Artifical Intelligence Excercise 1
1. Semantic Network
2. Semantice Network
3. Truth Tables
a) ɿ(ɿP) = P
P ɿP ɿ (ɿP)
T
F
T
F
F
T
F
T
T
F
T
F
Has
Property
Has
Property
Has
Property
Is - a
Is - a
Has
Property
Is - a
Has
Color
Has
Property
Has
Covering
Is - a
White
Singing
Tweety
Canary
FlyingBirdFeatherd
Animal
Equilateral
Triangle
Triangle
Closed Shape
3 Angles 3 Sides
Equal Slides
B) (P v Q) Ξ (ɿP → Q)
C) (P → Q) Ξ (ɿQ → ɿP)
D) (i) ɿ (P v Q) Ξ (ɿP ^ ɿQ)
(ii) ɿ (P ^ Q) Ξ (ɿP v ɿQ)
P Q P v Q ɿP ɿP → Q
T
F
T
F
T
T
F
F
T
T
T
F
F
T
F
T
T
T
T
F
P Q ɿQ ɿP P → Q ɿQ → ɿP
T
F
T
F
T
T
F
F
F
F
T
T
F
T
F
T
T
T
F
T
T
T
F
T
P Q ɿQ ɿP P v Q ɿ (P v Q) ɿP ^ ɿQ
T
F
T
F
T
T
F
F
F
F
T
T
F
T
F
T
T
T
T
F
F
F
F
T
F
F
F
T
P Q ɿQ ɿP P ^ Q ɿ (P ^ Q) ɿP v ɿQ
T
F
T
F
T
T
F
F
F
F
T
T
F
T
F
T
T
F
F
F
F
T
T
T
F
T
T
T
e) i) (P v Q) Ξ (Q v P)
ii) (P ^ Q) Ξ (Q ^ P)
f) (P ^ Q) ^ R Ξ P ^ (Q ^ R)
P Q P v Q Q v P
T
F
T
F
T
T
F
F
T
T
T
F
T
T
T
F
P Q P ^ Q Q ^ P
T
F
T
F
T
T
F
F
T
F
F
F
T
F
F
F
P Q R P ^ Q (Q ^ R) (P ^ Q) ^ R P ^ (Q ^ R)
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
T
F
F
F
F
F
F
T
F
F
F
T
F
F
F
T
F
F
F
F
F
F
F
T
F
F
F
F
F
F
F
g) (P v Q) v R Ξ P v (Q v R)
h) P v (Q ^ R) Ξ (P v Q) ^ (P v R)
P Q R P v Q Q v R (P v Q) v R P v (Q v R)
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
T
T
T
T
T
F
F
T
T
T
T
T
T
T
F
T
T
T
F
T
T
T
F
T
T
T
T
T
T
T
F
P Q R Q ^ R P v Q P v R P v (Q ^ R) (P v Q) ^ (P v R)
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
F
F
F
T
F
F
F
T
T
T
T
T
T
F
F
T
T
T
T
T
F
T
F
T
T
T
T
T
F
T
F
T
T
T
T
T
F
T
F
i) P ^ (Q v R) Ξ (P ^ Q) v (P ^ R)
4. Truth Tables
i) (p ^ (p → q)) → q
ii) (p → q) ^ ɿq → ɿq
P Q R Q v R P ^ Q P ^ R P ^ (Q v R) (P ^ Q) v (P ^ R)
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
T
T
F
T
T
T
F
T
T
F
F
F
F
F
F
T
F
T
F
F
F
F
F
T
T
T
F
F
F
F
F
T
T
T
F
F
F
F
F
p q p → q p ^ (p → q) (p ^ (p → q)) → q
T
F
T
F
T
T
F
F
T
T
F
T
T
F
F
F
T
T
T
T
P q p → q ɿq (p → q) ^ ɿq (p → q) ^ ɿq → ɿq
T
F
T
F
T
T
F
F
T
T
F
T
F
F
T
T
F
F
T
T
T
T
T
T
iii) (P → (Q → R)) → (P → Q)) → (P → R)
5.
(P → Q) ^ (Q → P) Ξ P ↔ Q
P Q R Q → R P → Q P → R P → (Q →
R)
P → (Q →
R)→ (P →
Q))
P → (Q →
R)→ (P →
Q))→ (P →
R)
T
T
T
T
F
F
F
F
T
T
F
F
T
T
F
F
T
F
T
F
T
F
T
F
T
F
T
T
T
F
T
T
T
T
F
F
T
T
T
T
T
F
T
F
T
T
T
T
T
F
T
T
T
T
T
T
T
F
T
T
T
T
T
T
T
T
T
T
T
T
T
T
P Q P → Q Q → P (p → q) ^
Q → P
P ↔ Q
T
F
T
F
T
T
F
F
T
T
F
T
T
F
T
T
T
F
F
T
T
F
F
T

