction Diagrams – Beam-column joints: Assume rigid (DBYBHY 2007 ) – Walls: Model as beam columns but introduce a shear spring to model shear deformations – Use cracked rigidities for elastic portions
  • 18. Steps of Pushover Analysis 3. Apply gravity loads 1.0 G + n Q n=0.3 (live load reduction factor) (if the interaction diagrams will not be used a good estimate of the moment capacity of column hinges needs to be made) Possibilities: - Based on initial gravity load analysis - Based on a beam hinging mechanism - Based on elastic lateral force analysis with an assumed reasonable Ra value.
  • 19. Steps of Pushover Analysis 4. Specify a Lateral Load Profile: (Inverted triangular, constant, first mode shape are some of the possibilities) It is a good idea to have a spreadsheet page ready indicating all members, current load increment 5. Lateral Load Incrementing: Step 1: Elastic analysis is valid up to the formation of the first hinge, i.e. when the first critical location reaches its moment capacity. • Find the lateral loads that cause first hinge formation (V1). • Record all member forces and deformations (F1, d1).
  • 20. Steps of Pushover Analysis Step 2: Beyond Step 1, yielded element’s critical location cannot take any further moment. Therefore place an actual hinge at that location. Conduct an analysis increment for this modified structure. This load increment should be selected such that upon summing the force resultant from this incremental step and previous step, second hinge formation is reached. V2 = V1 + ΔV F2 = F1 + ΔF d2 = d1 + Δd Results from Step 1 + Results from an incremental analysis with a hinge placed at first yield location = Second Hinge formation
  • 21. Steps of Pushover Analysis . . Step i: Similar to step 2 but additional hinges form and incremental analysis steps are conducted for systems with more hinges. Results are added to those from the previous step Vi = Vi-1 + ΔV Fi = Fi-1 + ΔF di = di-1 + Δd Results from Step i-1 + Results from an incremental analysis with a hinge placed at i-1th yield location = ith hinge formation
  • 22. Steps of Pushover Analysis Step n: Sufficient number of plastic hinges have formed and system has reached a plastic mechanism. Note that this could be a partial collapse mechanism as well. Beyond this point system rotates as a rigid body. ANALYSIS DONE - Plot Base Shear- Roof Displacement - Check member rotations and identify performance levels
  • 23. Example Application: 3 Story- 2 Bay RC Frame (Courtesy of Ahmet Yakut) M O D E L 3m 3m 3m 1 2 3 10 11 12 13 14 15 4 5 6 7 8 9 6m 6m J1 J2 J3 J4 J8 J7 J6 J5 J9 J10 J11 J12
  • 24. Assumptions Assume • Constant Axial Load on Columns for Analysis Steps • Rigid-plastic with no hardening or softening moment-rotation behavior for columns and beams • plastic hinging occurs when moment capacity is within 5% tolerance • Load combinations 1.0 DL + 0.3 LL and 1.0 DL + 0.3 LL+1.0EQ to compute axial load levels DL=10kN/m DL=15kN/m DL=15kN/m LL=2kN/m LL=2kN/m LL=2kN/m EQ=60kN EQ=40kN EQ=20kN SABİT YÜK HAREKETLİ YÜK YATAY YÜK
  • 25. DATA 10-f10 60cm 60cm Columns 3-f10 3-f10 25cm 50cm Beams Steel (fyd=495 Mpa) Concrete (fcd=25 Mpa) Clear cover=5 cm E=2.779E+4 MPa M+ is the same as M- Note that if this is a seismic evaluation problem strength values obtained at site should be used!
