SlideShare a Scribd company logo
Определение тягового усилия электродинамического вибровозбудителя 59
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
УДК 621.81
Ю. Н. ЖУРАВЛЕВ, Д. С. ФЕДОРОВ
ОПРЕДЕЛЕНИЕ ТЯГОВОГО УСИЛИЯ
НИЗКОЧАСТОТНОГО ЭЛЕКТРОДИНАМИЧЕСКОГО ВИБРОВОЗБУДИТЕЛЯ
Получено соотношение для оценки тягового усилия низкочастотного электро-
динамического вибровозбудителя, служащего для поверки и градуировки дат-
чиков ускорения. Приведены результаты экспериментальных исследований.
Ключевые слова: вибровозбудитель, датчик ускорения, акселерометр, маг-
нитный подвес, взаимная индуктивность.
Во многих областях современной техники (сейсмология, космическая и авиационная
индустрия, мощные энергетические установки, строительство высотных объектов, транспорт)
широко используются датчики ускорения (акселерометры), работающие в диапазоне малых-
частот (0,01…5 Гц). Для поверки и градуировки таких датчиков требуются вибровозбудите-
ли, способные обеспечивать одномерные горизонтальные гармонические колебания поверяе-
мого акселерометра. Малые частоты колебаний вызывают необходимость создания больших
амплитуд перемещений для обеспечения приемлемых значений ускорений. Эта необходи-
мость исключает возможность использования традиционного вибровозбудителя электромаг-
нитного типа [1]. В связи с этим был выбран электродинамический тип вибровозбудителя с
активным магнитным подвесом подвижной части [2].
1 3 4
2
0 С z
z
l1
Рис. 1
Приводная часть вибровозбудителя (рис. 1) состоит из магнитопровода, четырех непод-
вижных катушек намагничивания 1 и одной подвижной катушки 2. Магнитопровод состоит
из пяти горизонтально расположенных ферромагнитных стержней круглого поперечного се-
чения — трех продольных 3 и двух поперечных 4, соединяющих торцевые поверхности про-
дольных стержней. Катушки намагничивания установлены на поперечные стержни, соедине-
ны последовательно, питаются постоянным током 1I и создают постоянное магнитное поле
по всей длине рабочего воздушного зазора между центральным и боковыми продольными
стержнями. Подвижная катушка свободно установлена на центральный продольный
60 Ю. Н. Журавлев, Д. С. Федоров
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
стержень. При питании катушки синусоидальным током на нее действует в продольном на-
правлении гармоническая сила электродинамического воздействия. Подвижная катушка вме-
сте с прикрепленным к ней акселерометром образует подвижную часть вибровозбудителя,
которая снабжена системой подвеса. Из двух возможных типов подвеса без трения — воз-
душного и магнитного — был выбран активный магнитный подвес [3].
Одним из основных параметров вибровозбудителя является его тяговое усилие. Цель
настоящей статьи — получение выражения для тягового усилия вибровозбудителя данной
конструкции и сравнительный анализ расчетных значений тягового усилия с эксперимен-
тально полученными данными.
Пусть z — координата центра подвижной катушки, отсчитываемая от середины длины
магнитопровода. Записав выражение для магнитной энергии системы и взяв частную произ-
водную от нее по координате z , получим выражение для электромагнитной силы тяги:
12
эм 1 2( ),
L
P I i t
z
∂
=
∂
(1)
где 1I — ток катушек подмагничивания (первого контура); 2i — ток подвижной катушки
(второго контура); 12L — коэффициент взаимной индуктивности контуров катушек намагни-
чивания.
Взаимную индуктивность контуров можно определить как 12 21 21 1L L I= = Ψ , где
21Ψ — потокосцепление катушек первого контура с витками 2w второго контура.
Предполагается, что магнитная система ненасыщенная и линейная, следовательно, маг-
нитное сопротивление стали постоянно. Поэтому воспользовавшись принципом суперпози-
ции, декомпозируем магнитную систему на две подсистемы, одна из которых запитывается
левыми катушками намагничивания, другая — правыми (рис. 2, а, б соответственно).
0 0
а)
111 wIF =
l
2w 2w
Фл
(x)
z
z z
х х
dхdх
l2
l
l2
l2/2 l2/2
Фп
(x)
б)
F1=I1w1
Рис. 2
Магнитодвижущую силу 1 1F w , создаваемую двумя катушками намагничивания, распо-
ложенными на поперечном стержне, заменим магнитодвижущей силой, создаваемой одной
катушкой, расположенной в начале продольного стержня. Тогда
л п
21 21 21,Ψ = Ψ + Ψ (2)
Определение тягового усилия электродинамического вибровозбудителя 61
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
где л
21Ψ и п
21Ψ — потокосцепления левой и правой катушек первого контура с витками вто-
рого контура.
В подвижной катушке выделим элемент длиной dx на расстоянии x от левого конца
продольных стержней магнитопровода. Элемент имеет число витков 2
2
w
dw dx
l
= , где 2l —
длина обмотки подвижной катушки. При этом очевидно, что составляющая магнитной ин-
дукции (В) в направлении оси z в воздухе равна нулю, а присутствует только радиальная со-
ставляющая. Кроме того, пусть диаметр 1l катушек намагничивания мал по сравнению с дли-
ной магнитопровода l .
Полагая, что левые и правые катушки намагничивания создают встречно направленные
магнитные потоки, имеем
2
2
2
л п п л2
21 21 21
2 2
( ) ( ) ( ) (Ф ( ) Ф ( )) .
z l
z l
w
z z z х х dx
l
+
−
Ψ = Ψ + Ψ = −∫ (3)
Здесь принято, что направление магнитодвижущей силы подвижной катушки в рас-
сматриваемый момент времени совпадает с направлением магнитного потока правой катушки
п
Ф ( )х .
Определим магнитные потоки, создаваемые левой и правой катушками. Рассматривае-
мая магнитная система представляет собой магнитную цепь, состоящую из распределенных
по длине l продольных и поперечных магнитных сопротивлений. При этом продольными
магнитными сопротивлениями являются магнитные сопротивления ферромагнитных стерж-
ней, а поперечными — магнитные сопротивления воздушного зазора между центральным и
боковыми стержнями. Данную магнитную цепь можно считать однородной, так как все про-
дольные сопротивления участков стержней одинаковой длины равны друг другу и попереч-
ные сопротивления участков цепи одинаковой длины в силу параллельности стержней также
равны друг другу. Магнитными сопротивлениями торцевых стержней пренебрежем. Расчет-
ная схема магнитной цепи, соответствующей системе, представленной на рис. 2, а, приведена
на рис. 3, а. Через dx обозначен бесконечно малый элемент длины магнитной цепи, через
dR — магнитные сопротивления элементов стержней, через dG — магнитные проводимости
воздушного зазора между этими элементами, через ϕ — магнитный потенциал.
