SlideShare a Scribd company logo
Fundamentals and
preliminary sizing ofpreliminary sizing of
sections and joints
ObjectivesObjectives
• Overview of section and joint structuralOverview of section and joint structural 
behaviour in a design context.
• To outline the design and sizing approach for• To outline the design and sizing approach for 
sections and joints.
Characteristics of thin walled 
structures
• manufactured with more than one componentmanufactured with more than one component 
and joined together by spot welds, seam 
welds or by an adhesivewelds or by an adhesive.
• Two types:
O th thi h t t l i f d ith– Open ‐ the thin sheet metal is formed with a 
discontinuity
Closed the section forms a complete loop– Closed ‐ the section forms a complete loop
Open SectionsOpen Sections
• Some open sections:
– Angle section
– Z section
– Channel
– Lipped channel
– Hat section
• Major limitations:Major limitations:
– lack of Torsional stiffness due 
to their very low polar second 
moment of area.
– Wharping : under torsion 
transverse sections do not 
remain plane, there is axial 
displacement at various pointsdisplacement at various points 
on the section 
Angle SectionAngle Section
• Not a suitable structural member
when considered alone.
• The principal axes U–U and V–V
are inclined to the faces of the
angle and if bending is applied
about either Y–Y or Z–Z bending
will occur about both axes.
• Stress distribution is very
asymmetric and results in large
parts of the section being under‐
dstressed.
• inefficient use of material
Z sectionZ section
• Similar undesirable
characteristics and hence
is not suitable as a section
on its own.
• Principal axes of the Z
section are inclined.
• Angle of the principalAngle of the principal
axes U –U and V –V
relative to the Y –Y axis
will depend on thewill depend on the
relative lengths of b1, b2
and d.
Channel ‐1/2Channel  1/2
• Suitable structural section
and used in commercial
vehicle chassis and body
structures.
• Suitable for bending loads
causing moments about
the Z–Z axis.
• Care must be taken to
ensure that the flange
width ‘b’ is not excessivewidth b is not excessive
as this can lead to
reduced allowable
compressive stressp
Channel‐2/2Channel 2/2
• Less satisfactory forLess satisfactory for
bending about the Y –Y
axis because it is less
stiff (has lower value for
Iyy than Izz) and has an
t i tasymmetric stress
distribution.
Lipped channelLipped channel
• The wide flange resultsThe wide flange results 
in a low stress at which 
buckling occurs.
• Improvement in 
buckling stress can be 
achieved by adding a lip 
to the channel
Hat sectionHat section
• Has good bendingHas good bending
properties about both
Y–Y and Z–Z axes
provided the value of
2b2 is approximately
l t bequal to b1.
Open SectionsOpen Sections
• Polar moments of Inertia of sections JxPolar moments of Inertia of sections Jx
– Angle  = (a + b)*t3/3
– Z section  = (b1 + b2 + d)*t3/3( 1 2 ) /
– Channel  = (2b + d)*t3/3
– Lip Channel  = (2d1 + d + 2b)*t3/3p ( 1 ) /
– Hat (e)  = (b1 + 2b2 + 2d)*t3/3
• t is small hence Jx will be smallerx
• Hence larger twist angle 
θ=TL/GJxθ TL/GJx
Closed SectionsClosed Sections
Closed SectionsClosed Sections
• Two Z sections withTwo Z sections with 
unequal length flanges 
joined to form a closed 
rectangular section.
• Second moments of 
area about the Y –Y and 
Z–Z axes are much 
increased over the openincreased over the open 
section
Closed SectionsClosed Sections
• Combination of twoCombination of two 
channels, one with wide 
and one with narrow 
flanges.
• This combination avoids 
inclined principal axes 
and still has substantial 
second moments ofsecond moments of 
area about Y –Y and Z–Z 
axes.axes.
Closed SectionsClosed Sections
Two hat sections are combined, both of these form 
ff ti t t l b ith d b dieffective structural members with good bending 
properties about Y –Y and Z–Z axes.
