A Summary of Curve
Sketching
What should you consider?
•
•
•
•
•
•
•
•
•

symmetries
x-intercept
y-intercept
relative extrema
asymptores
concavity
inflection points
intervals of increase
interval of decrease

ASYMPTOTE – VA HA SA
N(x) ax m
Let R(x) =
=
D(x) bx n
VERTICAL ASYMPTOTE

If

D(x) = 0, then VA : x = c
HORIZONTAL ASYMPTOTE

If

m > n,

then HA : doesn't exist

If

m < n,

then HA : y = 0,

If

m = n,

then HA : y =

SLANT ASYMPTOTE

If

x - axis

a
b

m = n +1, then SA : y = mx + b
Long divide N(x) by D(x)
Let’s see how that
works!!!
2x 2 - 8
Sketch the graph of the equation f (x) = 2
x -16
2x - 8
=0
2
x -16
2

VA:

2x 2 - 8 = 0

x 2 -16 = 0

f '(x) =

f '(x) =

2 × 02 - 8 1
f (0) = 2
=
0 -16 2

x = -2, 2

x = -4, 4

HA:

4x ( x 2 -16) - 2x ( 2x 2 - 8)

(x

(x

2

-16)

16 ( x - 4)

2

-16) ( x 2 -16)

-

f '(x) =

2

=

16 ( x - 4)

·

-4

·

4

4x 3 - 64 - 4x 3 +16x

(x

2

-16)

f '(x) =

( x + 4) ( x - 4) ( x 2 -16)

-

y=2

m=n

+

2

=

16x - 64

(x

2

-16)

2

16
=0
2
( x + 4) ( x -16)
Almost Done !!!!
f "(x) =

-16 é( x 2 -16) + 2x ( x + 4)ù
ë
û
é( x + 4) ( x -16)ù
ë
û

2

2

-16 é x -16 + 2x + 8xù
ë
û
2

f "(x) =

f "(x) =

=0

2

é( x + 4) ( x 2 -16)ù
ë
û

2

-16 (3x - 4) ( x + 4)

( x + 4 ) ( x + 4) ( x

-

2

-16)

·
-4

2

=0

=0

f "(x) =

-16 é3x 2 + 8x -16ù
ë
û
é( x + 4) ( x -16)ù
ë
û

f "(x) =

2

2

-16 (3x - 4)

( x + 4) ( x

- · + · 4/3
4

=0

2

-16)

2

=0
Let’ make a list
•
•
•
•
•
•
•
•
•

-2, 2
x-intercept
0.5
y-intercept
-4, 4
VA
2
HA
________
SA
[ 4, +¥)
f(x)
( -¥, 4]
f(x)
______
X max
X min
4

• f(x) È
• f(x) Ç
• X infl

æ4 ö
ç , 4÷
è3 ø
æ
4ö
-¥, ÷ and ( 4, +¥)
ç
è
3ø
4
3
Sketch the graph of the equation

•
•
•
•
•
•
•
•
•

x-intercept
y-intercept
VA
HA
SA
f(x)
f(x)
X max
X min

• f(x)
• f(x)
• X infl

y = ( x - 4)

2
3
1
3

Sketch the graph of the equation y = 6x + 3x

•
•
•
•
•
•
•
•
•

x-intercept
y-intercept
VA
HA
SA
f(x)
f(x)
X max
X min

• f(x)
• f(x)
• X infl

4
3

More Related Content

PPTX
Alg2 lesson 6-6
PPTX
Alg2 lesson 6-1
PPT
Curve sketching
PPTX
Alg2 lesson 6-6
PPTX
3 Forms Of A Quadratic Function
PPTX
Clase funcion cuadratica
PPTX
4.3.3 find x intercepts by factoring
PPT
Derivative graphs
Alg2 lesson 6-6
Alg2 lesson 6-1
Curve sketching
Alg2 lesson 6-6
3 Forms Of A Quadratic Function
Clase funcion cuadratica
4.3.3 find x intercepts by factoring
Derivative graphs

What's hot (12)

PPT
Lesson 3 finding x and y intercepts shared
PPT
Linear equations 2-2 a graphing and x-y intercepts
PPTX
x and y intercepts 2012-13 edmodo
PPTX
Alg2 lesson 6-1
DOCX
Chapters 1 8 ( 6 marks)
PPTX
4 2 lesson - Graphing in Standard Form
PPT
DISTANCE FORMULA
PPTX
Representacion funciones sage cell
DOCX
Klmpk matik
PDF
Cônicas 2
PDF
X2 T04 01 curve sketching - basic features/ calculus
PPTX
Keep Your Composure Contest
Lesson 3 finding x and y intercepts shared
Linear equations 2-2 a graphing and x-y intercepts
x and y intercepts 2012-13 edmodo
Alg2 lesson 6-1
Chapters 1 8 ( 6 marks)
4 2 lesson - Graphing in Standard Form
DISTANCE FORMULA
Representacion funciones sage cell
Klmpk matik
Cônicas 2
X2 T04 01 curve sketching - basic features/ calculus
Keep Your Composure Contest
Ad