Учитывая, что 2 1 ФF dRϕ = − , 3 1
Ф
2
dRϕ = ϕ = , имеем 2 1 2 3 1
3
Ф
2
F dRϕ − ϕ = ϕ − ϕ = − =
21 23u u= = , где iju — магнитное напряжение между точками i и j. Кроме того, 2 Фd =
21 23 212u dG u dG u dG= + = . Исходя из этого, трехпроводную систему на первом участке мож-
но заменить двухпроводной. Аналогичным образом от расчетной схемы, представленной на
рис. 3, а, можно перейти к схеме, приведенной на рис. 3, б. Для этой упрощенной схемы
пр
3
2
RR
l l
ρ = = — приведенное продольное магнитное сопротивление единицы длины магни-
топровода; R — магнитное сопротивление одного стержня; пр
R — приведенное продольное
магнитное сопротивление магнитопровода;
пр
2
GG
g
l l
= = — приведенная поперечная маг-
нитная проводимость единицы длины цепи; G — магнитная проводимость зазора между
двумя стержнями; пр
G — приведенная полная поперечная магнитная проводимость трех
стержней.
62 Ю. Н. Журавлев, Д. С. Федоров
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
Магнитное сопротивление стержня
Ф
u Hl l
R
BS S
= = =
µ
,
где S — площадь сечения стержня; 0rµ = µ µ — осредненная магнитная проницаемость ма-
териала. С учетом этого имеем
3 3
2 2
R
l S
ρ = =
µ
; пр 3
2
l
R
S
=
µ
.
dx
dR dR dR dR
dx dx dx
dR
dR
dR dR dR
dR dR dR
dФ
dФ
dФ
dФ
dG
dG
dG
dG
dG
dG
dG
dG
1
2
3
Ф
Ф/2
ϕ =F1
ϕ =0
ϕ1
ϕ2
ϕ3Ф/2
F1=I1w1
x dx
l
ρdx ρdx ρdx ρdx
gdx gdx gdx
u(x)
Ф(x)
dФ
Ф(x)+ dФ
u(x)+du
а)
б)
gdx
Ф–2dФ
F1
Рис. 3
Магнитную проводимость воздушного зазора между двумя параллельными стержнями
длиной l и диаметром d , расположенными на расстоянии l′ друг от друга, определим как [4]
( )
0
2
ln / { / 1}
l
G
l d l d
π
= µ
⎡ ⎤′ ′+ −⎢ ⎥⎣ ⎦
;
( )
0
2
2
ln / { / 1}
g
l d l d
π
= µ
⎡ ⎤′ ′+ −⎢ ⎥⎣ ⎦
; пр
2G G= .
Из схемы на рис. 3, б следует, что для замкнутого контура, пренебрегая слагаемыми вто-
рого порядка малости, по законам Кирхгофа можно получить следующие уравнения:
( )
du
х
dx
− = ρΦ ; (4)
Ф
( )
d
gu х
dx
− = , (5)
где ( )u х — магнитное напряжение между линиями эквивалентной двухпроводной схемы.
При решении уравнений (4) и (5) необходимо задать граничные условия: они известны
только для u и имеют вид 1u F= при 0x = ; 0u = при x l= . Из этих же выражений вытекает
дифференциальное уравнение
Определение тягового усилия электродинамического вибровозбудителя 63
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
2
2
2
0
d u
a u
dx
− = ;
пр пр
G R
a g
l
= ρ = ,
решением которого является следующее выражение:
л
1[ch( ) cth( ) sh( )]u F ax al ax= − ⋅ . (6)
Подставив уравнение (6) в формулу (4), получим выражение для магнитного потока,
создаваемого левой катушкой намагничивания:
л
1Ф ( ) [cth( ) ch( ) sh( )]х F g al ax ax= ρ ⋅ ⋅ − .
Проделав аналогичные операции для системы, приведенной на рис. 2, б, получим выра-
жение для магнитного потока, создаваемого правой катушкой:
п
1
1
Ф ( ) ch( )
sh( )
g
х F ax
al
= ⋅
ρ
.
Потоки л
Ф ( )х и п
Ф ( )х направлены встречно, поэтому суммарный магнитный поток
п л
1
1
Ф( ) Ф ( ) Ф ( ) ch( ) sh( ) ch( ) cth( )
sh( )
g
х х х F ax ax ax al
al
⎡ ⎤
= − = ⋅ + − ⋅⎢ ⎥ρ ⎣ ⎦
.
Введем переменную 2х lξ = − , которая позволяет упростить выражение для магнитно-
го потока. Получаем
1
1
Ф( ) sh( )
ch( 2)
g
F a
al
ξ = ⋅ ξ
ρ
.
По формуле (3) находим
2
2
2
2 2 2
21 1
2 22
2sh( 2)1
( ) Ф( ) sh( )
ch( 2)
z l
z l
w w g al
z d F az
l l a al
+
−
Ψ = ξ ξ = ⋅
ρ∫ .
Данное выражение преобразуется к виду
2 31 2
21
1
( )
ch( 2) 6
F w g
z z a z
al
⎛ ⎞
Ψ = +⎜ ⎟
⎝ ⎠
.
Теперь можно определить коэффициент взаимной индуктивности контуров
2 321 1 2
12
1
( ) 1
( )
ch( 2) 6
z w w g
L z z a z
I al
Ψ ⎛ ⎞
= = +⎜ ⎟
⎝ ⎠
. (7)
Выражение для тягового усилия электродинамического вибровозбудителя получается
путем подстановки формулы (7) в уравнение (1):
2 212 1 2
эм 1 2
( ) 1
( ) 1 .
ch( 2) 2
L F F t g
P I i t a z
z al
∂ ⎛ ⎞
= = +⎜ ⎟
∂ ⎝ ⎠
(8)
Из выражения (8) следует, что сила тяги будет гармонической при 2 2 2( ) sinF t w I t= ω ,
если 0a g= ρ = . Так как при 0g = имеем эм 0P = , то необходимое условие принимает вид
0ρ = . Но так как даже при малых значениях индукции 0ρ ≠ , то в выражении для силы тяги
неизбежно наличие отклонения от гармонической зависимости. Это отклонение можно
уменьшить за счет недопущения насыщения стали.
