SlideShare a Scribd company logo
The Primitive Function
The Primitive FunctionIf we know the equation of the tangent, how do we find the original
curve?
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
If we know the equation of the tangent, how do we find the original
curve?
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
    4
3e.g. xxfi 
If we know the equation of the tangent, how do we find the original
curve?
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
    4
3e.g. xxfi 
If we know the equation of the tangent, how do we find the original
curve?
  c
x
xf 
5
3 5
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
    4
3e.g. xxfi 
If we know the equation of the tangent, how do we find the original
curve?
  c
x
xf 
5
3 5
    256 23
 xxxxfii
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
    4
3e.g. xxfi 
If we know the equation of the tangent, how do we find the original
curve?
  c
x
xf 
5
3 5
    256 23
 xxxxfii
  cx
xxx
xf  2
23
5
4
6 234
The Primitive Function
 
  c
n
x
xf
xxf
n
n





1
is;functionprimitivethen the,If
1
    4
3e.g. xxfi 
If we know the equation of the tangent, how do we find the original
curve?
  c
x
xf 
5
3 5
    256 23
 xxxxfii
  cx
xxx
xf  2
23
5
4
6 234
  cxxxxxf  2
2
1
3
5
2
3 234
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
cxxy  32
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
cxxy  32
when x = 1, y = 1
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
cxxy  32
3
311i.e. 2


c
c
when x = 1, y = 1
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
cxxy  32
3
311i.e. 2


c
c
332
 xxy
when x = 1, y = 1
(iii) Find the equation of the curve which passes through (1,1) and has
a gradient function of 2x + 3
32  x
dx
dy
cxxy  32
3
311i.e. 2


c
c
332
 xxy
when x = 1, y = 1
Exercise 10J; 1ace etc, 2bdf, 3aceg, 4bd, 5b, 7ac, 8bdf
9ace, 10b, 12bd, 14a, 15, 17a

More Related Content

PDF
11X1 T09 07 primitive functions
PDF
11 x1 t12 07 primitive function
PPT
Composition Of Functions & Difference Quotient
PPT
Lecture 3 tangent & velocity problems
PDF
Complex exercises
PDF
Lesson 7: Vector-valued functions
PPTX
Hidden markov model explained
11X1 T09 07 primitive functions
11 x1 t12 07 primitive function
Composition Of Functions & Difference Quotient
Lecture 3 tangent & velocity problems
Complex exercises
Lesson 7: Vector-valued functions
Hidden markov model explained

What's hot (15)

PPTX
Data structure
PPTX
DOC
LAP2009c&p103-ode1.5 ht
PDF
09 - 27 Jan - Recursion Part 1
PDF
PDF
C3 test
DOCX
Exercise 1
PDF
[Question Paper] Electronic & Tele Communication System (Old Course) [Septemb...
PPTX
Hidden Markov Model - The Most Probable Path
PPTX
Applied Calculus Chapter 1 polar coordinates and vector
 
DOCX
Truth table a.r
PDF
Little o and little omega
PPTX
Applied Calculus Chapter 2 vector valued function
 
PDF
AB-RNA-alignments-2011
PDF
Theta notation
Data structure
LAP2009c&p103-ode1.5 ht
09 - 27 Jan - Recursion Part 1
C3 test
Exercise 1
[Question Paper] Electronic & Tele Communication System (Old Course) [Septemb...
Hidden Markov Model - The Most Probable Path
Applied Calculus Chapter 1 polar coordinates and vector
 
Truth table a.r
Little o and little omega
Applied Calculus Chapter 2 vector valued function
 
AB-RNA-alignments-2011
Theta notation
Ad

Viewers also liked (15)

