SlideShare a Scribd company logo
Physics Helpline
L K Satapathy
3D Geometry Theory 4
Physics Helpline
L K Satapathy
Perpendicular distance of a point from a line :
Straight Lines in Space
Let the coordinates of the given point P = ( ,  , )
P ( ,  , )
Q BA
And the equation of the given line AB is
1 1 1
. . . (1)
x x y y z z
a b c
  
 
Where (a , b , c) are the direction ratios of the line AB
Let Q be the foot of the perpendicular from P on the line AB
1 1 1x x y y z z
Let
a b c

  
  
1 1 1( , , )x a y b z c      Coordinates of any point on AB
1 1 1( , , )x a y b z c            Direction ratios of line PQ
1 1 1( , , ) . . . (2)x a y b z c     For some value of  , coordinates of Q
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
1 1 1( ) ( ) ( ) 0a x a b y b c z c              
Line PQ is perpendicular to line AB [ using for  lines ]
2 2 2
1 1 1 0ax a a by b b cz c c              
2 2 2
1 1 1( ) ( ) ( ) ( )a b c a x b y c z           
1 1 1
2 2 2
( ) ( ) ( )
( )
a x b y c z
a b c
  

    
 
 
Putting the value of  in equation (2) , we find the coordinates of Q.
Knowing the coordinates of P and Q , we find
the perpendicular distance PQ using the relation
2 2 2
2 1 2 1 2 1( ) ( ) ( )d x x y y z z     
For better understanding of the method we will solve an example , as follows
1 2 1 2 1 2 0a a bb c c  
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
Question : Find the length of the perpendicular from the point (1 , 2 , 3 ) to the line
Answer : The coordinates of the given point P = (1 , 2 , 3)
6 7 7
3 2 2
x y z  
 

P (1 , 2 , 3)
Q BA
6 7 7
3 2 2
x y z
Let 
  
  

(3 6, 2 7, 2 7)       Coordinates of any point on AB
Let Q be the foot of the perpendicular from P on the line
For some value of  , coordinates of Q (3 6, 2 7, 2 7)      
 Direction ratios of line PQ (3 6 1, 2 7 2, 2 7 3)         
(3 5, 2 5, 2 4)      
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
3(3 5) 2(2 5) 2( 2 4) 0         
Line PQ is perpendicular to line AB [ using for  lines ]1 2 1 2 1 2 0a a bb c c  
 Coordinates of Q
 Distance PQ
9 15 4 10 4 8 0        
17 17 0 1      
(3 6, 2 7, 2 7)      
[(3)( 1) 6, (2)( 1) 7, ( 2)( 1) 7]        (3, 5, 9)
We have , P = (1 , 2 , 3) and Q = (3 , 5 , 9)
2 2 2
(3 1) (5 2) (9 3)     
4 9 36 49 7 [ ]uni Ansts    
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
P ( ,  , )
Q
BA
R (, , )
Image of a point in a line :
Let the coordinates of the given point P = ( ,  , )
And the equation of the given line AB is
1 1 1x x y y z z
a b c
  
 
Where (a , b , c) are the direction ratios of the line.
If R ( ,  , ) be the image of the point P in the line AB, then
(i) The line PR is perpendicular to the line AB
(ii) Distance PQ = distance QR [ Q is the foot of the perpendicular from P on AB ]
(i) First we find the coordinates of Q [ foot of the perpendicular ]
Method :
(ii) Then we find the coordinates of R such that Q is the mid point of PR
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
1 1 1x x y y z z
Putting
a b c

  
  
and proceeding as in the pervious section, we get the coordinates of the point Q .
Let the coordinates of Q ( , , )o o o  
Also the coordinates of
Since Q is the mid point of PR , we have
, ,
2 2 2
o o o
     
  
    