More Related Content

PDF
12 dimopoulou diagrammatics-in-history-a
PDF
ΤΑ ΕΙΔΗ ΤΟΥ ΜΟΡΙΟΥ ΑΝ
DOCX
Proposiciones ok
PDF
Leyes lógica matemática y conjuntos
DOCX
Trabajo de logica matematica 3 bgu
PDF
Ejemplos de logica proposicional
PDF
null-12.pdf
PDF
null-12.pdf
12 dimopoulou diagrammatics-in-history-a
ΤΑ ΕΙΔΗ ΤΟΥ ΜΟΡΙΟΥ ΑΝ
Proposiciones ok
Leyes lógica matemática y conjuntos
Trabajo de logica matematica 3 bgu
Ejemplos de logica proposicional
null-12.pdf
null-12.pdf

Similar to Exercise 1 (20)

DOCX
PPT
Truth table analysis
PDF
Formal Logic - Lesson 3 - Truth Tables
PPTX
Propositional logic
PDF
Logic and proof
DOCX
Discrete Structures
PDF
Maths teachers guide For freshman course.pdf
PDF
Formal Logic - Lesson 5 - Logical Equivalence
PDF
Discrete mathematic question answers
PDF
Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency
PDF
M4 logic-midterm-153
PDF
Doc1.doc nobel[1]1[1]
PDF
Doc1.doc nobel[1]3
PDF
Doc1.doc nobel[1]2
PPTX
3. Derived Logical Connectives logical.pptx
PPT
Mathematical foundations of computer science
DOCX
Truth table a.r
PDF
Solutions Manual for Mathematical Proofs A Transition to Advanced Mathematics...
PDF
Formal Logic - Lesson 6 - Switching Circuits
PDF
(ERRORS in some syllogisms; see 4th version) 19OR24p-rev3-Examples-to-accompa...
Truth table analysis
Formal Logic - Lesson 3 - Truth Tables
Propositional logic
Logic and proof
Discrete Structures
Maths teachers guide For freshman course.pdf
Formal Logic - Lesson 5 - Logical Equivalence
Discrete mathematic question answers
Formal Logic - Lesson 4 - Tautology, Contradiction and Contingency
M4 logic-midterm-153
Doc1.doc nobel[1]1[1]
Doc1.doc nobel[1]3
Doc1.doc nobel[1]2
3. Derived Logical Connectives logical.pptx
Mathematical foundations of computer science
Truth table a.r
Solutions Manual for Mathematical Proofs A Transition to Advanced Mathematics...
Formal Logic - Lesson 6 - Switching Circuits
(ERRORS in some syllogisms; see 4th version) 19OR24p-rev3-Examples-to-accompa...
Ad

Recently uploaded (20)

PPTX
Kulipari: Army of Frogs Movie - OVFX Story Internship 2023
PPTX
Introduction to NGO’s098765789709876.pptx
PPTX
Randomiser Wheel- All About Me Wheel for KG-3 Can be used as an icebreaker
PPTX
Mariah Morgenstern - Journey in Film & Music.pptx
PPTX
Goal - its setting ,tracking and relevance
PDF
mnbnyuynhncf ytdnbvdfghdfhghdhdfhdghdghdghghgfhfh
PDF
Avast Premium Security Crack Full Download (Latest 2025)
DOC
UD毕业证学历认证,布兰戴斯大学毕业证学位认证
PPTX
SWweredddddaregqrgWWEQEwqdewf final.pptx
PPTX
Cloud Computing ppt[1].pptxkuti7t888tt8iug
PPTX
GILGIT BALTISTAN HISTORY ,ADMINISTRATIVE , CONSTITUTUINAL STATUS , GEOGRAPMY ...
PPTX
Food Processing Engineering.pptx ucuuvvu
PPTX
Picture Perception - a constructive narrative
PDF
3 Best IPTV Reseller Programs Providers (2025)
PDF
D009 - Lahoo Ke Pyaase. its a hindi comics
PDF
KarolG CarRace Sequence...why a 40 character minimum for a title?
PPTX
Basic Template Presentation for Usage Business
PDF
What Happened to Sue Aikens’ Granddaughter on Life Below Zero.pdf
PPTX
Cristiano Ronaldo.pptx. The greatest footballer of all time
PDF
Plot Dive – Movie Plots, Reviews & Celeb Insights
Kulipari: Army of Frogs Movie - OVFX Story Internship 2023
Introduction to NGO’s098765789709876.pptx
Randomiser Wheel- All About Me Wheel for KG-3 Can be used as an icebreaker
Mariah Morgenstern - Journey in Film & Music.pptx
Goal - its setting ,tracking and relevance
mnbnyuynhncf ytdnbvdfghdfhghdhdfhdghdghdghghgfhfh
Avast Premium Security Crack Full Download (Latest 2025)
UD毕业证学历认证,布兰戴斯大学毕业证学位认证
SWweredddddaregqrgWWEQEwqdewf final.pptx
Cloud Computing ppt[1].pptxkuti7t888tt8iug
GILGIT BALTISTAN HISTORY ,ADMINISTRATIVE , CONSTITUTUINAL STATUS , GEOGRAPMY ...
Food Processing Engineering.pptx ucuuvvu
Picture Perception - a constructive narrative
3 Best IPTV Reseller Programs Providers (2025)
D009 - Lahoo Ke Pyaase. its a hindi comics
KarolG CarRace Sequence...why a 40 character minimum for a title?
Basic Template Presentation for Usage Business
What Happened to Sue Aikens’ Granddaughter on Life Below Zero.pdf
Cristiano Ronaldo.pptx. The greatest footballer of all time
Plot Dive – Movie Plots, Reviews & Celeb Insights
Ad

