SlideShare a Scribd company logo
Curve Sketching
Curve Sketching
Look for;
Curve Sketching
Look for;                                      1
             points of discontinu ity e.g. y  , x  0, y  0
                                               x
Curve Sketching
Look for;                                      1
             points of discontinu ity e.g. y  , x  0, y  0
                                               x
                                       1
             asymptotes e.g. y  x  , x  0, y  x
                                       x
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
A curve is;
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
 A curve is;  increasing if f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
 A curve is;  increasing if f  x   0
              decreasing if f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
 A curve is;  increasing if f  x   0  concave up if f  x   0
              decreasing if f  x   0
Curve Sketching
Look for;                                     1
            points of discontinu ity e.g. y  , x  0, y  0
                                              x
                                      1
            asymptotes e.g. y  x  , x  0, y  x
                                      x
On the curve y  f  x 
1 stationary points occur when f  x   0
2 maximum turning point if f  x   0, f  x   0
3 minimum turning point if f  x   0, f  x   0
4 point of inflection if f  x   0 and there is a change in
    concavity  f  x   0
 A curve is;  increasing if f  x   0  concave up if f  x   0
              decreasing if f  x   0  concave down if f  x   0
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
        3x 2  12 x  9
    dx
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                            dy
              Stationary points occur when  0
                                                dx
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                             dy
              Stationary points occur when  0
                                                 dx
                          i.e. 3x 2  12 x  9  0
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                             dy
              Stationary points occur when  0
                                                 dx
                          i.e. 3x 2  12 x  9  0
                                 x2  4x  3  0
                            x  1 x  3  0
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                             dy
              Stationary points occur when  0
                                                 dx
                          i.e. 3x 2  12 x  9  0
                                 x2  4x  3  0
                            x  1 x  3  0
                            x  1 or x  3
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                             dy
              Stationary points occur when  0
                                                 dx
                          i.e. 3x 2  12 x  9  0
                                 x2  4x  3  0
                            x  1 x  3  0
               2
                         x  1 or x  3
            d y
 when x  1, 2  61  12
            dx
                 6  0
e.g. Sketch the curve y  x 3  6 x 2  9 x  5
    dy
         3x 2  12 x  9
    dx
  d2y
      2
         6 x  12
  dx
  d3y
      3
        6
  dx                                             dy
              Stationary points occur when  0
                                                 dx
                          i.e. 3x 2  12 x  9  0
                                 x2  4x  3  0
                            x  1 x  3  0
               2
                         x  1 or x  3
            d y
 when x  1, 2  61  12
            dx
                 6  0
           1,  1 is a maximum turning point
d2y
when x  3, 2  63  12
           dx
               60
d2y
when x  3, 2  63  12
           dx
                  60
         3,  5 is a minimum turning point
d2y
 when x  3, 2  63  12
            dx
                   60
          3,  5 is a minimum turning point
                                        d2y
Possible points of inflection occur when 2  0
                                        dx
d2y
 when x  3, 2  63  12
            dx
                   60
          3,  5 is a minimum turning point
                                        d2y
Possible points of inflection occur when 2  0
                                        dx
 i.e. 6 x  12  0
d2y
 when x  3, 2  63  12
            dx
                   60
          3,  5 is a minimum turning point
                                        d2y
Possible points of inflection occur when 2  0
                                        dx
 i.e. 6 x  12  0
             x2
d2y
 when x  3, 2  63  12
            dx
                   60
          3,  5 is a minimum turning point
                                        d2y
Possible points of inflection occur when 2  0
                                        dx
 i.e. 6 x  12  0
             x2
                   d3y
      when x  2, 3  6  0
                   dx
d2y
 when x  3, 2  63  12
            dx
                   60
          3,  5 is a minimum turning point
                                         d2y
Possible points of inflection occur when 2  0
                                         dx
 i.e. 6 x  12  0
             x2
                    d3y
      when x  2, 3  6  0
                    dx
      2,  3 is a point of inflection
y



    x
y



               x
    1,  1
y



                           x
     1,  1




5
                3,  5
y



                           x
    1,  1



               2,  3




                3,  5
y



                            x
     1,  1



                2,  3



5
                 3,  5
y



                                               x
     1,  1



                2,  3    y  x3  6 x 2  9 x  5



5
                 3,  5
y



                                                                 x
                       1,  1


Exercise 10F;
 1bdf, 2, 4b,                     2,  3    y  x3  6 x 2  9 x  5
5ace etc, 6bd