  
2 , 2 , 2o o o                
Putting the values , we get the coordinates ( ,  , ) of R .
For better understanding of the method we will solve an example , as follows
3 D Geometry Theory 4
( , , ) & ( , , )P R        
Physics Helpline
L K Satapathy
Straight Lines in Space
P (5 , 9 , 3)
Q
BA
R (, , )
Question : Find the image of the point (5 , 9 , 3) in the line
Answer : The coordinates of the given point P = (5 , 9 , 3)
1 2 3
2 3 4
x y z  
 
Let Q be the foot of the perpendicular from P to the line
1 2 3
2 3 4
x y z
Let 
  
  
(2 1, 3 2, 4 3)      Coordinates of any point on AB
For some value of  , coordinates of Q
 Direction ratios of line PQ
(2 1, 3 2, 4 3)     
(2 1 5, 3 2 9, 4 3 3)        
(2 4, 3 7, 4 )    
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
Straight Lines in Space
Line PQ is perpendicular to line AB [ using for  lines ]1 2 1 2 1 2 0a a bb c c  
2(2 4) 3(3 7) 4(4 ) 0       
4 8 9 21 16 0 29 29 0 1              
 Coordinates of Q (2 1, 3 2, 4 3) (3, 5, 7)      
If the coordinates of the image point R = ( ,  , ) , then
Also the coordinates of P =(5 , 9 , 3)
5 9 3
3 , 5 , 7
2 2 2
      
  
6 5 1 , 10 9 1 , 14 3 11             
 The coordinates of the image point R = (1 , 1 , 11) [ Ans ]
3 D Geometry Theory 4
Physics Helpline
L K Satapathy
For More details:
www.physics-helpline.com
Subscribe our channel:
youtube.com/physics-helpline
Follow us on Facebook and Twitter:
facebook.com/physics-helpline
twitter.com/physics-helpline

More Related Content

PPTX
3D Geometry Theory 3
PPT
Coordinategeometry1 1
PPTX
3D Geometry Theory 7
PPTX
3D Geometry Theory 1
PPTX
3D Geometry Theory 11
PPT
Introduction to coordinate geometry by pratima nayak
PPT
CLASS X MATHS
PDF
7. f4 textbook answer c7 (eng)
3D Geometry Theory 3
Coordinategeometry1 1
3D Geometry Theory 7
3D Geometry Theory 1
3D Geometry Theory 11
Introduction to coordinate geometry by pratima nayak
CLASS X MATHS
7. f4 textbook answer c7 (eng)

What's hot (18)

DOC
Discrete mathematics sol
PDF
Geometry Section 1-3
PPTX
Relations
PPTX
6.7 similarity transformations and coordinate geometry
PDF
G026037051
PPTX
3D Geometry QA 9
PPTX
Tarkesh 2nd sem[1]
PDF
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
PPTX
Unit 6.5
PDF
Lsn 12-1: The Distance Formula
PPT
PDF
Obj. 7 Midpoint and Distance Formulas
PPTX
Coordinates
PDF
6.progressions
PDF
Lecture 5
PPTX
Conic section- Hyperbola STEM TEACH
PPT
Set Difference
Discrete mathematics sol
Geometry Section 1-3
Relations
6.7 similarity transformations and coordinate geometry
G026037051
3D Geometry QA 9
Tarkesh 2nd sem[1]
Non-vacuum solutions of five dimensional Bianchi type-I spacetime in f (R) th...
Unit 6.5
Lsn 12-1: The Distance Formula
Obj. 7 Midpoint and Distance Formulas
Coordinates
6.progressions
Lecture 5
Conic section- Hyperbola STEM TEACH
Set Difference
Ad

Viewers also liked (11)