Closed SectionsClosed Sections
• Hat section with a flatHat section with a flat 
closing plate
Closed SectionsClosed Sections
• At (a) the enclosed area is:
shown at (b) :
A = (b1 − 2b2)d + 4(b2 − b3)t
• And the periphery:
shown at (b) :
A = (b1 − 2b2)d
And s = 2(b1 − 2b2) + 2d
s = 2(b1 − 2b3) + 2d + 4(b2 − b3)
1 2
Some passenger car sections 1/2Some passenger car sections 1/2
OneOne 
Shallow hat
h llTwo Shallow 
hat
Some passenger car sections 2/2Some passenger car sections 2/2
Two Shallow 
hat + shallow 
Two shallow 
hat + flat
flat
hat + flat 
Hat+ plate+ Z
Two hat + 
angle + roof
Floor Cross‐BeamFloor Cross Beam
Hat section on 
fl lfloor panel
Floor Cross‐BeamFloor Cross Beam
• LoadsLoads
– Ffp = Load from passenger/seat
K = Load from engine rail– K1 = Load from engine rail
– K2 = simple supports reaction with no fixing 
supportssupports
• Loading condition on the cross‐beam is 
bending and shearbending and shear.
Floor Cross‐BeamFloor Cross Beam
• Bending moment e d g o e t
M = K2l1 − Ffpl2
values of K2 and Ffp must be based on the staticvalues of K2 and Ffp must be based on the static 
loads multiplied by any load factor necessary to 
allow for dynamic effects.
• Designing for strength use the standard 
engineer’s bending theory to obtain the stress in 
th b d t th b di tthe beam due to the bending moment:
f = My/I
Floor Cross‐BeamFloor Cross Beam
• Section properties to be evaluated including a p p g
width of approximately 20t of the floor panel 
either side of the hat section 
b b + 2b + 40tb3 = b1 + 2b2 + 40t
• Safety factor – 1.5
• For shear non linear shear stress theory:• For shear ‐ non‐linear shear stress theory:
τ = K2Ay/zI (y is moment of area, 
z is widthz is width, 
I is second moment of inertia)
τ ≈ K2/2dt (as stress in b1 abd b3 is low)2/ ( )
‘A’ PillarA  Pillar
‘A’ PillarA  Pillar
• Large bending loads when theLarge bending loads when the 
structure is loaded in torsion
• From the roof loads the shear force 
between the top of the windscreen 
frame and along the cantrail can be 
bt i dobtained.
– Q1 = across the front
Q = across the sides– Q2 = across the sides
– proportion ‘n’ of the side frame load 
Q2 is that taken by the ‘A’‐pillar
‘A’ PillarA  Pillar
• Assuming the joint at the top of the ‘A’‐pillar to the 
i d h d il/ t il d th j i t t thwindscreen header rail/cantrail and the joint to the 
dash/wing are “fixed supports”
• Bending moments and stresses are
M Q h/4Mx = Q1h/4
fbx = Mxb/2Ixx
2 sin * / 2*cosyM nQ hα α=
• Direct compression stress
f Q / (2b 2d)
y
2
y
by
yy
M d
f
I
=
fc = nQ2 cos α / (2b + 2d) t
• where (2b + 2d)t is approximately the cross‐sectional 
area
‘A’ PillarA  Pillar
• Stress plots show
– At A, the bending stresses 
are tensile but the direct 
stress is again compressive 
so giving a reducedso giving a reduced 
resultant stress
• Design criteria described 
are based on the torsionare based on the torsion 
load condition.
• For the ‘A’‐pillar section, 
critical case can be thecritical case  can be the 
in‐roof crush test SAE 
J374
Engine longitudinal railEngine longitudinal rail
Engine longitudinal railEngine longitudinal rail
• Shear forces and bending moments.g
• Shared Loads:
– Bumper FB,
– Radiator FR,
– Power‐train FPT
– Reaction from the front suspension R LReaction from the front suspension RFL.
• Factors for Dynamic loads
• The engine rail is supported in the structure byg pp y
the dash panel and by the floor cross‐beam
situated under the front seats.
Engine longitudinal railEngine longitudinal rail
• Solving for forces on K1 and K2Solving for forces on K1 and K2
• Resolve vertically:
/2 /2 2( / ) 0FB /2+  FR /2+ 2( FPT/4) + K1 − K2 − RFL = 0
• Moments about K1:
FBl1/2 +  FRl2/2 + FPTl3/4 + FPTl5/4 + K2l6 − RFLl4 = 0
Engine longitudinal railEngine longitudinal rail
• Plots show high shear between the suspensionPlots show high shear between the suspension
reaction and the dash panel and the maximum
moment is at the dash panel : need for a deeper
section
• Design governed by bending strength requirement at
th d h l h ll d th ‘d’ h ld b lthe dash panel, hence overall depth ‘d’ should be large.