Viewers also liked (7)

PDF
11X1 T09 05 curve sketching
PDF
The Building Block of Calculus - Chapter 3 Curve Sketching
PPTX
Curve sketching
PPTX
Curve sketching
PPT
Curve sketching 2
PPTX
Curve sketching 1
PPT
Chapter 13 - Curve Sketching
11X1 T09 05 curve sketching
The Building Block of Calculus - Chapter 3 Curve Sketching
Curve sketching
Curve sketching
Curve sketching 2
Curve sketching 1
Chapter 13 - Curve Sketching
Ad

Similar to 5.3 curve sketching (20)

PPT
Calc 3.6b
PPT
Calc 3.6b
PPT
Curve sketching 4
PPTX
Graphs Of Equations
PPT
Graph functions
PPTX
Inequalities tutorial.pptx tutorial for further maths
PPT
Calc 3.6a
PDF
Sample2
PPTX
Alg II 2-8 Inequalities
PDF
Stationary Points Handout
PPTX
1.1 and 1.2 slides revised
PDF
Lesson 21: Curve Sketching (Section 041 slides)
PDF
11X1 T10 05 curve sketching (2011)
PDF
11X1 T12 05 curve sketching (2010)
PDF
11 x1 t10 05 curve sketching (2012)
PDF
P2 Graphs Function
PDF
Lesson 21: Curve Sketching (Section 021 handout)
PPT
Applications of maxima and minima
PPTX
Precalculus 01 Functions and Graphs.pptx
PDF
Lesson 19: Curve Sketching
Calc 3.6b
Calc 3.6b
Curve sketching 4
Graphs Of Equations
Graph functions
Inequalities tutorial.pptx tutorial for further maths
Calc 3.6a
Sample2
Alg II 2-8 Inequalities
Stationary Points Handout
1.1 and 1.2 slides revised
Lesson 21: Curve Sketching (Section 041 slides)
11X1 T10 05 curve sketching (2011)
11X1 T12 05 curve sketching (2010)
11 x1 t10 05 curve sketching (2012)
P2 Graphs Function
Lesson 21: Curve Sketching (Section 021 handout)
Applications of maxima and minima
Precalculus 01 Functions and Graphs.pptx
Lesson 19: Curve Sketching

More from dicosmo178 (20)

PPT
8.7 numerical integration
PPTX
8.2 integration by parts
PPTX
7.3 volumes by cylindrical shells
PPTX
7.2 volumes by slicing disks and washers
PPT
7.1 area between curves
PPTX
6.5 & 6.6 & 6.9 the definite integral and the fundemental theorem of calculus...
PPT
6.3 integration by substitution
PPT
6.2 the indefinite integral
PPT
6.1 & 6.4 an overview of the area problem area
PPTX
5.8 rectilinear motion
PPT
5.7 rolle's thrm & mv theorem
PPTX
5.5 optimization
PPTX
5.4 absolute maxima and minima
PPT
5.2 first and second derivative test
PPT
5.1 analysis of function i
PPT
4.3 derivatives of inv erse trig. functions
PPTX
7.2 volumes by slicing disks and washers
PPTX
8.2 integration by parts
PPT
8.7 numerical integration
PPTX
7.3 volumes by cylindrical shells
8.7 numerical integration
8.2 integration by parts
7.3 volumes by cylindrical shells
7.2 volumes by slicing disks and washers
7.1 area between curves
6.5 & 6.6 & 6.9 the definite integral and the fundemental theorem of calculus...
6.3 integration by substitution
6.2 the indefinite integral
6.1 & 6.4 an overview of the area problem area
5.8 rectilinear motion
5.7 rolle's thrm & mv theorem
5.5 optimization
5.4 absolute maxima and minima
5.2 first and second derivative test
5.1 analysis of function i
4.3 derivatives of inv erse trig. functions
7.2 volumes by slicing disks and washers
8.2 integration by parts
8.7 numerical integration
7.3 volumes by cylindrical shells

Recently uploaded (20)