PDF
Awareness of Selfhood and Society into Virtual Learning Call for Proposals
PPTX
Games raspberry pi2 learning_simulations_iot_analytics
PDF
Teddy afro
PPTX
Open and Public: U Wisconsin Madison OER Meetup
PDF
Web 2.0 Excerpt for Troy Teachers
PPTX
Mediale Hamburg 2016: Content rettet Leben
PDF
Emerging Technologies - from m- to seamless learning
PPTX
Fintech Startups of NYC 2015
PPTX
The Best Web Tools to Boost Your Teaching
PPTX
Corporate University
PDF
Location Scout Form: Southend on Sea
Awareness of Selfhood and Society into Virtual Learning Call for Proposals
Games raspberry pi2 learning_simulations_iot_analytics
Teddy afro
Open and Public: U Wisconsin Madison OER Meetup
Web 2.0 Excerpt for Troy Teachers
Mediale Hamburg 2016: Content rettet Leben
Emerging Technologies - from m- to seamless learning
Fintech Startups of NYC 2015
The Best Web Tools to Boost Your Teaching
Corporate University
Location Scout Form: Southend on Sea
Ad

Similar to 3D Geometry Theory 4 (20)

DOCX
Three dim. geometry
PPTX
3D Geometry QA 11
PPTX
template.pptx
PDF
Lesson 4: Lines and Planes (slides + notes)
PPT
7.5 lines and_planes_in_space
PPTX
P2-Chp12-Vectors.pptx
PPTX
3D-PPt MODULE 1.pptx
PPT
1525 equations of lines in space
PPTX
Three Dimensional Geometry(Class 12)
PDF
planes and distances
PDF
Lines, planes, and hyperplanes
PDF
Lines, planes, and hyperplanes
PDF
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
PDF
Mathematics.pdf
PPTX
THREE DIMENSIONAL GEOMETRY
DOCX
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
PPTX
3D Geometry QA 3
DOC
Three dimensional geometry
PPTX
3D Geometry QA 7
PDF
Calculus III
Three dim. geometry
3D Geometry QA 11
template.pptx
Lesson 4: Lines and Planes (slides + notes)
7.5 lines and_planes_in_space
P2-Chp12-Vectors.pptx
3D-PPt MODULE 1.pptx
1525 equations of lines in space
Three Dimensional Geometry(Class 12)
planes and distances
Lines, planes, and hyperplanes
Lines, planes, and hyperplanes
Three Dimensional Co-ordinate Geometry - SSC Maths Preparation
Mathematics.pdf
THREE DIMENSIONAL GEOMETRY
Chapter 12 Section 12.1 Three-Dimensional Coordinate Sys
3D Geometry QA 3
Three dimensional geometry
3D Geometry QA 7
Calculus III

More from Lakshmikanta Satapathy (20)

PPTX
Work Energy Power QA-4/ Force & Potential energy
PPTX
QA Work Energy and Power-3/ Work Energy Theorem
PPTX
QA Electromagnetism-1/ Magnetic Field & Lorentz force
PPTX
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
PPTX
CBSE QA/ Electrostatics-4/ Electric Potential
PPTX
Wave Motion Theory 6/ Advanced Theory
PPTX
Wave Motion Theory 5/ Beats/ Doppler Effect
PPTX
Wave Motion Theory Part4
PPTX
Wave Motion Theory Part3
PPTX
Wave Motion theory-2
PPTX
Wave Motion Theory Part1
PPTX
Definite Integrals 8/ Integration by Parts
PPTX
Vectors QA 2/ Resultant Displacement
PPTX
Quadratic Equation 2
PPTX
Probability QA 12
PPTX
Inverse Trigonometry QA.6
PPTX
Inverse Trigonometry QA 5
PPTX
Transient Current QA 1/ LR Circuit
PPTX
Rotational Motion QA 8
PPTX
Electromagnetism QA 7/ Ammeter
Work Energy Power QA-4/ Force & Potential energy
QA Work Energy and Power-3/ Work Energy Theorem
QA Electromagnetism-1/ Magnetic Field & Lorentz force
CBSE Electrostatics QA-5/ Electric Potential and Capacitance
CBSE QA/ Electrostatics-4/ Electric Potential
Wave Motion Theory 6/ Advanced Theory
Wave Motion Theory 5/ Beats/ Doppler Effect
Wave Motion Theory Part4
Wave Motion Theory Part3
Wave Motion theory-2
Wave Motion Theory Part1
Definite Integrals 8/ Integration by Parts
Vectors QA 2/ Resultant Displacement
Quadratic Equation 2
Probability QA 12
Inverse Trigonometry QA.6
Inverse Trigonometry QA 5
Transient Current QA 1/ LR Circuit
Rotational Motion QA 8
Electromagnetism QA 7/ Ammeter