64 Ю. Н. Журавлев, Д. С. Федоров
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
Выражение (8) для тягового усилия получено для случая встречного включения левых и
правых катушек намагничивания. Используя те же рассуждения, для случая однонаправлен-
ного включения катушек, получаем
2 212 1 2
эм 1 2
( ) 1
( ) 1 th .
ch( 2) 2 2
L F F t g al
P I i t a z a z
z al
∂ ⎡ ⎤⎛ ⎞
= = + + ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦
(9)
Сравнительный анализ выражений (8) и (9) показывает, что схема однонаправленного
включения имеет два существенных недостатка:
— величина эмP существенно зависит от z , увеличиваясь при 0z > и уменьшаясь при
0z < за счет сомножителя th
2
al
a z
⎛ ⎞
⎜ ⎟
⎝ ⎠
;
— в выражении для магнитного потока имеется значительная постоянная составляющая
1
1 пр
21
2
sh( )
Fg
F
al R
⋅ ≅
ρ
, которая приводит к насыщению стали магнитопровода.
Рассмотрим результаты экспериментов. Экспериментальные исследования производи-
лись на макете вибровозбудителя, созданном в Псковском государственном политехническом
институте.
Макет имеет следующие параметры: амплитуда колебаний на частоте до 1 Гц равна
0,125 м; длина продольных стержней 0,66 м, поперечных стержней 0,42 м, диаметр стержней
10 см, воздушный зазор между продольными стержнями 6 см; постоянное магнитное поле в
воздушных зазорах создается с помощью четырех катушек намагничивания, радиус катушки
10 см; подвижная катушка имеет радиус 7,4 см, зазор между катушкой и центральным стерж-
нем магнитопровода, вдоль которого она движется, равен 8 мм; подвижная катушка имеет
электромагнитный подвес, состоящий из четырех активных магнитных подшипников, дви-
жущихся вдоль двух параллельных направляющих диаметром 25 мм.
Измерение силы тяги производилось посредством измерения силы отрыва. На централь-
ном стержне магнитопровода устанавливался упор. При взаимодействии токов подвижной и
неподвижной катушек возникает сила, прижимающая подвижную катушку к упору. К подвиж-
ной катушке крепилась нить, перекинутая через блок, к другому концу нити подвешивался груз.
Если постепенно уменьшать ток от некоторого максимального значения (1,4 А) до значения,
при котором произойдет отрыв катушки от упора, то можно считать, что эмP mg= , где m —
масса груза. На неподвижные катушки подавался ток 4 А, на подвижную — 0,16…1,4 А.
Таким образом, была построена зависимость эм 2( )P I при фиксированных значениях ко-
ординаты z и тока 1I ( 125z = мм, 1 4I = А), график которой приведен на рис. 4, а. Анализ ри-
сунка показывает, что расчетное значение силы тяги на 8—12 % выше экспериментального.
Причиной расхождения могут быть не учтенные в расчетах такие факторы, как магнитные со-
противления стыков продольных и поперечных стержней магнитопровода; неоднородность
магнитных свойств материала по длине стержней; потоки рассеяния катушек намагничивания.
Аналогичным образом была сформирована зависимость эм ( )P z при фиксированных зна-
чениях 1 4I = А и 2 0,4I = А (см. рис. 4, б). Из рисунка видно, что экспериментальная зависи-
мость силы тяги от координаты имеет параболический вид, что качественно подтверждает тео-
рию. Теоретическая кривая соответствует второму слагаемому в выражении (8) для силы тяги.
Также в ходе эксперимента на основе измерения магнитного потока при токах 1 5I = А и
2 1,5I = А было получено значение приведенной поперечной магнитной проводимости еди-
Определение тягового усилия электродинамического вибровозбудителя 65
ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1
ницы длины магнитной цепи: 6
7,78 10g −
= ⋅ Гн/м, что практически совпадает с расчетным
значением 6
8,2 10g −
= ⋅ Гн/м при тех же параметрах.
Эксперимент
Расчет
Рэм, Н
Рэм, Н
0
8
1
а)
I2, A0,1 1,4
0,5
0 20 120 z, мм
3
б)
Эксперимент
Теория
Рис. 4
Результаты эксперимента подтверждают качественно и с допустимой погрешностью ко-
личественно справедливость полученного теоретически выражения (8) для тягового усилия.
Результаты, изложенные в данной статье, были положены в основу создания низкочас-
тотного электродинамического вибровозбудителя с магнитным подвесом подвижной части
ВМГ-2*
[4]; его основные параметры: диапазон частот 0,1—5,0 Гц; максимальная амплитуда
колебаний 500 мм; коэффициент нелинейных искажений 0,6 %; несущая способность маг-
нитного подвеса 60 Н; коэффициент трения в подвесе менее 0,0002.
СПИСОК ЛИТЕРАТУРЫ
1. Генкин М. Л., Русаков А. И., Яблонский В. В. Электродинамические вибраторы. М.: Машиностроение, 1975.
2. Грибов А. Н., Журавлев Ю. Н., Мацеевич В. Г. Вибровозбудитель низкочастотной вибрации с активной
магнитной подвеской подвижной части // Современные проблемы совершенствования средств измерений
механических величин: Сб. Л.: Энергоатомиздат, 1986. С. 77—82.
3. Журавлев Ю. Н. Активные магнитные подшипники: Теория, расчет, применение. СПб: Политехника, 2003. 206 с.
4. Постоянные магниты: Справочник / Под ред. Ю. М. Пятина. М.: Энергия, 1980. С. 488.
5. Zhuravlyov Y. N., Matcevich S. G., Kochevin F. G. et al. Low-frequency electrodynamic vibrator with magnetically
suspended movable part // Proc. of the 4th Intern. Conf. on Motion and Vibration Control. 1998. Vol. 3. P. 1063—1067.
Сведения об авторах
Юрий Николаевич Журавлев — д-р техн. наук, профессор; Псковский государственный политехнический
институт, кафедра строительной механики
Дмитрий Сергеевич Федоров — Псковский государственный политехнический институт, кафедра электропри-
вода и систем автоматизации; ассистент; E-mail kreator353@pochta.ru
Рекомендована кафедрой
электропривода и систем автоматизации
Поступила в редакцию
26.03.10 г.
