SlideShare a Scribd company logo
Curve Sketching
Curve Sketching
Look for;
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
Look for;
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
is;curveA
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
  0ifincreasing  xf
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
is;curveA
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
  0ifincreasing  xf
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
is;curveA
  0ifdecreasing  xf
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
  0ifincreasing  xf
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
is;curveA
  0ifdecreasing  xf
  0ifupconcave  xf
Curve Sketching
0,0,
1
e.g.itydiscontinuofpoints  yx
x
y
 xfy curveOn the
    0occur whenpointsstationary1  xf
Look for;
  0ifincreasing  xf
xyx
x
xy  ,0,
1
e.g.asymptotes
      0,0ifpointturningmaximum2  xfxf
      0,0ifpointturningminimum3  xfxf
   
  0concavity
inchangeaisthereand0ifinflectionofpoint4


xf
xf
is;curveA
  0ifdecreasing  xf
  0ifupconcave  xf
  0ifdownconcave  xf
596curveSketch thee.g. 23
 xxxy
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
63
3

dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
63
3

dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
09123i.e. 2
 xx
63
3

dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
09123i.e. 2
 xx
   031
0342


xx
xx
63
3

dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
09123i.e. 2
 xx
   031
0342


xx
xx
3or1  xx
63
3

dx
yd
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
09123i.e. 2
 xx
   031
0342


xx
xx
3or1  xx
63
3

dx
yd
 
06
1216,1when 2
2


dx
yd
x
596curveSketch thee.g. 23
 xxxy
9123 2
 xx
dx
dy
1262
2
 x
dx
yd
0occur whenpointsStationary 
dx
dy
09123i.e. 2
 xx
   031
0342


xx
xx
3or1  xx
63
3

dx
yd
 
06
1216,1when 2
2


dx
yd
x
  pointturningmaximumais11  ,
 
06
1236,3when 2
2


dx
yd
x
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
0occur wheninflectionofpointsPossible 2
2

dx
yd
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
0occur wheninflectionofpointsPossible 2
2

dx
yd
0126.. xei
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
0occur wheninflectionofpointsPossible 2
2

dx
yd
0126.. xei
2x
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
0occur wheninflectionofpointsPossible 2
2

dx
yd
0126.. xei
2x
06,2when 3
3

dx
yd
x
 
06
1236,3when 2
2


dx
yd
x
  pointturningminimumais53  ,
0occur wheninflectionofpointsPossible 2
2

dx
yd
0126.. xei
2x
06,2when 3
3

dx
yd
x
  inflectionofpointais32  ,
x
y
x
y
 11 ,
x
y
 11 ,
 53 ,
5
x
y
 11 ,
 53 ,
 32 ,
x
y
 11 ,
 53 ,
 32 ,
5
x
y
 11 ,
596 23
 xxxy
 53 ,
 32 ,
5
x
y
 11 ,
596 23
 xxxy
 53 ,
 32 ,
5
Exercise 10F;
1bdf, 2, 4b,
5ace etc, 6bd
Exercise 10G
1, 2ace, 4b, 5c

More Related Content

PDF
X2 T04 01 curve sketching - basic features/ calculus
DOCX
StewartPlatform_cpp
PDF
X2 T07 02 transformations (2011)
PDF
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
KEY
Proga 0706
KEY
Proga 090525
PPTX
5.3 curve sketching
PPT
5.2 first and second derivative test
X2 T04 01 curve sketching - basic features/ calculus
StewartPlatform_cpp
X2 T07 02 transformations (2011)
X2 T04 03 cuve sketching - addition, subtraction, multiplication and division
Proga 0706
Proga 090525
5.3 curve sketching
5.2 first and second derivative test

What's hot (17)

PPT
5.7 rolle's thrm & mv theorem
DOC
Question 6
PDF
Numerical methods course project report
PDF
Rで分かる力学系
 
PDF
25 Years of C++ History Flashed in Front of My Eyes
PPT
Calc 3.6b
PDF
ITA 2014 - aberta
PDF
Funções 7
DOCX
PDF
Pre-Calc 30S May 2
PPTX
15. map, unordered map, algorithms
PPTX
2 3 graphing in slope-intercept form
PPTX
PDF
Funções 3
PDF
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
5.7 rolle's thrm & mv theorem
Question 6
Numerical methods course project report
Rで分かる力学系
 
25 Years of C++ History Flashed in Front of My Eyes
Calc 3.6b
ITA 2014 - aberta
Funções 7
Pre-Calc 30S May 2
15. map, unordered map, algorithms
2 3 graphing in slope-intercept form
Funções 3
MATHS SYMBOLS - #2 - EXPONENTIALS and LOGARITHMS
Ad

Viewers also liked (12)