Recently uploaded (20)

PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
advance database management system book.pdf
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
PPTX
Orientation - ARALprogram of Deped to the Parents.pptx
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
1_English_Language_Set_2.pdf probationary
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
A systematic review of self-coping strategies used by university students to ...
PPTX
Cell Types and Its function , kingdom of life
PDF
Complications of Minimal Access Surgery at WLH
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
Introduction to Building Materials
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
IGGE1 Understanding the Self1234567891011
PPTX
Digestion and Absorption of Carbohydrates, Proteina and Fats
What if we spent less time fighting change, and more time building what’s rig...
advance database management system book.pdf
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
LNK 2025 (2).pdf MWEHEHEHEHEHEHEHEHEHEHE
Orientation - ARALprogram of Deped to the Parents.pptx
Indian roads congress 037 - 2012 Flexible pavement
SOIL: Factor, Horizon, Process, Classification, Degradation, Conservation
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
1_English_Language_Set_2.pdf probationary
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
202450812 BayCHI UCSC-SV 20250812 v17.pptx
A systematic review of self-coping strategies used by university students to ...
Cell Types and Its function , kingdom of life
Complications of Minimal Access Surgery at WLH
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Introduction to Building Materials
Practical Manual AGRO-233 Principles and Practices of Natural Farming
IGGE1 Understanding the Self1234567891011
Digestion and Absorption of Carbohydrates, Proteina and Fats