• Stiffness may also be important and the deflection of
the beam calculatedthe beam calculated.
• This member will also be designed to absorb energy in
frontal impactsfrontal impacts
Sheet metal JointSheet metal Joint
Shear flow around the section shows that
as the spot welds are spaced further from 
the beam centre and hence the load will be 
reduced
Sheet metal jointSheet metal joint
• If a moment M is applied, tension in top of hat a o e t s app ed, te s o top o at
and compression in closing plate.
• Vertical shear force is carried by the side flanges, y g
like curved shear panels 
– The top and bottom flanges will not carry any 
i ifi t ti l fsignificant vertical force.
– Side flanges: load is applied normal to their plane they 
will be ineffective in resisting the forceg
• When horizontal shear forces are applied the 
opposite will result.
Sheet metal JointSheet metal Joint
Sheet metal jointSheet metal joint
• Spot weld jointsSpot weld joints
• No fixing moment while providing only a shear   
connectionconnection
• From the analysis of this joint we can learn 
i l f d i i j itwo important rules for designing joints:
– Avoid out‐of‐plane bending on thin sections.
– Load thin sections with in‐plane bending and 
shear.
Spot welds LoadingSpot welds Loading
• A centre core which has 
the microstructure similar 
to a casting
• There is some working of• There is some working of 
the metal due to the 
pressure of the electrodes
• Surrounding the core is a 
heat‐affected zone that 
has reduced strengthhas reduced strength 
compared to the base 
material
Spot welds LoadingSpot welds Loading
• The spot weld nuggetThe spot weld nugget 
has peeled away from 
the base material.
• Parent metal is subject 
to out‐of‐plane bending 
which again is 
unsatisfactory causing 
yielding at very lowyielding at very low 
loads
Spot weld LoadingSpot weld Loading
• The small area cannot resist a large 
twisting moment caused by the long 
moment arm
Spot weld patternsSpot weld patterns
• Position of centroid
• Force divided equally n 
1 2
1 2
(3 3 ) / 8
(2 3 ) / 8
y y y
x x x
= +
= +
all rivets
• Additional shear force 
for offset torque
Spot welds along a closed sectionsSpot welds along a closed sections
q T T
τ
1 22 2 ( 2 )
q
t At d b b t
τ = = =
−
s
qL
N
F
=
Shear Panels – Roof panelShear Panels  Roof panel
• The largest panel in a passenger car and underThe largest panel in a passenger car and under 
the torsion load case this may buckle due to 
shearshear.
• ESDU 02.03.18/19 data sheet can be used to 
i ti t thi hinvestigate this phenomenon.
• These data is not ideal because they consider 
plates with curvature in one direction, but the 
roof panel has curvature in two directions.
Shear Panels – Roof panelShear Panels  Roof panel
• Buckling stressBuckling stress
τ = KE(t/b)2
K = Buckling stress co‐efficeintg
E = modulus of elasticity
T = panel thickness
B = length of curved side
• The coefficient K is presented as a function of the
l h h d f h h k f hlength a, the radius of curvature R, the thickness of the
panel t and the ratio a/b (the ratio of the lengths of the
panelsides)panelsides).
Shear panels –Roof panelShear panels  Roof panel
• Investigations made into a roof panel 980mmInvestigations made into a roof panel 980mm 
wide by 1250mm long, 1mm thick and radius 
of curvature of 2425mm resulted in stress toof curvature of 2425mm resulted in stress to 
cause buckling of 13.8N/mm2which is four 
times larger than the applied shear stresstimes larger than the applied shear stress.
• Other approaches are
ESDU 71005 fl t l– ESDU 71005 : flat panels 
– ESDU 75030 : design for vibrations
Shear panels – Inner fenderShear panels  Inner fender
• ESDU 71005
• For typical dimensions, applied stress levels may exceed by a factor 
of 5, hence there is need to provide stiffeners to prevent buckling.
This panel in practice has considerable curvature is restrained at the– This panel in practice has considerable curvature, is restrained at the 
edges by adjacent parts and also the model is a very simplified 
representation of the structure. 
In practice the load will be shared between the engine rail the fender– In practice the load will be shared between the engine rail, the fender 
top rail as well as the panel. 