  • 26. Section Capacities Eğrilik Moment fy My fult Eleman N My Φy Φ u l t kN kNm rad/m rad/m 1 -83,786 124 0,0055 0,111 2 -51,347 115,5 0,0056 0,115 3 -19,872 107,5 0,0056 0,119 4 -253,392 166 0,0059 0,085 5 -158,905 143 0,0060 0,099 6 -64,797 119 0,0060 0,113 7 -124,104 133,5 0,0056 0,105 8 -77,747 122 0,0057 0,112 9 -31,201 110 0,0054 0,118 10 5,606 49 0,0073 0,103 11 1,421 50 0,0069 0,102 12 -17,233 53 0,0069 0,099 13 5,606 49 0,0073 0,103 14 1,421 50 0,0069 0,102 15 -17,233 53 0,0069 0,099 Elemnaların Moment-eğrilik ilişkileri elasto-plastik, pekleşmesiz To be conservative smaller axial load from two load combinations can be selected (as long as N<Nb) Idealized member moment curvature relations for estimated axial load level Member
  • 27. Effect of Axial Force • Compute the moment capacity by accounting for axial force variation • Always remain on the yield surface
  • 28. Step 1 DL=10kN/m DL=15kN/m DL=15kN/m LL=2kN/m LL=2kN/m LL=2kN/m EQ=3kN EQ=2kN EQ=1kN COMBO2: 1.0 DL + 0.3 LL + 1.0 EQ Detection of first yield (moment reaches My±5%My ) 6 Frame Joint Myield M Element Label kNm kNm J1 124.0 -4.33 J2 124.0 20.60 J2 115.5 -22.14 J3 115.5 21.00 J3 107.5 -22.23 J4 107.5 27.35 J5 166.0 6.23 J6 166.0 -0.60 J6 143.0 3.50 J7 143.0 -2.94 J7 119.0 1.52 J8 119.0 -3.29 J9 133.5 16.03 J10 133.5 -20.07 J10 122.0 26.88 J11 122.0 -24.83 J11 110.0 22.95 J12 110.0 -30.82 J2 49.0 -42.74 J6 49.0 -49.58 YIELDED J3 50.0 -43.24 J7 50.0 -49.28 J4 53.0 -27.35 J8 53.0 -34.34 J6 49.0 -45.48 J10 49.0 -46.95 J7 50.0 -44.83 J11 50.0 -47.79 J8 53.0 -31.05 J12 53.0 -30.82 0.2947 11 12 6 7 4 14 15 Condition 13 5 8 9 3 10 1 2 First yielding stage Total Base Shear (kN)= Lateral Disp. at J4 (mm)= J4 (monitored node )
  • 29. Step 2 (Incremental) ΔEQ=3kN ΔEQ=2kN ΔEQ=1kN Actual hinge at previously yielded location for the incremental analysis New locations at which yield moments within tolerance are reached 6 12 0.2865 Total Lateral Disp. at J4 (mm)= 0.5812 Frame M ΔM M + ∆M Element kNm kNm (kNm) -4.33 6.39 2.06 20.60 0.76 21.36 -22.14 2.05 -20.10 21.00 -2.18 18.82 -22.23 0.24 -21.99 27.35 -1.82 25.53 6.23 6.47 12.71 -0.60 0.39 -0.21 3.50 2.79 6.29 -2.94 -3.15 -6.09 1.52 1.56 3.08 -3.29 -3.43 -6.72 16.03 6.48 22.51 -20.07 0.20 -19.87 26.88 2.57 29.45 -24.83 -2.26 -27.09 22.95 0.15 23.10 -30.82 -1.80 -32.62 -42.74 1.29 -41.46 -49.58 0.00 -49.58 YIELDED -43.24 2.42 -40.82 -49.28 -2.36 -51.64 YIELDED -27.35 1.82 -25.53 -34.34 -1.73 -36.07 -45.48 2.40 -43.08 -46.95 -2.38 -49.33 YIELDED -44.83 2.35 -42.48 -47.79 -2.41 -50.19 YIELDED -31.05 1.71 -29.34 -30.82 -1.80 -32.62 13 14 15 9 10 11 12 5 6 7 8 1 2 3 4 Inc. Lateral Disp. at J4 (mm)= Total Base Shear (kN) = Total Incremental Load (kN)= Condition