*
При совместном участии ФГУП „ВНИИМ им. Д. И Менделеева“ (Санкт-Петербург) и Псковского госу-
дарственного политехнического института [5].

More Related Content

PDF
28876p
PDF
О ДВИЖЕНИИ ЦЕНТРА ТЯЖЕСТИ И ДИСПЕРСИОННОМ РАСПЛЫВАНИИ В ПРОЗРАЧНОЙ ДИЭЛЕКТРИЧ...
PPT
фельдштейн колосов - 2 доклада
PDF
Baza po fizike_2_semestr
PDF
контактная задача упругих колебаний
PDF
Взаимная индукция
PPT
федотов дмитрий (наука)
PDF
Dynamic stablity of a pipeline
28876p
О ДВИЖЕНИИ ЦЕНТРА ТЯЖЕСТИ И ДИСПЕРСИОННОМ РАСПЛЫВАНИИ В ПРОЗРАЧНОЙ ДИЭЛЕКТРИЧ...
фельдштейн колосов - 2 доклада
Baza po fizike_2_semestr
контактная задача упругих колебаний
Взаимная индукция
федотов дмитрий (наука)
Dynamic stablity of a pipeline

What's hot (18)

PDF
учебно методическое пособие-по_дисциплине_прикладная_голография_
PDF
л 2. 3. с 3. к 3
PPT
PDF
Управление пространственным поворотным маневром космического аппарата
PDF
Метод отдельных тел
PDF
Углы Эйлера
PDF
336.электричество лабораторный практикум часть 2
PPS
Лекция 6. Механические колебания (часть 2)
PPT
лекция 9
PDF
УСТАЛОСТНОЕ РАЗРУШЕНИЕ МИНИАТЮРНОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО СХВАТА
PDF
спектральный анализ электрических сигналов в лабораторном практикуме курса об...
DOC
ОБРАЗОВАНИЕ БОЛЬШИХ КРАТЕРОВ НА ЗЕМЛЕ ОТ УДАРОВ ПРИРОДНЫХ КОСМИЧЕСКИХ ТЕЛ
PPS
Лекция 7. Механические волны
PDF
Метод Кейна
PDF
Отделение створок головного обтекателя
PPT
электронно лучевая литография
PPTX
Математическое дополнение
PDF
Astro formulas
учебно методическое пособие-по_дисциплине_прикладная_голография_
л 2. 3. с 3. к 3
Управление пространственным поворотным маневром космического аппарата
Метод отдельных тел
Углы Эйлера
336.электричество лабораторный практикум часть 2
Лекция 6. Механические колебания (часть 2)
лекция 9
УСТАЛОСТНОЕ РАЗРУШЕНИЕ МИНИАТЮРНОГО ПЬЕЗОЭЛЕКТРИЧЕСКОГО СХВАТА
спектральный анализ электрических сигналов в лабораторном практикуме курса об...
ОБРАЗОВАНИЕ БОЛЬШИХ КРАТЕРОВ НА ЗЕМЛЕ ОТ УДАРОВ ПРИРОДНЫХ КОСМИЧЕСКИХ ТЕЛ
Лекция 7. Механические волны
Метод Кейна
Отделение створок головного обтекателя
электронно лучевая литография
Математическое дополнение
Astro formulas
Ad

Viewers also liked (19)

PDF
Erasmus Certificate
PDF
PDF
certificate
PPTX
La digestión
PDF
PDF
20160810152844576
PDF
Va VDOT Hurricane Evacuation
PDF
Eifel Times Vol 41, Issue 20 June 1, 2007
PDF
CORe_Syllabus_BusinessAnalytics
PDF
REF_from Mr Truong
PDF
DER (TOBBACO)
PDF
msa poly
DOCX
Verklista – översättningar av Birgitta Wernbro Augustsson
PDF
Libro3
PDF
Profile_Fighter For Kids
PPTX
Confirmaciones 2015
PDF
Scan0009
PPTX
Direitos Reais - Posse
Erasmus Certificate
certificate
La digestión
20160810152844576
Va VDOT Hurricane Evacuation
Eifel Times Vol 41, Issue 20 June 1, 2007
CORe_Syllabus_BusinessAnalytics
REF_from Mr Truong
DER (TOBBACO)
msa poly
Verklista – översättningar av Birgitta Wernbro Augustsson
Libro3
Profile_Fighter For Kids
Confirmaciones 2015
Scan0009
Direitos Reais - Posse
Ad

Similar to ОПРЕДЕЛЕНИЕ ТЯГОВОГО УСИЛИЯ НИЗКОЧАСТОТНОГО ЭЛЕКТРОДИНАМИЧЕСКОГО ВИБРОВОЗБУДИТЕЛЯ (20)

PPT
лекция 15
PDF
ДИФРАКЦИЯ ОДНОПЕРИОДНЫХ ТЕРАГЕРЦОВЫХ ВОЛН С ГАУССОВЫМ ПОПЕРЕЧНЫМ РАСПРЕДЕЛЕНИЕМ
PDF
lec01_r.pdf656480306515654151216165165151561
PDF
электромагнитная совместимость в электроэнергетике
PDF
PPT
лекция 5 в14
PPT
лекция 36
PDF
Suai 2
PDF
гдз. физика 11кл мякишев буховцев_2003 -60с
PDF
PDF
учебно методическое пособие по дисциплине прикладная голография (1)
PDF
учебно методическое пособие по дисциплине прикладная голография
PDF
ЗАВИСИМОСТЬ ПОЛЯРИТОННОГО СПЕКТРА НЕИДЕАЛЬНЫХ 1D ФОТОННЫХ ЖИДКИХ КРИСТАЛЛОВ О...
PDF
PPT
лекция 17
PDF
методическая разработка к выполнению лабораторных работ по теме колебания для...