PDF
11 x1 t15 02 sketching polynomials (2013)
PDF
11 x1 t12 02 critical points (2013)
PDF
X2 t07 07 other graphs (2013)
PDF
11 x1 t02 07 sketching graphs (2012)
PDF
11 X1 T03 06 asymptotes (2010)
PDF
11 x1 t02 10 shifting curves ii (2013)
PDF
11 x1 t12 04 concavity (2013)
PDF
11 Ext1 t02 07 sketching graphs (13)
PPT
11 X1 T06 04 Quadrilateral Family
PDF
11 x1 t03 06 asymptotes (2013)
PDF
11 x1 t02 06 relations & functions (2012)
PPT
Goodbye slideshare UPDATE
11 x1 t15 02 sketching polynomials (2013)
11 x1 t12 02 critical points (2013)
X2 t07 07 other graphs (2013)
11 x1 t02 07 sketching graphs (2012)
11 X1 T03 06 asymptotes (2010)
11 x1 t02 10 shifting curves ii (2013)
11 x1 t12 04 concavity (2013)
11 Ext1 t02 07 sketching graphs (13)
11 X1 T06 04 Quadrilateral Family
11 x1 t03 06 asymptotes (2013)
11 x1 t02 06 relations & functions (2012)
Goodbye slideshare UPDATE
Ad

Similar to 11 x1 t12 05 curve sketching (2013) (20)

PDF
11 x1 t12 01 first derivative (2013)
PDF
11X1 T10 05 curve sketching (2011)
PDF
11X1 T12 05 curve sketching (2010)
PDF
11 x1 t10 05 curve sketching (2012)
PDF
11 x1 t16 01 area under curve (2013)
PPTX
Three dimensional transformations
PDF
11X1 T09 05 curve sketching
PDF
11 x1 t10 01 graphing quadratics (2013)
PDF
iteration-quadratic-equations (1)
PDF
11X1 T11 06 sign of a quadratic
PDF
11X1 T11 06 sign of a quadratic (2011)
PDF
11X1 T10 06 sign of a quadratic (2010)
PDF
11 x1 t10 06 sign of a quadratic (2012)
PPT
4.2 stem parabolas revisited
PPTX
application of complex numbers
PPT
G9-Math-Q1-Week-9-Solving-Quadratic-Function.ppt
PDF
11 x1 t12 07 primitive function (2013)
PPTX
Curve sketching
PDF
X2 t05 02 cylindrical shells (2013)
DOCX
MAC  2233  Graphing  Assignment  A  General  P.docx
11 x1 t12 01 first derivative (2013)
11X1 T10 05 curve sketching (2011)
11X1 T12 05 curve sketching (2010)
11 x1 t10 05 curve sketching (2012)
11 x1 t16 01 area under curve (2013)
Three dimensional transformations
11X1 T09 05 curve sketching
11 x1 t10 01 graphing quadratics (2013)
iteration-quadratic-equations (1)
11X1 T11 06 sign of a quadratic
11X1 T11 06 sign of a quadratic (2011)
11X1 T10 06 sign of a quadratic (2010)
11 x1 t10 06 sign of a quadratic (2012)
4.2 stem parabolas revisited
application of complex numbers
G9-Math-Q1-Week-9-Solving-Quadratic-Function.ppt
11 x1 t12 07 primitive function (2013)
Curve sketching
X2 t05 02 cylindrical shells (2013)
MAC  2233  Graphing  Assignment  A  General  P.docx

More from Nigel Simmons (20)

PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t16 02 definite integral (2013)
PDF
X2 t01 11 nth roots of unity (2012)
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 05 volumes (2013)
11 x1 t16 04 areas (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t16 02 definite integral (2013)
X2 t01 11 nth roots of unity (2012)

Recently uploaded (20)

PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Indian roads congress 037 - 2012 Flexible pavement
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
PPTX
20th Century Theater, Methods, History.pptx
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
HVAC Specification 2024 according to central public works department
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
My India Quiz Book_20210205121199924.pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PPTX
Virtual and Augmented Reality in Current Scenario
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Empowerment Technology for Senior High School Guide
202450812 BayCHI UCSC-SV 20250812 v17.pptx
FORM 1 BIOLOGY MIND MAPS and their schemes
Introduction to pro and eukaryotes and differences.pptx
Indian roads congress 037 - 2012 Flexible pavement
Paper A Mock Exam 9_ Attempt review.pdf.
20th Century Theater, Methods, History.pptx
Chinmaya Tiranga quiz Grand Finale.pdf
HVAC Specification 2024 according to central public works department
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
My India Quiz Book_20210205121199924.pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Virtual and Augmented Reality in Current Scenario
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
What if we spent less time fighting change, and more time building what’s rig...
AI-driven educational solutions for real-life interventions in the Philippine...
Empowerment Technology for Senior High School Guide

11 x1 t12 05 curve sketching (2013)