  • 30. Step 3 (Incremental) Actual hinges at previously yielded location for the incremental analysis New location at which yield moment within tolerance are reached ΔEQ=21kN ΔEQ=14kN ΔEQ=7kN 42 54 2.94 Total Lateral Disp. at J4 (mm)= 3.5212 Frame M ΔM M + ∆M Element kNm kNm (kNm) 2.06 57.79 59.85 21.36 12.12 33.48 -20.10 24.68 4.58 18.82 -16.19 2.64 -21.99 -2.12 -24.11 25.53 -18.94 6.58 12.71 56.85 69.56 -0.21 12.18 11.97 6.29 24.58 30.87 -6.09 -13.41 -19.49 3.08 0.99 4.07 -6.72 -34.94 -41.67 22.51 53.65 76.16 -19.87 18.00 -1.88 29.45 18.00 47.45 -27.09 -8.15 -35.24 23.10 -8.15 14.95 -32.62 -18.38 -51.00 -41.46 12.56 -28.90 -49.58 0.00 -49.58 YIELDED -40.82 14.07 -26.75 -51.64 0.00 -51.64 YIELDED -25.53 18.94 -6.58 -36.07 -17.61 -53.68 YIELDED -43.08 12.40 -30.68 -49.33 0.00 -49.33 YIELDED -42.48 14.40 -28.08 -50.19 0.00 -50.19 YIELDED -29.34 17.33 -12.01 -32.62 -18.38 -51.00 12 13 14 15 8 9 10 11 1 2 3 4 5 6 7 Inc. Lateral Disp. at J4 (mm)= Total Base Shear (kN) = Condition Total Incremental Load (kN)=
  • 31. ΔEQ=3kN ΔEQ=2kN ΔEQ=1kN Step 4 (Incremental) Actual hinges at previously yielded location for the incremental analysis New location at which yield moment within tolerance are reached 6 60 0.4692 Total Lateral Disp. at J4 (mm)= 3.9904 Frame M ΔM M + ∆M Element kNm kNm (kNm) 59.85 8.59 68.44 33.48 2.00 35.48 4.58 3.91 8.49 2.64 -1.96 0.67 -24.11 0.29 -23.82 6.58 -1.96 4.63 69.56 8.43 77.99 11.97 2.07 14.04 30.87 3.95 34.82 -19.49 -1.77 -21.26 4.07 0.50 4.57 -41.67 -3.40 -45.07 76.16 7.95 84.12 -1.88 2.90 1.02 47.45 2.90 50.35 -35.24 -0.50 -35.74 14.95 -0.50 14.45 -51.00 -3.35 -54.36 -28.90 1.91 -26.99 -49.58 0.00 -49.58 YIELDED -26.75 2.26 -24.49 -51.64 0.00 -51.64 YIELDED -6.58 1.96 -4.63 -53.68 0.00 -53.68 YIELDED -30.68 1.88 -28.79 -49.33 0.00 -49.33 YIELDED -28.08 2.27 -25.81 -50.19 0.00 -50.19 YIELDED -12.01 3.40 -8.61 -51.00 -3.35 -54.36 YIELDED 13 14 15 9 10 11 12 5 6 7 8 1 2 3 4 Condition Inc. Lateral Disp. at J4 (mm)= Total Base Shear (kN) = Total Incremental Load (kN)=
  • 32. ΔEQ=18kN ΔEQ=12kN ΔEQ=6kN Step 5 (Incremental) 36 96 3.41 Total Lateral Disp. at J4 (mm)= 7.4004 Frame M ΔM M + ∆M Element kNm kNm (kNm) 68.44 55.34 123.78 35.48 15.86 51.34 8.49 28.66 37.15 0.67 -6.38 -5.71 -23.82 10.42 -13.40 4.63 -15.82 -11.19 77.99 54.50 132.49 14.04 16.03 30.06 34.82 28.70 63.52 -21.26 -6.00 -27.26 4.57 10.75 15.33 -45.07 -15.83 -60.90 84.12 51.48 135.60 YIELDED 1.02 21.43 22.45 50.35 21.43 71.78 -35.74 1.18 -34.57 14.45 1.18 15.62 -54.36 0.00 -54.36 -26.99 12.80 -14.19 -49.58 0.00 -49.58 YIELDED -24.49 16.80 -7.69 -51.64 0.00 -51.64 YIELDED -4.63 15.82 11.19 -53.68 0.00 -53.68 YIELDED -28.79 12.68 -16.12 -49.33 0.00 -49.33 YIELDED -25.81 16.75 -9.05 -50.19 0.00 -50.19 YIELDED -8.61 15.83 7.22 -54.36 0.00 -54.36 YIELDED 12 13 14 15 8 9 10 11 1 2 3 4 5 6 7 Condition Inc. Lateral Disp. at J4 (mm)= Total Base Shear (kN) = Total Incremental Load (kN)=