PPT
лекция 8
PDF
141.исследование электростатических полей
PDF
расчет дифракционных решеток_в_рамках_строгой_электромагнитной_теории
лекция 15
ДИФРАКЦИЯ ОДНОПЕРИОДНЫХ ТЕРАГЕРЦОВЫХ ВОЛН С ГАУССОВЫМ ПОПЕРЕЧНЫМ РАСПРЕДЕЛЕНИЕМ
lec01_r.pdf656480306515654151216165165151561
электромагнитная совместимость в электроэнергетике
лекция 5 в14
лекция 36
Suai 2
гдз. физика 11кл мякишев буховцев_2003 -60с
учебно методическое пособие по дисциплине прикладная голография (1)
учебно методическое пособие по дисциплине прикладная голография
ЗАВИСИМОСТЬ ПОЛЯРИТОННОГО СПЕКТРА НЕИДЕАЛЬНЫХ 1D ФОТОННЫХ ЖИДКИХ КРИСТАЛЛОВ О...
лекция 17
методическая разработка к выполнению лабораторных работ по теме колебания для...
лекция 8
141.исследование электростатических полей
расчет дифракционных решеток_в_рамках_строгой_электромагнитной_теории

More from ITMO University (20)

PDF
МЕТОД ПОВЫШЕНИЯ ЧУВСТВИТЕЛЬНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИДРОФОНА
PDF
МЕТОДЫ ПОЛУЧЕНИЯ И СВОЙСТВА СЛОЕВ НА ОСНОВЕ АМОРФНОГО УГЛЕРОДА, ОРИЕНТИРУЮЩИ...
PDF
ПРИМЕНЕНИЕ ДИСКРЕТНОГО КОСИНУСНОГО ПРЕОБРАЗОВАНИЯ ДЛЯ ПОСТРОЕНИЯ ГОЛОГРАММЫ ...
PDF
ПОГРЕШНОСТИ ИЗГОТОВЛЕНИЯ И УСТАНОВКИ ОТРАЖАТЕЛЬНЫХ ПРИЗМ
PDF
СПЕКТРОСКОПИЧЕСКОЕ И ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ ТЯЖЕЛОЙ ВОДЫ
PDF
МЕТРОЛОГИЧЕСКИЙ АНАЛИЗ В СОЦИАЛЬНЫХ СЕТЯХ
PDF
ПЕРСПЕКТИВЫ РАЗВИТИЯ ОПТИКИ ТОНКИХ ПЛЕНОК
PDF
ИССЛЕДОВАНИЕ ПРОЦЕССОВ ФОРМИРОВАНИЯ ПОЛИМЕРНОГО МИКРОЭЛЕМЕНТА НА ТОРЦЕ ОПТИЧЕ...
PDF
МЕТОД ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ ТКАНЕЙ И ОРГАНОВ БИООБЪЕКТОВ
PDF
КОЛИЧЕСТВЕННАЯ ОЦЕНКА КАЧЕСТВА ИЗОБРАЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ НЕЧЕТКОЙ ...
PDF
АЛГЕБРАИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ПОЛНОГО МНОЖЕСТВА ПРОСТЫХ РАЗРЕЗОВ В ДВУХПОЛ...
PDF
РЕКУРРЕНТНОЕ СИСТЕМАТИЧЕСКОЕ ПОМЕХОЗАЩИТНОЕ ПРЕОБРАЗОВАНИЕ КОДОВ: ВОЗМОЖНОСТИ...
PDF
Информационная система «Забота о каждом»
PDF
Проект "Я рядом"
PDF
Проект «Театральный мост»
PDF
Студенческие инициативы в развитии ИКТ для старшего поколения
PDF
СОХРАНЁННОЕ РАДИО
PDF
Проект: «Разработка Системы Оценки и учёта Добровольческой Деятельности «СО...
PDF
«Нет преграды патриотам!»
PDF
Проект «Наш любимый детский сад»
МЕТОД ПОВЫШЕНИЯ ЧУВСТВИТЕЛЬНОСТИ ВОЛОКОННО-ОПТИЧЕСКОГО ГИДРОФОНА
МЕТОДЫ ПОЛУЧЕНИЯ И СВОЙСТВА СЛОЕВ НА ОСНОВЕ АМОРФНОГО УГЛЕРОДА, ОРИЕНТИРУЮЩИ...
ПРИМЕНЕНИЕ ДИСКРЕТНОГО КОСИНУСНОГО ПРЕОБРАЗОВАНИЯ ДЛЯ ПОСТРОЕНИЯ ГОЛОГРАММЫ ...
ПОГРЕШНОСТИ ИЗГОТОВЛЕНИЯ И УСТАНОВКИ ОТРАЖАТЕЛЬНЫХ ПРИЗМ
СПЕКТРОСКОПИЧЕСКОЕ И ТЕРМОДИНАМИЧЕСКОЕ ИССЛЕДОВАНИЕ ТЯЖЕЛОЙ ВОДЫ
МЕТРОЛОГИЧЕСКИЙ АНАЛИЗ В СОЦИАЛЬНЫХ СЕТЯХ
ПЕРСПЕКТИВЫ РАЗВИТИЯ ОПТИКИ ТОНКИХ ПЛЕНОК
ИССЛЕДОВАНИЕ ПРОЦЕССОВ ФОРМИРОВАНИЯ ПОЛИМЕРНОГО МИКРОЭЛЕМЕНТА НА ТОРЦЕ ОПТИЧЕ...
МЕТОД ДИАГНОСТИКИ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ ТКАНЕЙ И ОРГАНОВ БИООБЪЕКТОВ
КОЛИЧЕСТВЕННАЯ ОЦЕНКА КАЧЕСТВА ИЗОБРАЖЕНИЙ С ИСПОЛЬЗОВАНИЕМ МЕТОДОВ НЕЧЕТКОЙ ...
АЛГЕБРАИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ПОЛНОГО МНОЖЕСТВА ПРОСТЫХ РАЗРЕЗОВ В ДВУХПОЛ...
РЕКУРРЕНТНОЕ СИСТЕМАТИЧЕСКОЕ ПОМЕХОЗАЩИТНОЕ ПРЕОБРАЗОВАНИЕ КОДОВ: ВОЗМОЖНОСТИ...
Информационная система «Забота о каждом»
Проект "Я рядом"
Проект «Театральный мост»
Студенческие инициативы в развитии ИКТ для старшего поколения
СОХРАНЁННОЕ РАДИО
Проект: «Разработка Системы Оценки и учёта Добровольческой Деятельности «СО...
«Нет преграды патриотам!»