Exercise 1

  • 1. Artifical Intelligence Excercise 1 1. Semantic Network 2. Semantice Network 3. Truth Tables a) ɿ(ɿP) = P P ɿP ɿ (ɿP) T F T F F T F T T F T F Has Property Has Property Has Property Is - a Is - a Has Property Is - a Has Color Has Property Has Covering Is - a White Singing Tweety Canary FlyingBirdFeatherd Animal Equilateral Triangle Triangle Closed Shape 3 Angles 3 Sides Equal Slides
  • 2. B) (P v Q) Ξ (ɿP → Q) C) (P → Q) Ξ (ɿQ → ɿP) D) (i) ɿ (P v Q) Ξ (ɿP ^ ɿQ) (ii) ɿ (P ^ Q) Ξ (ɿP v ɿQ) P Q P v Q ɿP ɿP → Q T F T F T T F F T T T F F T F T T T T F P Q ɿQ ɿP P → Q ɿQ → ɿP T F T F T T F F F F T T F T F T T T F T T T F T P Q ɿQ ɿP P v Q ɿ (P v Q) ɿP ^ ɿQ T F T F T T F F F F T T F T F T T T T F F F F T F F F T P Q ɿQ ɿP P ^ Q ɿ (P ^ Q) ɿP v ɿQ T F T F T T F F F F T T F T F T T F F F F T T T F T T T
  • 3. e) i) (P v Q) Ξ (Q v P) ii) (P ^ Q) Ξ (Q ^ P) f) (P ^ Q) ^ R Ξ P ^ (Q ^ R) P Q P v Q Q v P T F T F T T F F T T T F T T T F P Q P ^ Q Q ^ P T F T F T T F F T F F F T F F F P Q R P ^ Q (Q ^ R) (P ^ Q) ^ R P ^ (Q ^ R) T T T T F F F F T T F F T T F F T F T F T F T F T T F F F F F F T F F F T F F F T F F F F F F F T F F F F F F F
  • 4. g) (P v Q) v R Ξ P v (Q v R) h) P v (Q ^ R) Ξ (P v Q) ^ (P v R) P Q R P v Q Q v R (P v Q) v R P v (Q v R) T T T T F F F F T T F F T T F F T F T F T F T F T T T T T T F F T T T T T T T F T T T F T T T F T T T T T T T F P Q R Q ^ R P v Q P v R P v (Q ^ R) (P v Q) ^ (P v R) T T T T F F F F T T F F T T F F T F T F T F T F T F F F T F F F T T T T T T F F T T T T T F T F T T T T T F T F T T T T T F T F
  • 5. i) P ^ (Q v R) Ξ (P ^ Q) v (P ^ R) 4. Truth Tables i) (p ^ (p → q)) → q ii) (p → q) ^ ɿq → ɿq P Q R Q v R P ^ Q P ^ R P ^ (Q v R) (P ^ Q) v (P ^ R) T T T T F F F F T T F F T T F F T F T F T F T F T T T F T T T F T T F F F F F F T F T F F F F F T T T F F F F F T T T F F F F F p q p → q p ^ (p → q) (p ^ (p → q)) → q T F T F T T F F T T F T T F F F T T T T P q p → q ɿq (p → q) ^ ɿq (p → q) ^ ɿq → ɿq T F T F T T F F T T F T F F T T F F T T T T T T
  • 6. iii) (P → (Q → R)) → (P → Q)) → (P → R) 5. (P → Q) ^ (Q → P) Ξ P ↔ Q P Q R Q → R P → Q P → R P → (Q → R) P → (Q → R)→ (P → Q)) P → (Q → R)→ (P → Q))→ (P → R) T T T T F F F F T T F F T T F F T F T F T F T F T F T T T F T T T T F F T T T T T F T F T T T T T F T T T T T T T F T T T T T T T T T T T T T T P Q P → Q Q → P (p → q) ^ Q → P P ↔ Q T F T F T T F F T T F T T F T T T F F T T F F T