3D Geometry Theory 4

  • 1. Physics Helpline L K Satapathy 3D Geometry Theory 4
  • 2. Physics Helpline L K Satapathy Perpendicular distance of a point from a line : Straight Lines in Space Let the coordinates of the given point P = ( ,  , ) P ( ,  , ) Q BA And the equation of the given line AB is 1 1 1 . . . (1) x x y y z z a b c      Where (a , b , c) are the direction ratios of the line AB Let Q be the foot of the perpendicular from P on the line AB 1 1 1x x y y z z Let a b c        1 1 1( , , )x a y b z c      Coordinates of any point on AB 1 1 1( , , )x a y b z c            Direction ratios of line PQ 1 1 1( , , ) . . . (2)x a y b z c     For some value of  , coordinates of Q 3 D Geometry Theory 4
  • 3. Physics Helpline L K Satapathy Straight Lines in Space 1 1 1( ) ( ) ( ) 0a x a b y b c z c               Line PQ is perpendicular to line AB [ using for  lines ] 2 2 2 1 1 1 0ax a a by b b cz c c               2 2 2 1 1 1( ) ( ) ( ) ( )a b c a x b y c z            1 1 1 2 2 2 ( ) ( ) ( ) ( ) a x b y c z a b c              Putting the value of  in equation (2) , we find the coordinates of Q. Knowing the coordinates of P and Q , we find the perpendicular distance PQ using the relation 2 2 2 2 1 2 1 2 1( ) ( ) ( )d x x y y z z      For better understanding of the method we will solve an example , as follows 1 2 1 2 1 2 0a a bb c c   3 D Geometry Theory 4
  • 4. Physics Helpline L K Satapathy Straight Lines in Space Question : Find the length of the perpendicular from the point (1 , 2 , 3 ) to the line Answer : The coordinates of the given point P = (1 , 2 , 3) 6 7 7 3 2 2 x y z      P (1 , 2 , 3) Q BA 6 7 7 3 2 2 x y z Let         (3 6, 2 7, 2 7)       Coordinates of any point on AB Let Q be the foot of the perpendicular from P on the line For some value of  , coordinates of Q (3 6, 2 7, 2 7)        Direction ratios of line PQ (3 6 1, 2 7 2, 2 7 3)          (3 5, 2 5, 2 4)       3 D Geometry Theory 4
  • 5. Physics Helpline L K Satapathy Straight Lines in Space 3(3 5) 2(2 5) 2( 2 4) 0          Line PQ is perpendicular to line AB [ using for  lines ]1 2 1 2 1 2 0a a bb c c    Coordinates of Q  Distance PQ 9 15 4 10 4 8 0         17 17 0 1       (3 6, 2 7, 2 7)       [(3)( 1) 6, (2)( 1) 7, ( 2)( 1) 7]        (3, 5, 9) We have , P = (1 , 2 , 3) and Q = (3 , 5 , 9) 2 2 2 (3 1) (5 2) (9 3)      4 9 36 49 7 [ ]uni Ansts     3 D Geometry Theory 4
  • 6. Physics Helpline L K Satapathy Straight Lines in Space P ( ,  , ) Q BA R (, , ) Image of a point in a line : Let the coordinates of the given point P = ( ,  , ) And the equation of the given line AB is 1 1 1x x y y z z a b c      Where (a , b , c) are the direction ratios of the line. If R ( ,  , ) be the image of the point P in the line AB, then (i) The line PR is perpendicular to the line AB (ii) Distance PQ = distance QR [ Q is the foot of the perpendicular from P on AB ] (i) First we find the coordinates of Q [ foot of the perpendicular ] Method : (ii) Then we find the coordinates of R such that Q is the mid point of PR 3 D Geometry Theory 4
  • 7. Physics Helpline L K Satapathy Straight Lines in Space 1 1 1x x y y z z Putting a b c        and proceeding as in the pervious section, we get the coordinates of the point Q . Let the coordinates of Q ( , , )o o o   Also the coordinates of Since Q is the mid point of PR , we have , , 2 2 2 o o o                  2 , 2 , 2o o o                 Putting the values , we get the coordinates ( ,  , ) of R . For better understanding of the method we will solve an example , as follows 3 D Geometry Theory 4 ( , , ) & ( , , )P R        
  • 8. Physics Helpline L K Satapathy Straight Lines in Space P (5 , 9 , 3) Q BA R (, , ) Question : Find the image of the point (5 , 9 , 3) in the line Answer : The coordinates of the given point P = (5 , 9 , 3) 1 2 3 2 3 4 x y z     Let Q be the foot of the perpendicular from P to the line 1 2 3 2 3 4 x y z Let        (2 1, 3 2, 4 3)      Coordinates of any point on AB For some value of  , coordinates of Q  Direction ratios of line PQ (2 1, 3 2, 4 3)      (2 1 5, 3 2 9, 4 3 3)         (2 4, 3 7, 4 )     3 D Geometry Theory 4
  • 9. Physics Helpline L K Satapathy Straight Lines in Space Line PQ is perpendicular to line AB [ using for  lines ]1 2 1 2 1 2 0a a bb c c   2(2 4) 3(3 7) 4(4 ) 0        4 8 9 21 16 0 29 29 0 1                Coordinates of Q (2 1, 3 2, 4 3) (3, 5, 7)       If the coordinates of the image point R = ( ,  , ) , then Also the coordinates of P =(5 , 9 , 3) 5 9 3 3 , 5 , 7 2 2 2           6 5 1 , 10 9 1 , 14 3 11               The coordinates of the image point R = (1 , 1 , 11) [ Ans ] 3 D Geometry Theory 4
  • 10. Physics Helpline L K Satapathy For More details: www.physics-helpline.com Subscribe our channel: youtube.com/physics-helpline Follow us on Facebook and Twitter: facebook.com/physics-helpline twitter.com/physics-helpline