Проект «Наш любимый детский сад»

ОПРЕДЕЛЕНИЕ ТЯГОВОГО УСИЛИЯ НИЗКОЧАСТОТНОГО ЭЛЕКТРОДИНАМИЧЕСКОГО ВИБРОВОЗБУДИТЕЛЯ

  • 1. Определение тягового усилия электродинамического вибровозбудителя 59 ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 УДК 621.81 Ю. Н. ЖУРАВЛЕВ, Д. С. ФЕДОРОВ ОПРЕДЕЛЕНИЕ ТЯГОВОГО УСИЛИЯ НИЗКОЧАСТОТНОГО ЭЛЕКТРОДИНАМИЧЕСКОГО ВИБРОВОЗБУДИТЕЛЯ Получено соотношение для оценки тягового усилия низкочастотного электро- динамического вибровозбудителя, служащего для поверки и градуировки дат- чиков ускорения. Приведены результаты экспериментальных исследований. Ключевые слова: вибровозбудитель, датчик ускорения, акселерометр, маг- нитный подвес, взаимная индуктивность. Во многих областях современной техники (сейсмология, космическая и авиационная индустрия, мощные энергетические установки, строительство высотных объектов, транспорт) широко используются датчики ускорения (акселерометры), работающие в диапазоне малых- частот (0,01…5 Гц). Для поверки и градуировки таких датчиков требуются вибровозбудите- ли, способные обеспечивать одномерные горизонтальные гармонические колебания поверяе- мого акселерометра. Малые частоты колебаний вызывают необходимость создания больших амплитуд перемещений для обеспечения приемлемых значений ускорений. Эта необходи- мость исключает возможность использования традиционного вибровозбудителя электромаг- нитного типа [1]. В связи с этим был выбран электродинамический тип вибровозбудителя с активным магнитным подвесом подвижной части [2]. 1 3 4 2 0 С z z l1 Рис. 1 Приводная часть вибровозбудителя (рис. 1) состоит из магнитопровода, четырех непод- вижных катушек намагничивания 1 и одной подвижной катушки 2. Магнитопровод состоит из пяти горизонтально расположенных ферромагнитных стержней круглого поперечного се- чения — трех продольных 3 и двух поперечных 4, соединяющих торцевые поверхности про- дольных стержней. Катушки намагничивания установлены на поперечные стержни, соедине- ны последовательно, питаются постоянным током 1I и создают постоянное магнитное поле по всей длине рабочего воздушного зазора между центральным и боковыми продольными стержнями. Подвижная катушка свободно установлена на центральный продольный
  • 2. 60 Ю. Н. Журавлев, Д. С. Федоров ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 стержень. При питании катушки синусоидальным током на нее действует в продольном на- правлении гармоническая сила электродинамического воздействия. Подвижная катушка вме- сте с прикрепленным к ней акселерометром образует подвижную часть вибровозбудителя, которая снабжена системой подвеса. Из двух возможных типов подвеса без трения — воз- душного и магнитного — был выбран активный магнитный подвес [3]. Одним из основных параметров вибровозбудителя является его тяговое усилие. Цель настоящей статьи — получение выражения для тягового усилия вибровозбудителя данной конструкции и сравнительный анализ расчетных значений тягового усилия с эксперимен- тально полученными данными. Пусть z — координата центра подвижной катушки, отсчитываемая от середины длины магнитопровода. Записав выражение для магнитной энергии системы и взяв частную произ- водную от нее по координате z , получим выражение для электромагнитной силы тяги: 12 эм 1 2( ), L P I i t z ∂ = ∂ (1) где 1I — ток катушек подмагничивания (первого контура); 2i — ток подвижной катушки (второго контура); 12L — коэффициент взаимной индуктивности контуров катушек намагни- чивания. Взаимную индуктивность контуров можно определить как 12 21 21 1L L I= = Ψ , где 21Ψ — потокосцепление катушек первого контура с витками 2w второго контура. Предполагается, что магнитная система ненасыщенная и линейная, следовательно, маг- нитное сопротивление стали постоянно. Поэтому воспользовавшись принципом суперпози- ции, декомпозируем магнитную систему на две подсистемы, одна из которых запитывается левыми катушками намагничивания, другая — правыми (рис. 2, а, б соответственно). 0 0 а) 111 wIF = l 2w 2w Фл (x) z z z х х dхdх l2 l l2 l2/2 l2/2 Фп (x) б) F1=I1w1 Рис. 2 Магнитодвижущую силу 1 1F w , создаваемую двумя катушками намагничивания, распо- ложенными на поперечном стержне, заменим магнитодвижущей силой, создаваемой одной катушкой, расположенной в начале продольного стержня. Тогда л п 21 21 21,Ψ = Ψ + Ψ (2)
  • 3. Определение тягового усилия электродинамического вибровозбудителя 61 ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 где л 21Ψ и п 21Ψ — потокосцепления левой и правой катушек первого контура с витками вто- рого контура. В подвижной катушке выделим элемент длиной dx на расстоянии x от левого конца продольных стержней магнитопровода. Элемент имеет число витков 2 2 w dw dx l = , где 2l — длина обмотки подвижной катушки. При этом очевидно, что составляющая магнитной ин- дукции (В) в направлении оси z в воздухе равна нулю, а присутствует только радиальная со- ставляющая. Кроме того, пусть диаметр 1l катушек намагничивания мал по сравнению с дли- ной магнитопровода l . Полагая, что левые и правые катушки намагничивания создают встречно направленные магнитные потоки, имеем 2 2 2 л п п л2 21 21 21 2 2 ( ) ( ) ( ) (Ф ( ) Ф ( )) . z l z l w z z z х х dx l + − Ψ = Ψ + Ψ = −∫ (3) Здесь принято, что направление магнитодвижущей силы подвижной катушки в рас- сматриваемый момент времени совпадает с направлением магнитного потока правой катушки п Ф ( )х . Определим магнитные потоки, создаваемые левой и правой катушками. Рассматривае- мая магнитная система представляет собой магнитную цепь, состоящую из распределенных по длине l продольных и поперечных магнитных сопротивлений. При этом продольными магнитными сопротивлениями являются магнитные сопротивления ферромагнитных стерж- ней, а поперечными — магнитные сопротивления воздушного зазора между центральным и боковыми стержнями. Данную магнитную цепь можно считать однородной, так как все про- дольные сопротивления участков стержней одинаковой длины равны друг другу и попереч- ные сопротивления участков цепи одинаковой длины в силу параллельности стержней также равны друг другу. Магнитными сопротивлениями торцевых стержней пренебрежем. Расчет- ная схема магнитной цепи, соответствующей системе, представленной на рис. 2, а, приведена на рис. 3, а. Через dx обозначен бесконечно малый элемент длины магнитной цепи, через dR — магнитные сопротивления элементов стержней, через dG — магнитные проводимости воздушного зазора между этими элементами, через ϕ — магнитный потенциал. Учитывая, что 2 1 ФF dRϕ = − , 3 1 Ф 2 dRϕ = ϕ = , имеем 2 1 2 3 1 3 Ф 2 F dRϕ − ϕ = ϕ − ϕ = − = 21 23u u= = , где iju — магнитное напряжение между точками i и j. Кроме того, 2 Фd = 21 23 212u dG u dG u dG= + = . Исходя из этого, трехпроводную систему на первом участке мож- но заменить двухпроводной. Аналогичным образом от расчетной схемы, представленной на рис. 3, а, можно перейти к схеме, приведенной на рис. 3, б. Для этой упрощенной схемы пр 3 2 RR l l ρ = = — приведенное продольное магнитное сопротивление единицы длины магни- топровода; R — магнитное сопротивление одного стержня; пр R — приведенное продольное магнитное сопротивление магнитопровода; пр 2 GG g l l = = — приведенная поперечная маг- нитная проводимость единицы длины цепи; G — магнитная проводимость зазора между двумя стержнями; пр G — приведенная полная поперечная магнитная проводимость трех стержней.