• All these factors will tend to reduce the risk of panel buckling but 
thi d ill t t th d t dd tiff d i thithis does illustrate the need to add stiffeners and swages in this 
part of the structure.

More Related Content

PPTX
HIGHWAY ENGINEERING.pptx
PPT
Inspection and assembly of Open web Girder
PDF
Steel strucure lec # (12)
PDF
Tc aisc 358-16
PPTX
Ppt bridges & types
PDF
A Ultimate Guide to Plans, Sections, and Elevations Drawing
PPTX
Casting yard
PPT
Advance Prestress Bridge
HIGHWAY ENGINEERING.pptx
Inspection and assembly of Open web Girder
Steel strucure lec # (12)
Tc aisc 358-16
Ppt bridges & types
A Ultimate Guide to Plans, Sections, and Elevations Drawing
Casting yard
Advance Prestress Bridge

What's hot (20)

PPTX
BRIDGE & BEARINGS Awareness.pptx
PDF
Design of arch bridges
PPTX
building construction,ppt
PPTX
Segmental bridge construction
PPTX
DIFFERENT TYPES OF ROAD AND RAILWAY BRIDGES
PDF
Mix proportioning dr. sdb.pptx
PPTX
Diversion Headworks
PDF
Design of beam
PPTX
Bridge
PDF
Summer traning report BRPNNL by Amit Raj 14CE10005
PDF
Deep beams
PDF
PPT
EARTH RETAINING STRUCTURES.ppt
PPTX
Types of Movable bridges
DOCX
Training report done on Bridge Construction
PPTX
Segmental bridge
PPTX
Worldhighestrailwaybridge
PPTX
Connections in steel structures
PPTX
Specification- Contracts, Accounts and Tenders.pptx
PPTX
Suspension bridge
BRIDGE & BEARINGS Awareness.pptx
Design of arch bridges
building construction,ppt
Segmental bridge construction
DIFFERENT TYPES OF ROAD AND RAILWAY BRIDGES
Mix proportioning dr. sdb.pptx
Diversion Headworks
Design of beam
Bridge
Summer traning report BRPNNL by Amit Raj 14CE10005
Deep beams
EARTH RETAINING STRUCTURES.ppt
Types of Movable bridges
Training report done on Bridge Construction
Segmental bridge
Worldhighestrailwaybridge
Connections in steel structures
Specification- Contracts, Accounts and Tenders.pptx
Suspension bridge
Ad

Viewers also liked (20)

PPT
Sutton trust summer_school_2017_presentation
PDF
Hibbett_Fall 2016 web (1)
PDF
Lista de Exercícios de Atomística
PDF
TerraX Minerals, Inc. - Corporate Presentation
PPTX
Portable lawyers
PDF
Tu4811 ii
PPTX
Exiting from the low-growth trap: Investment, OECD Parliamentary Days 9 Febru...
PPTX
3 d sublimation cover suppliers in india
PDF
Gdz himiya lashevska_2007
PPTX
comparision of lossy and lossless image compression using various algorithm
PDF
Donato Antonio Limone_Il modello di governance digitali: la PA incontra il me...
PPT
Automotive R&D – Dissected under the Microscope
PDF
2nen kanji all
PPS
Library Pillars Of Islam
PPTX
Forming applications in Automotive industry presentation
PPT
RT50 specs report
PDF
Cadillac CT6 cutaway.PDF
PPTX
Biztalk
PDF
Introduction to Japanese writing - Continuers
PDF
3 automotive chassis-design-v2
Sutton trust summer_school_2017_presentation
Hibbett_Fall 2016 web (1)
Lista de Exercícios de Atomística
TerraX Minerals, Inc. - Corporate Presentation
Portable lawyers
Tu4811 ii
Exiting from the low-growth trap: Investment, OECD Parliamentary Days 9 Febru...
3 d sublimation cover suppliers in india
Gdz himiya lashevska_2007
comparision of lossy and lossless image compression using various algorithm
Donato Antonio Limone_Il modello di governance digitali: la PA incontra il me...
Automotive R&D – Dissected under the Microscope
2nen kanji all
Library Pillars Of Islam
Forming applications in Automotive industry presentation
RT50 specs report
Cadillac CT6 cutaway.PDF
Biztalk
Introduction to Japanese writing - Continuers
3 automotive chassis-design-v2
Ad

Similar to 4 choosing of-sections (20)

PDF
Design Of Transformer - Classification of transformer
PPT
8848339.ppt
DOCX
PPTX
Tutorial_Aerospace_structures_torsion.pptx
PPTX
beamsjshfkldhfbdhsdhjcnklsncklascklnclka.pptx
PDF
Theory of Elasticity....................