  • 33. Step 6 (Incremental) ΔEQ=0.06kN ΔEQ=0.04kN ΔEQ=0.02kN 0.12 96.12 0.01277 Total Lateral Disp. at J4 (mm)= 7.41317 Frame M ΔM M + ∆M Element kNm kNm (kNm) 123.78 0.25 124.03 YIELDED 51.34 0.03 51.38 37.15 0.08 37.23 -5.71 -0.03 -5.74 -13.40 0.03 -13.37 -11.19 -0.06 -11.25 132.49 0.26 132.75 30.06 0.02 30.09 63.52 0.07 63.60 -27.26 -0.02 -27.29 15.33 0.04 15.36 -60.90 -0.06 -60.96 135.60 0.00 135.60 YIELDED 22.45 0.09 22.54 71.78 0.09 71.87 -34.57 0.00 -34.57 15.62 0.00 15.63 -54.36 0.00 -54.36 -14.19 0.05 -14.14 -49.58 0.00 -49.58 YIELDED -7.69 0.06 -7.63 -51.64 0.00 -51.64 YIELDED 11.19 0.06 11.25 -53.68 0.00 -53.68 YIELDED -16.12 0.05 -16.07 -49.33 0.00 -49.33 YIELDED -9.05 0.06 -8.99 -50.19 0.00 -50.19 YIELDED 7.22 0.06 7.28 -54.36 0.00 -54.36 YIELDED 13 14 15 9 10 11 12 5 6 7 8 1 2 3 4 Condition Inc. Lateral Disp. at J4 (mm)= Total Base Shear (kN) = Total Incremental Load (kN)=
  • 34. Step 7 (Incremental) ΔEQ=4.8kN ΔEQ=3.2kN ΔEQ=1.6kN 9.6 105.72 1.3 Total Lateral Disp. at J4 (mm)= 8.71317 Frame M ΔM M + ∆M Element kNm kNm (kNm) 124.03 0.00 124.03 YIELDED 51.38 4.04 55.42 37.23 8.81 46.05 -5.74 -3.63 -9.37 -13.37 2.07 -11.30 -11.25 -5.15 -16.40 132.75 35.16 167.90 YIELDED 30.09 -3.63 26.45 63.60 2.03 65.63 -27.29 -2.56 -29.84 15.36 3.01 18.38 -60.96 -5.18 -66.14 135.60 0.00 135.60 YIELDED 22.54 5.95 28.49 71.87 5.95 77.82 -34.57 -1.02 -35.58 15.63 -1.02 14.61 -54.36 0.00 -54.36 -14.14 4.77 -9.37 -49.58 0.00 -49.58 YIELDED -7.63 5.70 -1.93 -51.64 0.00 -51.64 YIELDED 11.25 5.15 16.40 -53.68 0.00 -53.68 YIELDED -16.07 5.67 -10.40 -49.33 0.00 -49.33 YIELDED -8.99 5.57 -3.42 -50.19 0.00 -50.19 YIELDED 7.28 5.18 12.46 -54.36 0.00 -54.36 YIELDED 12 13 14 15 8 9 10 11 1 2 3 4 5 6 7 Total Base Shear (kN) = Total Incremental Load (kN)= Condition Inc. Lateral Disp. at J4 (mm)=
  • 35. Step 9 (Incremental) 39 144.72 12.69 Total Lateral Disp. at J4 (mm)= 21.40317 M ΔM M + ∆M kNm kNm (kNm) 124.03 0.00 124.03 YIELDED 55.42 -46.64 8.78 46.05 5.74 51.79 -9.37 -44.15 -53.51 -11.30 1.29 -10.01 -16.40 -38.69 -55.09 167.90 0.00 167.90 YIELDED 26.45 -46.22 -19.76 65.63 6.05 71.68 -29.84 -43.74 -73.58 18.38 1.72 20.10 -66.14 -38.78 -104.91 135.60 0.00 135.60 YIELDED 28.49 -24.15 4.35 77.82 -24.15 53.68 -35.58 -21.98 -57.57 14.61 -21.98 -7.37 -54.36 0.00 -54.36 -9.37 52.37 43.00 -49.58 0.00 -49.58 YIELDED -1.93 45.43 43.51 -51.64 0.00 -51.64 YIELDED 16.40 38.69 55.09 YIELDED -53.68 0.00 -53.68 YIELDED -10.40 52.27 41.87 -49.33 0.00 -49.33 YIELDED -3.42 45.46 42.03 -50.19 0.00 -50.19 YIELDED 12.46 38.78 51.24 -54.36 0.00 -54.36 YIELDED Condition Total Incremental Load (kN)= Total Base Shear (kN) = Inc. Lateral Disp. at J4 (mm)= ΔEQ=19.5kN ΔEQ=13kN ΔEQ=6.5kN