  • 4. 62 Ю. Н. Журавлев, Д. С. Федоров ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 Магнитное сопротивление стержня Ф u Hl l R BS S = = = µ , где S — площадь сечения стержня; 0rµ = µ µ — осредненная магнитная проницаемость ма- териала. С учетом этого имеем 3 3 2 2 R l S ρ = = µ ; пр 3 2 l R S = µ . dx dR dR dR dR dx dx dx dR dR dR dR dR dR dR dR dФ dФ dФ dФ dG dG dG dG dG dG dG dG 1 2 3 Ф Ф/2 ϕ =F1 ϕ =0 ϕ1 ϕ2 ϕ3Ф/2 F1=I1w1 x dx l ρdx ρdx ρdx ρdx gdx gdx gdx u(x) Ф(x) dФ Ф(x)+ dФ u(x)+du а) б) gdx Ф–2dФ F1 Рис. 3 Магнитную проводимость воздушного зазора между двумя параллельными стержнями длиной l и диаметром d , расположенными на расстоянии l′ друг от друга, определим как [4] ( ) 0 2 ln / { / 1} l G l d l d π = µ ⎡ ⎤′ ′+ −⎢ ⎥⎣ ⎦ ; ( ) 0 2 2 ln / { / 1} g l d l d π = µ ⎡ ⎤′ ′+ −⎢ ⎥⎣ ⎦ ; пр 2G G= . Из схемы на рис. 3, б следует, что для замкнутого контура, пренебрегая слагаемыми вто- рого порядка малости, по законам Кирхгофа можно получить следующие уравнения: ( ) du х dx − = ρΦ ; (4) Ф ( ) d gu х dx − = , (5) где ( )u х — магнитное напряжение между линиями эквивалентной двухпроводной схемы. При решении уравнений (4) и (5) необходимо задать граничные условия: они известны только для u и имеют вид 1u F= при 0x = ; 0u = при x l= . Из этих же выражений вытекает дифференциальное уравнение
  • 5. Определение тягового усилия электродинамического вибровозбудителя 63 ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 2 2 2 0 d u a u dx − = ; пр пр G R a g l = ρ = , решением которого является следующее выражение: л 1[ch( ) cth( ) sh( )]u F ax al ax= − ⋅ . (6) Подставив уравнение (6) в формулу (4), получим выражение для магнитного потока, создаваемого левой катушкой намагничивания: л 1Ф ( ) [cth( ) ch( ) sh( )]х F g al ax ax= ρ ⋅ ⋅ − . Проделав аналогичные операции для системы, приведенной на рис. 2, б, получим выра- жение для магнитного потока, создаваемого правой катушкой: п 1 1 Ф ( ) ch( ) sh( ) g х F ax al = ⋅ ρ . Потоки л Ф ( )х и п Ф ( )х направлены встречно, поэтому суммарный магнитный поток п л 1 1 Ф( ) Ф ( ) Ф ( ) ch( ) sh( ) ch( ) cth( ) sh( ) g х х х F ax ax ax al al ⎡ ⎤ = − = ⋅ + − ⋅⎢ ⎥ρ ⎣ ⎦ . Введем переменную 2х lξ = − , которая позволяет упростить выражение для магнитно- го потока. Получаем 1 1 Ф( ) sh( ) ch( 2) g F a al ξ = ⋅ ξ ρ . По формуле (3) находим 2 2 2 2 2 2 21 1 2 22 2sh( 2)1 ( ) Ф( ) sh( ) ch( 2) z l z l w w g al z d F az l l a al + − Ψ = ξ ξ = ⋅ ρ∫ . Данное выражение преобразуется к виду 2 31 2 21 1 ( ) ch( 2) 6 F w g z z a z al ⎛ ⎞ Ψ = +⎜ ⎟ ⎝ ⎠ . Теперь можно определить коэффициент взаимной индуктивности контуров 2 321 1 2 12 1 ( ) 1 ( ) ch( 2) 6 z w w g L z z a z I al Ψ ⎛ ⎞ = = +⎜ ⎟ ⎝ ⎠ . (7) Выражение для тягового усилия электродинамического вибровозбудителя получается путем подстановки формулы (7) в уравнение (1): 2 212 1 2 эм 1 2 ( ) 1 ( ) 1 . ch( 2) 2 L F F t g P I i t a z z al ∂ ⎛ ⎞ = = +⎜ ⎟ ∂ ⎝ ⎠ (8) Из выражения (8) следует, что сила тяги будет гармонической при 2 2 2( ) sinF t w I t= ω , если 0a g= ρ = . Так как при 0g = имеем эм 0P = , то необходимое условие принимает вид 0ρ = . Но так как даже при малых значениях индукции 0ρ ≠ , то в выражении для силы тяги неизбежно наличие отклонения от гармонической зависимости. Это отклонение можно уменьшить за счет недопущения насыщения стали.