PPTX
Unit 3 Temporary and Permanent Joints.pptx
PDF
IRJET-Experimental Study on Flexural Behaviour of Cold Formed Hollow Flanged ...
PPTX
Research paper review: Numerical Study on the Shear Behaviour of a Late-Model...
PDF
Transformer design principles
PPT
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
PDF
chapter 4 flexural design of beam 2021.pdf
PPTX
Design of steel structures- Flexure members and foundations
PPTX
Keys and Couplings mechanical engineering.pptx
PDF
AISI 2007 guide cold formed steel design
PPTX
Compression member (2).pptx
PPTX
Met 402 mod_3
PPT
Practical aspects of PSC.ppt
PDF
Output Equations Of Transformer And Design
PPTX
Design of steel structure as per is 800(2007)
Design Of Transformer - Classification of transformer
8848339.ppt
Tutorial_Aerospace_structures_torsion.pptx
beamsjshfkldhfbdhsdhjcnklsncklascklnclka.pptx
Theory of Elasticity....................
Unit 3 Temporary and Permanent Joints.pptx
IRJET-Experimental Study on Flexural Behaviour of Cold Formed Hollow Flanged ...
Research paper review: Numerical Study on the Shear Behaviour of a Late-Model...
Transformer design principles
Cable Stay Bridge construction at Bardhman using LARSA and LUSAS four dimensi...
chapter 4 flexural design of beam 2021.pdf
Design of steel structures- Flexure members and foundations
Keys and Couplings mechanical engineering.pptx
AISI 2007 guide cold formed steel design
Compression member (2).pptx
Met 402 mod_3
Practical aspects of PSC.ppt
Output Equations Of Transformer And Design
Design of steel structure as per is 800(2007)

Recently uploaded (20)

PDF
Volvo EC290C NL EC290CNL Excavator Service Repair Manual Instant Download.pdf
PPTX
368455847-Relibility RJS-Relibility-PPT-1.pptx
PPTX
Small Fleets, Big Change: Overcoming Obstacles in the Transition to MHD Elect...
PDF
EC290C NL EC290CNL Volvo excavator specs.pdf
PDF
EC290C NL EC290CNL - Volvo Service Repair Manual.pdf
PPTX
building_blocks.pptxdcsDVabdbzfbtydtyyjtj67
PDF
Marketing project 2024 for marketing students
PPTX
Zeem: Transition Your Fleet, Seamlessly by Margaret Boelter
PPTX
Small Fleets, Big Change: Market Acceleration by Niki Okuk
PDF
How Much does a Volvo EC290C NL EC290CNL Weight.pdf
PDF
Journal Meraj.pdfuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
PPTX
Cloud_Computing_ppt[1].pptx132EQ342RRRRR1
PPTX
729193dbwbsve251-Calabarzon-Ppt-Copy.pptx
PDF
Volvo EC17C Compact Excavator Service Repair Manual Instant Download.pdf
PPTX
Lecture 3b C Library xnxjxjxjxkx_ ESP32.pptx
DOC
EAU-960 COMBINED INJECTION AND IGNITION SYSTEM WITH ELECTRONIC REGULATION.doc
PPTX
Understanding Machine Learning with artificial intelligence.pptx
PPTX
Culture by Design.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
PPTX
UNIT-2(B) Organisavtional Appraisal.pptx
PPTX
Independence_Day_Patriotic theme (1).pptx
Volvo EC290C NL EC290CNL Excavator Service Repair Manual Instant Download.pdf
368455847-Relibility RJS-Relibility-PPT-1.pptx
Small Fleets, Big Change: Overcoming Obstacles in the Transition to MHD Elect...