  • 36. Step 9 (Incremental) Frame M ΔM M + ∆M Element kNm kNm (kNm) 124.03 0.00 124.03 YIELDED 8.78 -1.83 6.95 51.79 0.44 52.22 -53.51 -1.74 -55.25 -10.01 0.30 -9.71 -55.09 0.00 -55.09 167.90 0.00 167.90 YIELDED -19.76 -1.82 -21.59 71.68 0.44 72.12 -73.58 -1.44 -75.02 20.10 0.64 20.74 -104.91 -1.86 -106.77 135.60 0.00 135.60 YIELDED 4.35 -0.84 3.50 53.68 -0.84 52.83 -57.57 -0.54 -58.11 -7.37 -0.54 -7.91 -54.36 0.00 -54.36 43.00 2.27 45.27 -49.58 0.00 -49.58 YIELDED 43.51 2.03 45.54 -51.64 0.00 -51.64 YIELDED 55.09 0.00 55.09 YIELDED -53.68 0.00 -53.68 YIELDED 41.87 2.26 44.13 -49.33 0.00 -49.33 YIELDED 42.03 2.08 44.11 -50.19 0.00 -50.19 YIELDED 51.24 1.86 53.10 YIELDED -54.36 0.00 -54.36 YIELDED 12 13 14 15 8 9 10 11 1 2 3 4 5 6 7 Condition ΔEQ=0.75kN ΔEQ=0.50kN ΔEQ=0.25kN
  • 37. Step 10 (Incremental) 4.2 150.42 1.94 Total Lateral Disp. at J4 (mm)= 23.90917 Frame M ΔM M + ∆M Element kNm kNm (kNm) 124.03 0.00 124.03 YIELDED 6.95 -5.34 1.61 52.22 2.18 54.40 -55.25 -4.04 -59.29 -9.71 3.14 -6.57 -55.09 0.00 -55.09 167.90 0.00 167.90 YIELDED -21.59 -5.17 -26.76 72.12 2.35 74.47 -75.02 -4.19 -79.21 20.74 3.00 23.73 -106.77 0.00 -106.77 135.60 0.00 135.60 YIELDED 3.50 -2.09 1.41 52.83 -2.09 50.74 -58.11 0.16 -57.95 -7.91 0.16 -7.75 -54.36 0.00 -54.36 45.27 7.52 52.79 YIELDED -49.58 0.00 -49.58 YIELDED 45.54 7.18 52.72 YIELDED -51.64 0.00 -51.64 YIELDED 55.09 0.00 55.09 YIELDED -53.68 0.00 -53.68 YIELDED 44.13 7.52 51.65 YIELDED -49.33 0.00 -49.33 YIELDED 44.11 7.18 51.30 YIELDED -50.19 0.00 -50.19 YIELDED 53.10 0.00 53.10 YIELDED -54.36 0.00 -54.36 YIELDED 13 14 15 9 10 11 12 5 6 7 8 1 2 3 4 Total Incremental Load (kN)= Total Base Shear (kN) = Inc. Lateral Disp. at J4 (mm)= Condition ΔEQ=2.1kN ΔEQ=1.4kN ΔEQ=0.7kN
  • 38. Collapse Mechanism S Y S T E M I S U N S T A B L E Beam sway mechanism is observed No further lateral load incrementing possible (only rigid body motion) 0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 Roof Displacement (mm) BaseShear(kN)
  • 39. What did we obtain? • A simple representation of the capacity curve • Plastic mechanism and sequence of hinge formation • Lateral load and displacement capacity • Ductility and plastic rotation demand 0 20 40 60 80 100 120 140 160 0 5 10 15 20 25 30 Top Displacement (mm) TotalBaseShear(kN) Incremental SAP2000 SAP 2000 built in pushover analysis options include: • hardening/loss of strength • P-M interaction • Systematic stiffness approach
  • 40. Concluding Remarks • Nonlinear analysis is becoming a part of the profession • It gives us information on displacements which are indicators of damage • Never forget that estimating deformations is harder compared to estimating strength • Never replace engineering judgment with any analysis procedure