PDF
11 x1 t12 03 second derivative (2013)
PDF
11 x1 t12 01 first derivative (2013)
PDF
11 x1 t16 05 volumes (2013)
PDF
11 x1 t12 05 curve sketching (2013)
PDF
11 x1 t16 04 areas (2013)
PDF
11 x1 t12 06 maxima & minima (2013)
PDF
11 x1 t05 02 gradient (2013)
PDF
11 x1 t16 01 area under curve (2013)
PDF
11 x1 t12 04 concavity (2013)
PDF
11 x1 t16 03 indefinite integral (2013)
PDF
11 x1 t12 02 critical points (2013)
PDF
11 x1 t16 07 approximations (2012)
PDF
11 x1 t16 06 derivative times function (2013)
PDF
11 x1 t16 02 definite integral (2013)
PPTX
elimination, nursing
11 x1 t12 03 second derivative (2013)
11 x1 t12 01 first derivative (2013)
11 x1 t16 05 volumes (2013)
11 x1 t12 05 curve sketching (2013)
11 x1 t16 04 areas (2013)
11 x1 t12 06 maxima & minima (2013)
11 x1 t05 02 gradient (2013)
11 x1 t16 01 area under curve (2013)
11 x1 t12 04 concavity (2013)
11 x1 t16 03 indefinite integral (2013)
11 x1 t12 02 critical points (2013)
11 x1 t16 07 approximations (2012)
11 x1 t16 06 derivative times function (2013)
11 x1 t16 02 definite integral (2013)
elimination, nursing
Ad

Similar to 11 x1 t12 07 primitive function (2013) (20)

PDF
11 x1 t10 07 primitive function (2012)
PDF
11X1 T10 07 primitive function (2011)
PDF
11 x1 t09 08 implicit differentiation (2013)
PDF
College textbook business math and statistics - section b - business mathem...
PDF
11 x1 t09 01 limits & continuity (2013)
PPT
Limit and continuity
PPT
l8_four_step_rule__differentiation_formulas.ppt
PPT
5.1lecture_001.ppt 5.1lecture_001.ppt 5.1lecture_001.ppt
PDF
11 x1 t11 06 tangents & normals ii (2013)
PDF
11 x1 t15 06 roots & coefficients (2013)
PDF
Algebra 2 Section 5-3
PDF
Algebra 2 Section 4-5
DOCX
Vertical asymptotes to rational functions
PPTX
The chain rule
 
PPTX
Antiderivatives and indefinite integration2009
PPT
Derivatives
PDF
1.3 Pythagorean Theorem
PDF
11 x1 t09 02 first principles (2013)
PPT
11 X1 T05 07 Angle Between Two Lines
PPT
MA2.pptglobalizarion on economic landscape
11 x1 t10 07 primitive function (2012)
11X1 T10 07 primitive function (2011)
11 x1 t09 08 implicit differentiation (2013)
College textbook business math and statistics - section b - business mathem...
11 x1 t09 01 limits & continuity (2013)
Limit and continuity
l8_four_step_rule__differentiation_formulas.ppt
5.1lecture_001.ppt 5.1lecture_001.ppt 5.1lecture_001.ppt
11 x1 t11 06 tangents & normals ii (2013)
11 x1 t15 06 roots & coefficients (2013)
Algebra 2 Section 5-3
Algebra 2 Section 4-5
Vertical asymptotes to rational functions
The chain rule
 
Antiderivatives and indefinite integration2009
Derivatives
1.3 Pythagorean Theorem
11 x1 t09 02 first principles (2013)
11 X1 T05 07 Angle Between Two Lines
MA2.pptglobalizarion on economic landscape

More from Nigel Simmons (20)