EC290C NL EC290CNL Volvo excavator specs.pdf
EC290C NL EC290CNL - Volvo Service Repair Manual.pdf
building_blocks.pptxdcsDVabdbzfbtydtyyjtj67
Marketing project 2024 for marketing students
Zeem: Transition Your Fleet, Seamlessly by Margaret Boelter
Small Fleets, Big Change: Market Acceleration by Niki Okuk
How Much does a Volvo EC290C NL EC290CNL Weight.pdf
Journal Meraj.pdfuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu
Cloud_Computing_ppt[1].pptx132EQ342RRRRR1
729193dbwbsve251-Calabarzon-Ppt-Copy.pptx
Volvo EC17C Compact Excavator Service Repair Manual Instant Download.pdf
Lecture 3b C Library xnxjxjxjxkx_ ESP32.pptx
EAU-960 COMBINED INJECTION AND IGNITION SYSTEM WITH ELECTRONIC REGULATION.doc
Understanding Machine Learning with artificial intelligence.pptx
Culture by Design.pptxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
UNIT-2(B) Organisavtional Appraisal.pptx
Independence_Day_Patriotic theme (1).pptx

4 choosing of-sections

  • 2. ObjectivesObjectives • Overview of section and joint structuralOverview of section and joint structural  behaviour in a design context. • To outline the design and sizing approach for• To outline the design and sizing approach for  sections and joints.
  • 3. Characteristics of thin walled  structures • manufactured with more than one componentmanufactured with more than one component  and joined together by spot welds, seam  welds or by an adhesivewelds or by an adhesive. • Two types: O th thi h t t l i f d ith– Open ‐ the thin sheet metal is formed with a  discontinuity Closed the section forms a complete loop– Closed ‐ the section forms a complete loop
  • 4. Open SectionsOpen Sections • Some open sections: – Angle section – Z section – Channel – Lipped channel – Hat section • Major limitations:Major limitations: – lack of Torsional stiffness due  to their very low polar second  moment of area. – Wharping : under torsion  transverse sections do not  remain plane, there is axial  displacement at various pointsdisplacement at various points  on the section 
  • 5. Angle SectionAngle Section • Not a suitable structural member when considered alone. • The principal axes U–U and V–V are inclined to the faces of the angle and if bending is applied about either Y–Y or Z–Z bending will occur about both axes. • Stress distribution is very asymmetric and results in large parts of the section being under‐ dstressed. • inefficient use of material
  • 6. Z sectionZ section • Similar undesirable characteristics and hence is not suitable as a section on its own. • Principal axes of the Z section are inclined. • Angle of the principalAngle of the principal axes U –U and V –V relative to the Y –Y axis will depend on thewill depend on the relative lengths of b1, b2 and d.
  • 7. Channel ‐1/2Channel  1/2 • Suitable structural section and used in commercial vehicle chassis and body structures. • Suitable for bending loads causing moments about the Z–Z axis. • Care must be taken to ensure that the flange width ‘b’ is not excessivewidth b is not excessive as this can lead to reduced allowable compressive stressp
  • 8. Channel‐2/2Channel 2/2 • Less satisfactory forLess satisfactory for bending about the Y –Y axis because it is less stiff (has lower value for Iyy than Izz) and has an t i tasymmetric stress distribution.
  • 9. Lipped channelLipped channel • The wide flange resultsThe wide flange results  in a low stress at which  buckling occurs. • Improvement in  buckling stress can be  achieved by adding a lip  to the channel
  • 10. Hat sectionHat section • Has good bendingHas good bending properties about both Y–Y and Z–Z axes provided the value of 2b2 is approximately l t bequal to b1.
  • 11. Open SectionsOpen Sections • Polar moments of Inertia of sections JxPolar moments of Inertia of sections Jx – Angle  = (a + b)*t3/3 – Z section  = (b1 + b2 + d)*t3/3( 1 2 ) / – Channel  = (2b + d)*t3/3 – Lip Channel  = (2d1 + d + 2b)*t3/3p ( 1 ) / – Hat (e)  = (b1 + 2b2 + 2d)*t3/3 • t is small hence Jx will be smallerx • Hence larger twist angle  θ=TL/GJxθ TL/GJx
  • 13. Closed SectionsClosed Sections • Two Z sections withTwo Z sections with  unequal length flanges  joined to form a closed  rectangular section. • Second moments of  area about the Y –Y and  Z–Z axes are much  increased over the openincreased over the open  section
  • 14. Closed SectionsClosed Sections • Combination of twoCombination of two  channels, one with wide  and one with narrow  flanges. • This combination avoids  inclined principal axes  and still has substantial  second moments ofsecond moments of  area about Y –Y and Z–Z  axes.axes.
  • 15. Closed SectionsClosed Sections Two hat sections are combined, both of these form  ff ti t t l b ith d b dieffective structural members with good bending  properties about Y –Y and Z–Z axes.