  • 6. 64 Ю. Н. Журавлев, Д. С. Федоров ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 Выражение (8) для тягового усилия получено для случая встречного включения левых и правых катушек намагничивания. Используя те же рассуждения, для случая однонаправлен- ного включения катушек, получаем 2 212 1 2 эм 1 2 ( ) 1 ( ) 1 th . ch( 2) 2 2 L F F t g al P I i t a z a z z al ∂ ⎡ ⎤⎛ ⎞ = = + + ⎜ ⎟⎢ ⎥∂ ⎝ ⎠⎣ ⎦ (9) Сравнительный анализ выражений (8) и (9) показывает, что схема однонаправленного включения имеет два существенных недостатка: — величина эмP существенно зависит от z , увеличиваясь при 0z > и уменьшаясь при 0z < за счет сомножителя th 2 al a z ⎛ ⎞ ⎜ ⎟ ⎝ ⎠ ; — в выражении для магнитного потока имеется значительная постоянная составляющая 1 1 пр 21 2 sh( ) Fg F al R ⋅ ≅ ρ , которая приводит к насыщению стали магнитопровода. Рассмотрим результаты экспериментов. Экспериментальные исследования производи- лись на макете вибровозбудителя, созданном в Псковском государственном политехническом институте. Макет имеет следующие параметры: амплитуда колебаний на частоте до 1 Гц равна 0,125 м; длина продольных стержней 0,66 м, поперечных стержней 0,42 м, диаметр стержней 10 см, воздушный зазор между продольными стержнями 6 см; постоянное магнитное поле в воздушных зазорах создается с помощью четырех катушек намагничивания, радиус катушки 10 см; подвижная катушка имеет радиус 7,4 см, зазор между катушкой и центральным стерж- нем магнитопровода, вдоль которого она движется, равен 8 мм; подвижная катушка имеет электромагнитный подвес, состоящий из четырех активных магнитных подшипников, дви- жущихся вдоль двух параллельных направляющих диаметром 25 мм. Измерение силы тяги производилось посредством измерения силы отрыва. На централь- ном стержне магнитопровода устанавливался упор. При взаимодействии токов подвижной и неподвижной катушек возникает сила, прижимающая подвижную катушку к упору. К подвиж- ной катушке крепилась нить, перекинутая через блок, к другому концу нити подвешивался груз. Если постепенно уменьшать ток от некоторого максимального значения (1,4 А) до значения, при котором произойдет отрыв катушки от упора, то можно считать, что эмP mg= , где m — масса груза. На неподвижные катушки подавался ток 4 А, на подвижную — 0,16…1,4 А. Таким образом, была построена зависимость эм 2( )P I при фиксированных значениях ко- ординаты z и тока 1I ( 125z = мм, 1 4I = А), график которой приведен на рис. 4, а. Анализ ри- сунка показывает, что расчетное значение силы тяги на 8—12 % выше экспериментального. Причиной расхождения могут быть не учтенные в расчетах такие факторы, как магнитные со- противления стыков продольных и поперечных стержней магнитопровода; неоднородность магнитных свойств материала по длине стержней; потоки рассеяния катушек намагничивания. Аналогичным образом была сформирована зависимость эм ( )P z при фиксированных зна- чениях 1 4I = А и 2 0,4I = А (см. рис. 4, б). Из рисунка видно, что экспериментальная зависи- мость силы тяги от координаты имеет параболический вид, что качественно подтверждает тео- рию. Теоретическая кривая соответствует второму слагаемому в выражении (8) для силы тяги. Также в ходе эксперимента на основе измерения магнитного потока при токах 1 5I = А и 2 1,5I = А было получено значение приведенной поперечной магнитной проводимости еди-
  • 7. Определение тягового усилия электродинамического вибровозбудителя 65 ИЗВ. ВУЗОВ. ПРИБОРОСТРОЕНИЕ. 2011. Т. 54, № 1 ницы длины магнитной цепи: 6 7,78 10g − = ⋅ Гн/м, что практически совпадает с расчетным значением 6 8,2 10g − = ⋅ Гн/м при тех же параметрах. Эксперимент Расчет Рэм, Н Рэм, Н 0 8 1 а) I2, A0,1 1,4 0,5 0 20 120 z, мм 3 б) Эксперимент Теория Рис. 4 Результаты эксперимента подтверждают качественно и с допустимой погрешностью ко- личественно справедливость полученного теоретически выражения (8) для тягового усилия. Результаты, изложенные в данной статье, были положены в основу создания низкочас- тотного электродинамического вибровозбудителя с магнитным подвесом подвижной части ВМГ-2* [4]; его основные параметры: диапазон частот 0,1—5,0 Гц; максимальная амплитуда колебаний 500 мм; коэффициент нелинейных искажений 0,6 %; несущая способность маг- нитного подвеса 60 Н; коэффициент трения в подвесе менее 0,0002. СПИСОК ЛИТЕРАТУРЫ 1. Генкин М. Л., Русаков А. И., Яблонский В. В. Электродинамические вибраторы. М.: Машиностроение, 1975. 2. Грибов А. Н., Журавлев Ю. Н., Мацеевич В. Г. Вибровозбудитель низкочастотной вибрации с активной магнитной подвеской подвижной части // Современные проблемы совершенствования средств измерений механических величин: Сб. Л.: Энергоатомиздат, 1986. С. 77—82. 3. Журавлев Ю. Н. Активные магнитные подшипники: Теория, расчет, применение. СПб: Политехника, 2003. 206 с. 4. Постоянные магниты: Справочник / Под ред. Ю. М. Пятина. М.: Энергия, 1980. С. 488. 5. Zhuravlyov Y. N., Matcevich S. G., Kochevin F. G. et al. Low-frequency electrodynamic vibrator with magnetically suspended movable part // Proc. of the 4th Intern. Conf. on Motion and Vibration Control. 1998. Vol. 3. P. 1063—1067. Сведения об авторах Юрий Николаевич Журавлев — д-р техн. наук, профессор; Псковский государственный политехнический институт, кафедра строительной механики Дмитрий Сергеевич Федоров — Псковский государственный политехнический институт, кафедра электропри- вода и систем автоматизации; ассистент; E-mail kreator353@pochta.ru Рекомендована кафедрой электропривода и систем автоматизации Поступила в редакцию 26.03.10 г. * При совместном участии ФГУП „ВНИИМ им. Д. И Менделеева“ (Санкт-Петербург) и Псковского госу- дарственного политехнического института [5].