PPT
Goodbye slideshare UPDATE
PPT
Goodbye slideshare
PDF
12 x1 t02 02 integrating exponentials (2014)
PDF
11 x1 t01 03 factorising (2014)
PDF
11 x1 t01 02 binomial products (2014)
PDF
12 x1 t02 01 differentiating exponentials (2014)
PDF
11 x1 t01 01 algebra & indices (2014)
PDF
12 x1 t01 03 integrating derivative on function (2013)
PDF
12 x1 t01 02 differentiating logs (2013)
PDF
12 x1 t01 01 log laws (2013)
PDF
X2 t02 04 forming polynomials (2013)
PDF
X2 t02 03 roots & coefficients (2013)
PDF
X2 t02 02 multiple roots (2013)
PDF
X2 t02 01 factorising complex expressions (2013)
PDF
11 x1 t16 07 approximations (2013)
PDF
X2 t01 11 nth roots of unity (2012)
PDF
X2 t01 10 complex & trig (2013)
PDF
X2 t01 09 de moivres theorem
PDF
X2 t01 08 locus & complex nos 2 (2013)
PDF
X2 t01 07 locus & complex nos 1 (2013)
Goodbye slideshare UPDATE
Goodbye slideshare
12 x1 t02 02 integrating exponentials (2014)
11 x1 t01 03 factorising (2014)
11 x1 t01 02 binomial products (2014)
12 x1 t02 01 differentiating exponentials (2014)
11 x1 t01 01 algebra & indices (2014)
12 x1 t01 03 integrating derivative on function (2013)
12 x1 t01 02 differentiating logs (2013)
12 x1 t01 01 log laws (2013)
X2 t02 04 forming polynomials (2013)
X2 t02 03 roots & coefficients (2013)
X2 t02 02 multiple roots (2013)
X2 t02 01 factorising complex expressions (2013)
11 x1 t16 07 approximations (2013)
X2 t01 11 nth roots of unity (2012)
X2 t01 10 complex & trig (2013)
X2 t01 09 de moivres theorem
X2 t01 08 locus & complex nos 2 (2013)
X2 t01 07 locus & complex nos 1 (2013)

Recently uploaded (20)

PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
Hazard Identification & Risk Assessment .pdf
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PDF
IGGE1 Understanding the Self1234567891011
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
Share_Module_2_Power_conflict_and_negotiation.pptx
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Chinmaya Tiranga quiz Grand Finale.pdf
What if we spent less time fighting change, and more time building what’s rig...
Unit 4 Computer Architecture Multicore Processor.pptx
History, Philosophy and sociology of education (1).pptx
MBA _Common_ 2nd year Syllabus _2021-22_.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Hazard Identification & Risk Assessment .pdf
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Introduction to pro and eukaryotes and differences.pptx
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
medical_surgical_nursing_10th_edition_ignatavicius_TEST_BANK_pdf.pdf
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
TNA_Presentation-1-Final(SAVE)) (1).pptx
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
IGGE1 Understanding the Self1234567891011

11 x1 t12 07 primitive function (2013)

  • 2. The Primitive FunctionIf we know the equation of the tangent, how do we find the original curve?
  • 3. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1 If we know the equation of the tangent, how do we find the original curve?
  • 4. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1     4 3e.g. xxfi  If we know the equation of the tangent, how do we find the original curve?
  • 5. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1     4 3e.g. xxfi  If we know the equation of the tangent, how do we find the original curve?   c x xf  5 3 5
  • 6. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1     4 3e.g. xxfi  If we know the equation of the tangent, how do we find the original curve?   c x xf  5 3 5     256 23  xxxxfii
  • 7. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1     4 3e.g. xxfi  If we know the equation of the tangent, how do we find the original curve?   c x xf  5 3 5     256 23  xxxxfii   cx xxx xf  2 23 5 4 6 234
  • 8. The Primitive Function     c n x xf xxf n n      1 is;functionprimitivethen the,If 1     4 3e.g. xxfi  If we know the equation of the tangent, how do we find the original curve?   c x xf  5 3 5     256 23  xxxxfii   cx xxx xf  2 23 5 4 6 234   cxxxxxf  2 2 1 3 5 2 3 234
  • 9. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3
  • 10. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy
  • 11. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy cxxy  32
  • 12. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy cxxy  32 when x = 1, y = 1
  • 13. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy cxxy  32 3 311i.e. 2   c c when x = 1, y = 1
  • 14. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy cxxy  32 3 311i.e. 2   c c 332  xxy when x = 1, y = 1
  • 15. (iii) Find the equation of the curve which passes through (1,1) and has a gradient function of 2x + 3 32  x dx dy cxxy  32 3 311i.e. 2   c c 332  xxy when x = 1, y = 1 Exercise 10J; 1ace etc, 2bdf, 3aceg, 4bd, 5b, 7ac, 8bdf 9ace, 10b, 12bd, 14a, 15, 17a