  • 16. Closed SectionsClosed Sections • Hat section with a flatHat section with a flat  closing plate
  • 17. Closed SectionsClosed Sections • At (a) the enclosed area is: shown at (b) : A = (b1 − 2b2)d + 4(b2 − b3)t • And the periphery: shown at (b) : A = (b1 − 2b2)d And s = 2(b1 − 2b2) + 2d s = 2(b1 − 2b3) + 2d + 4(b2 − b3) 1 2
  • 18. Some passenger car sections 1/2Some passenger car sections 1/2 OneOne  Shallow hat h llTwo Shallow  hat
  • 19. Some passenger car sections 2/2Some passenger car sections 2/2 Two Shallow  hat + shallow  Two shallow  hat + flat flat hat + flat  Hat+ plate+ Z Two hat +  angle + roof
  • 21. Floor Cross‐BeamFloor Cross Beam • LoadsLoads – Ffp = Load from passenger/seat K = Load from engine rail– K1 = Load from engine rail – K2 = simple supports reaction with no fixing  supportssupports • Loading condition on the cross‐beam is  bending and shearbending and shear.
  • 22. Floor Cross‐BeamFloor Cross Beam • Bending moment e d g o e t M = K2l1 − Ffpl2 values of K2 and Ffp must be based on the staticvalues of K2 and Ffp must be based on the static  loads multiplied by any load factor necessary to  allow for dynamic effects. • Designing for strength use the standard  engineer’s bending theory to obtain the stress in  th b d t th b di tthe beam due to the bending moment: f = My/I
  • 23. Floor Cross‐BeamFloor Cross Beam • Section properties to be evaluated including a p p g width of approximately 20t of the floor panel  either side of the hat section  b b + 2b + 40tb3 = b1 + 2b2 + 40t • Safety factor – 1.5 • For shear non linear shear stress theory:• For shear ‐ non‐linear shear stress theory: τ = K2Ay/zI (y is moment of area,  z is widthz is width,  I is second moment of inertia) τ ≈ K2/2dt (as stress in b1 abd b3 is low)2/ ( )
  • 25. ‘A’ PillarA  Pillar • Large bending loads when theLarge bending loads when the  structure is loaded in torsion • From the roof loads the shear force  between the top of the windscreen  frame and along the cantrail can be  bt i dobtained. – Q1 = across the front Q = across the sides– Q2 = across the sides – proportion ‘n’ of the side frame load  Q2 is that taken by the ‘A’‐pillar
  • 26. ‘A’ PillarA  Pillar • Assuming the joint at the top of the ‘A’‐pillar to the  i d h d il/ t il d th j i t t thwindscreen header rail/cantrail and the joint to the  dash/wing are “fixed supports” • Bending moments and stresses are M Q h/4Mx = Q1h/4 fbx = Mxb/2Ixx 2 sin * / 2*cosyM nQ hα α= • Direct compression stress f Q / (2b 2d) y 2 y by yy M d f I = fc = nQ2 cos α / (2b + 2d) t • where (2b + 2d)t is approximately the cross‐sectional  area
  • 27. ‘A’ PillarA  Pillar • Stress plots show – At A, the bending stresses  are tensile but the direct  stress is again compressive  so giving a reducedso giving a reduced  resultant stress • Design criteria described  are based on the torsionare based on the torsion  load condition. • For the ‘A’‐pillar section,  critical case can be thecritical case  can be the  in‐roof crush test SAE  J374
  • 29. Engine longitudinal railEngine longitudinal rail • Shear forces and bending moments.g • Shared Loads: – Bumper FB, – Radiator FR, – Power‐train FPT – Reaction from the front suspension R LReaction from the front suspension RFL. • Factors for Dynamic loads • The engine rail is supported in the structure byg pp y the dash panel and by the floor cross‐beam situated under the front seats.