Exercise 10G
1, 2ace, 4b, 5c
                  5
                                   3,  5

More Related Content

PDF
11X1 T09 05 curve sketching
PDF
11X1 T14 04 areas
PDF
X2 T04 04 curve sketching - reciprocal functions
PDF
Figures
PDF
11X1 T12 05 curve sketching (2010)
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
PPT
1 introduction1
PDF
X2 T04 01 curve sketching - basic features/ calculus
11X1 T09 05 curve sketching
11X1 T14 04 areas
X2 T04 04 curve sketching - reciprocal functions
Figures
11X1 T12 05 curve sketching (2010)
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
1 introduction1
X2 T04 01 curve sketching - basic features/ calculus

What's hot (9)

PDF
iTute Notes MM
PDF
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
PDF
002 equation of_a_line
PDF
DOC
Formulas optica
PDF
X2 T03 06 chord of contact and properties (2010)
PDF
X2 T04 05 curve sketching - powers of functions
PDF
Lecture9
iTute Notes MM
Profº Marcelo Santos Chaves Cálculo I (limites trigonométricos)
002 equation of_a_line
Formulas optica
X2 T03 06 chord of contact and properties (2010)
X2 T04 05 curve sketching - powers of functions
Lecture9
Ad

Similar to 11 x1 t10 05 curve sketching (2012) (20)

PDF
11X1 T10 04 concavity (2011)
PDF
11 x1 t10 04 concavity (2012)
PDF
11X1 T12 04 concavity (2010)
PDF
X2 T07 04 reciprocal functions (2011)
PDF
X2 t07 04 reciprocal functions (2012)
PDF
11X1 T09 01 first derivative
PDF
11X1 T12 01 first derivative (2010)
PDF
11X1 T10 01 first derivative (2011)
PDF
11 x1 t10 01 first derivative (2012)
PDF
11X1 T12 02 critical points (2010)
PDF
11X1 T10 02 critical points (2011)
PDF
11 x1 t10 02 critical points (2012)
PDF
11 x1 t12 05 curve sketching (2013)
PPT
11X1 T09 02 critical points
PDF
11 X1 T02 07 sketching graphs (2010)
PDF
11 x1 t02 07 sketching graphs (2012)
PDF
11 Ext1 t02 07 sketching graphs (13)
PDF
11X1 T02 07 sketching graphs [2011]
PDF
X2 T07 05 powers of functions (2011)
PDF
X2 t07 05 powers of functions (2012)
11X1 T10 04 concavity (2011)
11 x1 t10 04 concavity (2012)
11X1 T12 04 concavity (2010)
X2 T07 04 reciprocal functions (2011)
X2 t07 04 reciprocal functions (2012)
11X1 T09 01 first derivative
11X1 T12 01 first derivative (2010)
11X1 T10 01 first derivative (2011)
11 x1 t10 01 first derivative (2012)
11X1 T12 02 critical points (2010)
11X1 T10 02 critical points (2011)
11 x1 t10 02 critical points (2012)
11 x1 t12 05 curve sketching (2013)
11X1 T09 02 critical points
11 X1 T02 07 sketching graphs (2010)
11 x1 t02 07 sketching graphs (2012)
11 Ext1 t02 07 sketching graphs (13)
11X1 T02 07 sketching graphs [2011]
X2 T07 05 powers of functions (2011)
X2 t07 05 powers of functions (2012)
Ad

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)

Recently uploaded (20)