PDF
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
PDF
Univ-Connecticut-ChatGPT-Presentaion.pdf
PDF
Zenith AI: Advanced Artificial Intelligence
PDF
Unlock new opportunities with location data.pdf
PDF
A comparative study of natural language inference in Swahili using monolingua...
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PDF
A novel scalable deep ensemble learning framework for big data classification...
PDF
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
PPT
Geologic Time for studying geology for geologist
PPTX
O2C Customer Invoices to Receipt V15A.pptx
PPTX
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
1 - Historical Antecedents, Social Consideration.pdf
PPTX
Web Crawler for Trend Tracking Gen Z Insights.pptx
PDF
STKI Israel Market Study 2025 version august
PPTX
Final SEM Unit 1 for mit wpu at pune .pptx
PPTX
Chapter 5: Probability Theory and Statistics
PDF
Taming the Chaos: How to Turn Unstructured Data into Decisions
PDF
Assigned Numbers - 2025 - Bluetooth® Document
PDF
Hindi spoken digit analysis for native and non-native speakers
Hybrid horned lizard optimization algorithm-aquila optimizer for DC motor
Univ-Connecticut-ChatGPT-Presentaion.pdf
Zenith AI: Advanced Artificial Intelligence
Unlock new opportunities with location data.pdf
A comparative study of natural language inference in Swahili using monolingua...
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
A novel scalable deep ensemble learning framework for big data classification...
How ambidextrous entrepreneurial leaders react to the artificial intelligence...
Geologic Time for studying geology for geologist
O2C Customer Invoices to Receipt V15A.pptx
MicrosoftCybserSecurityReferenceArchitecture-April-2025.pptx
DP Operators-handbook-extract for the Mautical Institute
1 - Historical Antecedents, Social Consideration.pdf
Web Crawler for Trend Tracking Gen Z Insights.pptx
STKI Israel Market Study 2025 version august
Final SEM Unit 1 for mit wpu at pune .pptx
Chapter 5: Probability Theory and Statistics
Taming the Chaos: How to Turn Unstructured Data into Decisions
Assigned Numbers - 2025 - Bluetooth® Document
Hindi spoken digit analysis for native and non-native speakers

5.3 curve sketching

  • 1. A Summary of Curve Sketching
  • 2. What should you consider? • • • • • • • • • symmetries x-intercept y-intercept relative extrema asymptores concavity inflection points intervals of increase interval of decrease ASYMPTOTE – VA HA SA N(x) ax m Let R(x) = = D(x) bx n VERTICAL ASYMPTOTE If D(x) = 0, then VA : x = c HORIZONTAL ASYMPTOTE If m > n, then HA : doesn't exist If m < n, then HA : y = 0, If m = n, then HA : y = SLANT ASYMPTOTE If x - axis a b m = n +1, then SA : y = mx + b Long divide N(x) by D(x)
  • 3. Let’s see how that works!!! 2x 2 - 8 Sketch the graph of the equation f (x) = 2 x -16 2x - 8 =0 2 x -16 2 VA: 2x 2 - 8 = 0 x 2 -16 = 0 f '(x) = f '(x) = 2 × 02 - 8 1 f (0) = 2 = 0 -16 2 x = -2, 2 x = -4, 4 HA: 4x ( x 2 -16) - 2x ( 2x 2 - 8) (x (x 2 -16) 16 ( x - 4) 2 -16) ( x 2 -16) - f '(x) = 2 = 16 ( x - 4) · -4 · 4 4x 3 - 64 - 4x 3 +16x (x 2 -16) f '(x) = ( x + 4) ( x - 4) ( x 2 -16) - y=2 m=n + 2 = 16x - 64 (x 2 -16) 2 16 =0 2 ( x + 4) ( x -16)
  • 4. Almost Done !!!! f "(x) = -16 é( x 2 -16) + 2x ( x + 4)ù ë û é( x + 4) ( x -16)ù ë û 2 2 -16 é x -16 + 2x + 8xù ë û 2 f "(x) = f "(x) = =0 2 é( x + 4) ( x 2 -16)ù ë û 2 -16 (3x - 4) ( x + 4) ( x + 4 ) ( x + 4) ( x - 2 -16) · -4 2 =0 =0 f "(x) = -16 é3x 2 + 8x -16ù ë û é( x + 4) ( x -16)ù ë û f "(x) = 2 2 -16 (3x - 4) ( x + 4) ( x - · + · 4/3 4 =0 2 -16) 2 =0
  • 5. Let’ make a list • • • • • • • • • -2, 2 x-intercept 0.5 y-intercept -4, 4 VA 2 HA ________ SA [ 4, +¥) f(x) ( -¥, 4] f(x) ______ X max X min 4 • f(x) È • f(x) Ç • X infl æ4 ö ç , 4÷ è3 ø æ 4ö -¥, ÷ and ( 4, +¥) ç è 3ø 4 3
  • 6. Sketch the graph of the equation • • • • • • • • • x-intercept y-intercept VA HA SA f(x) f(x) X max X min • f(x) • f(x) • X infl y = ( x - 4) 2 3
  • 7. 1 3 Sketch the graph of the equation y = 6x + 3x • • • • • • • • • x-intercept y-intercept VA HA SA f(x) f(x) X max X min • f(x) • f(x) • X infl 4 3