  • 30. Engine longitudinal railEngine longitudinal rail • Solving for forces on K1 and K2Solving for forces on K1 and K2 • Resolve vertically: /2 /2 2( / ) 0FB /2+  FR /2+ 2( FPT/4) + K1 − K2 − RFL = 0 • Moments about K1: FBl1/2 +  FRl2/2 + FPTl3/4 + FPTl5/4 + K2l6 − RFLl4 = 0
  • 31. Engine longitudinal railEngine longitudinal rail • Plots show high shear between the suspensionPlots show high shear between the suspension reaction and the dash panel and the maximum moment is at the dash panel : need for a deeper section • Design governed by bending strength requirement at th d h l h ll d th ‘d’ h ld b lthe dash panel, hence overall depth ‘d’ should be large. • Stiffness may also be important and the deflection of the beam calculatedthe beam calculated. • This member will also be designed to absorb energy in frontal impactsfrontal impacts
  • 33. Sheet metal jointSheet metal joint • If a moment M is applied, tension in top of hat a o e t s app ed, te s o top o at and compression in closing plate. • Vertical shear force is carried by the side flanges, y g like curved shear panels  – The top and bottom flanges will not carry any  i ifi t ti l fsignificant vertical force. – Side flanges: load is applied normal to their plane they  will be ineffective in resisting the forceg • When horizontal shear forces are applied the  opposite will result.
  • 35. Sheet metal jointSheet metal joint • Spot weld jointsSpot weld joints • No fixing moment while providing only a shear    connectionconnection • From the analysis of this joint we can learn  i l f d i i j itwo important rules for designing joints: – Avoid out‐of‐plane bending on thin sections. – Load thin sections with in‐plane bending and  shear.
  • 36. Spot welds LoadingSpot welds Loading • A centre core which has  the microstructure similar  to a casting • There is some working of• There is some working of  the metal due to the  pressure of the electrodes • Surrounding the core is a  heat‐affected zone that  has reduced strengthhas reduced strength  compared to the base  material
  • 37. Spot welds LoadingSpot welds Loading • The spot weld nuggetThe spot weld nugget  has peeled away from  the base material. • Parent metal is subject  to out‐of‐plane bending  which again is  unsatisfactory causing  yielding at very lowyielding at very low  loads
  • 38. Spot weld LoadingSpot weld Loading • The small area cannot resist a large  twisting moment caused by the long  moment arm
  • 39. Spot weld patternsSpot weld patterns • Position of centroid • Force divided equally n  1 2 1 2 (3 3 ) / 8 (2 3 ) / 8 y y y x x x = + = + all rivets • Additional shear force  for offset torque
  • 40. Spot welds along a closed sectionsSpot welds along a closed sections q T T τ 1 22 2 ( 2 ) q t At d b b t τ = = = − s qL N F =
  • 41. Shear Panels – Roof panelShear Panels  Roof panel • The largest panel in a passenger car and underThe largest panel in a passenger car and under  the torsion load case this may buckle due to  shearshear. • ESDU 02.03.18/19 data sheet can be used to  i ti t thi hinvestigate this phenomenon. • These data is not ideal because they consider  plates with curvature in one direction, but the  roof panel has curvature in two directions.
  • 42. Shear Panels – Roof panelShear Panels  Roof panel • Buckling stressBuckling stress τ = KE(t/b)2 K = Buckling stress co‐efficeintg E = modulus of elasticity T = panel thickness B = length of curved side • The coefficient K is presented as a function of the l h h d f h h k f hlength a, the radius of curvature R, the thickness of the panel t and the ratio a/b (the ratio of the lengths of the panelsides)panelsides).
  • 43. Shear panels –Roof panelShear panels  Roof panel • Investigations made into a roof panel 980mmInvestigations made into a roof panel 980mm  wide by 1250mm long, 1mm thick and radius  of curvature of 2425mm resulted in stress toof curvature of 2425mm resulted in stress to  cause buckling of 13.8N/mm2which is four  times larger than the applied shear stresstimes larger than the applied shear stress. • Other approaches are ESDU 71005 fl t l– ESDU 71005 : flat panels  – ESDU 75030 : design for vibrations
  • 44. Shear panels – Inner fenderShear panels  Inner fender • ESDU 71005 • For typical dimensions, applied stress levels may exceed by a factor  of 5, hence there is need to provide stiffeners to prevent buckling. This panel in practice has considerable curvature is restrained at the– This panel in practice has considerable curvature, is restrained at the  edges by adjacent parts and also the model is a very simplified  representation of the structure.  In practice the load will be shared between the engine rail the fender– In practice the load will be shared between the engine rail, the fender  top rail as well as the panel.  • All these factors will tend to reduce the risk of panel buckling but  thi d ill t t th d t dd tiff d i thithis does illustrate the need to add stiffeners and swages in this  part of the structure.