SlideShare a Scribd company logo
Establish Identities
Find Exact value of Expressions
Establish the identity
 2cos sin
   
2 2cos cos sin sin 
  
   0 cos 1 sin  
sin sin   
Establish the identity
 sin sin   
sin cos cos sin    
   0 cos 1 sin   
sin sin 
Establish the identity
    2 2
sin sin sin sin        
  sin cos cos sin sin cos cos sin         
2 2 2 2
sin cos cos sin    
   2 2 2 2
sin 1 sin 1 sin sin      
 2 2 2 2 2 2
sin sin sin sin sin sin        
2 2 2 2
sin sin sin sin     
Find the exact value of the
expression  1 13 12
5 5sin sin tan 

1 3
5sin  
 1 12
5tan 



3
5
4
12
5
13
 sin   sin cos cos sin    
     3 5 4 12
5 13 5 13  
15 48
65 65   33
65
Find the exact value of the
expression  1 1 54
5 12cos sin tan  

1 4
5sin 

1 5
12tan  


45
3

5
12
13
 cos   cos cos sin sin    
     3 512 4
5 13 5 13  
36 20
65 65  16
65
p. 482
# 39, 42, 45, 50, 51, 53, 62, 65 - 72

More Related Content

PPTX
6.3.1 trig identities
PPTX
6.4.2 sum and difference formulas
PPTX
6.4.3 sum and difference formulas
PPTX
6.4.3 sum and difference formulas
PPTX
10 2 sum and diff formulas for tangent
PPTX
6.4.2 sum and difference formulas
PPTX
6.4.1 sum and difference formulas
PPTX
Trigono
6.3.1 trig identities
6.4.2 sum and difference formulas
6.4.3 sum and difference formulas
6.4.3 sum and difference formulas
10 2 sum and diff formulas for tangent
6.4.2 sum and difference formulas
6.4.1 sum and difference formulas
Trigono

More from Northside ISD (20)

PPTX
6.5.1 double angle formulas
PPTX
6.4.1 sum and difference formulas
PPTX
6.5.2 half angle formulas
PPTX
4.9.1 quad inequal graph 2 var
PPTX
4.9.3 quad inequal algebraically
PPTX
4.9.3 quad inequal algebraically
PPTX
4.9.2 quad inequal tables and line graphs
PPTX
6.4.2 sum and difference formulas
PPTX
6.4.1 sum and difference formulas
PPTX
6.5.1 double angle formulas
PPTX
4.10.2 write models with calc reg
PPTX
4.10 write quadratic models
PPTX
4.8.2 quadratic formula
PPTX
6.3.2 trig identities, establish identities
PPTX
4.7 complete the square
PPTX
4.6 sqr rts with complex numbers
PPTX
4.5 solve by finding square roots
PPTX
4.7 write in vertex form
PPTX
4.4.2 solve by factoring a~1
PPTX
4.4.1 factoring, a ~ 1
6.5.1 double angle formulas
6.4.1 sum and difference formulas
6.5.2 half angle formulas
4.9.1 quad inequal graph 2 var
4.9.3 quad inequal algebraically
4.9.3 quad inequal algebraically
4.9.2 quad inequal tables and line graphs
6.4.2 sum and difference formulas
6.4.1 sum and difference formulas
6.5.1 double angle formulas
4.10.2 write models with calc reg
4.10 write quadratic models
4.8.2 quadratic formula
6.3.2 trig identities, establish identities
4.7 complete the square
4.6 sqr rts with complex numbers
4.5 solve by finding square roots
4.7 write in vertex form
4.4.2 solve by factoring a~1
4.4.1 factoring, a ~ 1
Ad

6.4.3 sum and difference formulas

  • 1. Establish Identities Find Exact value of Expressions
  • 2. Establish the identity  2cos sin     2 2cos cos sin sin        0 cos 1 sin   sin sin   
  • 3. Establish the identity  sin sin    sin cos cos sin        0 cos 1 sin    sin sin 
  • 4. Establish the identity     2 2 sin sin sin sin           sin cos cos sin sin cos cos sin          2 2 2 2 sin cos cos sin        2 2 2 2 sin 1 sin 1 sin sin        2 2 2 2 2 2 sin sin sin sin sin sin         2 2 2 2 sin sin sin sin     
  • 5. Find the exact value of the expression  1 13 12 5 5sin sin tan   1 3 5sin    1 12 5tan     3 5 4 12 5 13  sin   sin cos cos sin          3 5 4 12 5 13 5 13   15 48 65 65   33 65
  • 6. Find the exact value of the expression  1 1 54 5 12cos sin tan    1 4 5sin   1 5 12tan     45 3  5 12 13  cos   cos cos sin sin          3 512 4 5 13 5 13   36 20 65 65  16 65
  • 7. p. 482 # 39, 42, 45, 50, 51, 53, 62, 65 - 72