PDF
Trump Administration's workforce development strategy
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
Hazard Identification & Risk Assessment .pdf
PDF
International_Financial_Reporting_Standa.pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Empowerment Technology for Senior High School Guide
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
IGGE1 Understanding the Self1234567891011
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
Trump Administration's workforce development strategy
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
Hazard Identification & Risk Assessment .pdf
International_Financial_Reporting_Standa.pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
B.Sc. DS Unit 2 Software Engineering.pptx
Empowerment Technology for Senior High School Guide
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
HVAC Specification 2024 according to central public works department
Environmental Education MCQ BD2EE - Share Source.pdf
IGGE1 Understanding the Self1234567891011
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Share_Module_2_Power_conflict_and_negotiation.pptx
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
TNA_Presentation-1-Final(SAVE)) (1).pptx

11 x1 t10 05 curve sketching (2012)

  • 3. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x
  • 4. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x
  • 5. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x 
  • 6. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0
  • 7. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0
  • 8. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0
  • 9. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0
  • 10. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0 A curve is;
  • 11. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0 A curve is;  increasing if f  x   0
  • 12. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0 A curve is;  increasing if f  x   0  decreasing if f  x   0
  • 13. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0 A curve is;  increasing if f  x   0  concave up if f  x   0  decreasing if f  x   0
  • 14. Curve Sketching Look for; 1  points of discontinu ity e.g. y  , x  0, y  0 x 1  asymptotes e.g. y  x  , x  0, y  x x On the curve y  f  x  1 stationary points occur when f  x   0 2 maximum turning point if f  x   0, f  x   0 3 minimum turning point if f  x   0, f  x   0 4 point of inflection if f  x   0 and there is a change in concavity  f  x   0 A curve is;  increasing if f  x   0  concave up if f  x   0  decreasing if f  x   0  concave down if f  x   0
  • 15. e.g. Sketch the curve y  x 3  6 x 2  9 x  5
  • 16. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx
  • 17. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx
  • 18. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx
  • 19. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx
  • 20. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx i.e. 3x 2  12 x  9  0
  • 21. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx i.e. 3x 2  12 x  9  0 x2  4x  3  0  x  1 x  3  0
  • 22. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx i.e. 3x 2  12 x  9  0 x2  4x  3  0  x  1 x  3  0 x  1 or x  3
  • 23. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx i.e. 3x 2  12 x  9  0 x2  4x  3  0  x  1 x  3  0 2 x  1 or x  3 d y when x  1, 2  61  12 dx  6  0
  • 24. e.g. Sketch the curve y  x 3  6 x 2  9 x  5 dy  3x 2  12 x  9 dx d2y 2  6 x  12 dx d3y 3 6 dx dy Stationary points occur when  0 dx i.e. 3x 2  12 x  9  0 x2  4x  3  0  x  1 x  3  0 2 x  1 or x  3 d y when x  1, 2  61  12 dx  6  0  1,  1 is a maximum turning point
  • 25. d2y when x  3, 2  63  12 dx 60
  • 26. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point
  • 27. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point d2y Possible points of inflection occur when 2  0 dx
  • 28. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point d2y Possible points of inflection occur when 2  0 dx i.e. 6 x  12  0
  • 29. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point d2y Possible points of inflection occur when 2  0 dx i.e. 6 x  12  0 x2
  • 30. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point d2y Possible points of inflection occur when 2  0 dx i.e. 6 x  12  0 x2 d3y when x  2, 3  6  0 dx
  • 31. d2y when x  3, 2  63  12 dx 60  3,  5 is a minimum turning point d2y Possible points of inflection occur when 2  0 dx i.e. 6 x  12  0 x2 d3y when x  2, 3  6  0 dx  2,  3 is a point of inflection
  • 32. y x
  • 33. y x 1,  1
  • 34. y x 1,  1 5 3,  5
  • 35. y x 1,  1 2,  3 3,  5
  • 36. y x 1,  1 2,  3 5 3,  5
  • 37. y x 1,  1 2,  3 y  x3  6 x 2  9 x  5 5 3,  5
  • 38. y x 1,  1 Exercise 10F; 1bdf, 2, 4b, 2,  3 y  x3  6 x 2  9 x  5 5ace etc, 6bd Exercise 10G 1, 2ace, 4b, 5c 5 3,  5