SlideShare a Scribd company logo
Professor A G Constantinides
1
Digital Filter Specifications
• We discuss in this course only the magnitude
approximation problem
• There are four basic types of ideal filters with
magnitude responses as shown below
Professor A G Constantinides
2
Digital Filter Specifications
• These filters are unealizable because their
impulse responses infinitely long non-
causal
• In practice the magnitude response
specifications of a digital filter in the
passband and in the stopband are given with
some acceptable tolerances
• In addition, a transition band is specified
between the passband and stopband
Professor A G Constantinides
3
Digital Filter Specifications
• For example the magnitude response
of a digital lowpass filter may be given as
indicated below
)
( 
j
e
G
Professor A G Constantinides
4
Digital Filter Specifications
• In the passband we require that
with a deviation
• In the stopband we require that
with a deviation
1
)
( 

j
e
G
0
)
( 

j
e
G s

p


p

 

0


 

s
p
p
j
p e
G 


 




 ,
1
)
(
1







 s
s
j
e
G ,
)
(
Professor A G Constantinides
5
Digital Filter Specifications
Filter specification parameters
• - passband edge frequency
• - stopband edge frequency
• - peak ripple value in the passband
• - peak ripple value in the stopband
p

s

s

p

Professor A G Constantinides
6
Digital Filter Specifications
• Practical specifications are often given in
terms of loss function (in dB)
•
• Peak passband ripple
dB
• Minimum stopband attenuation
dB
)
(
log
20
)
( 10

 j
e
G


G
)
1
(
log
20 10 p
p 
 


)
(
log
20 10 s
s 
 

Professor A G Constantinides
7
Digital Filter Specifications
• In practice, passband edge frequency
and stopband edge frequency are
specified in Hz
• For digital filter design, normalized
bandedge frequencies need to be computed
from specifications in Hz using
T
F
F
F
F
p
T
p
T
p
p 

 2
2




T
F
F
F
F
s
T
s
T
s
s 

 2
2




s
F
p
F
Professor A G Constantinides
8
Digital Filter Specifications
• Example - Let kHz, kHz, and
kHz
• Then
7

p
F 3

s
F
25

T
F


 56
.
0
10
25
)
10
7
(
2
3
3




p


 24
.
0
10
25
)
10
3
(
2
3
3




s
Professor A G Constantinides
9
• The transfer function H(z) meeting the
specifications must be a causal transfer
function
• For IIR real digital filter the transfer
function is a real rational function of
• H(z) must be stable and of lowest order N
for reduced computational complexity
Selection of Filter Type
1

z
N
N
M
M
z
d
z
d
z
d
d
z
p
z
p
z
p
p
z
H 
















2
2
1
1
0
2
2
1
1
0
)
(
Professor A G Constantinides
10
Selection of Filter Type
• For FIR real digital filter the transfer
function is a polynomial in with real
coefficients
• For reduced computational complexity,
degree N of H(z) must be as small as
possible
• If a linear phase is desired, the filter
coefficients must satisfy the constraint:




N
n
n
z
n
h
z
H
0
]
[
)
(
]
[
]
[ n
N
h
n
h 


1

z
Professor A G Constantinides
11
Selection of Filter Type
• Advantages in using an FIR filter -
(1) Can be designed with exact linear phase,
(2) Filter structure always stable with
quantised coefficients
• Disadvantages in using an FIR filter - Order
of an FIR filter, in most cases, is
considerably higher than the order of an
equivalent IIR filter meeting the same
specifications, and FIR filter has thus higher
computational complexity
Professor A G Constantinides
12
FIR Design
FIR Digital Filter Design
Three commonly used approaches to FIR
filter design -
(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization methods
Professor A G Constantinides
13
Finite Impulse Response
Filters
• The transfer function is given by
• The length of Impulse Response is N
• All poles are at .
• Zeros can be placed anywhere on the z-
plane





1
0
).
(
)
(
N
n
n
z
n
h
z
H
0

z
Professor A G Constantinides
14
FIR: Linear phase
• Linear Phase: The impulse response is
required to be
• so that for N even:
)
1
(
)
( n
N
h
n
h 













1
2
1
2
0
).
(
).
(
)
(
N
N
n
n
N
n
n
z
n
h
z
n
h
z
H
 












1
2
0
)
1
(
1
2
0
).
1
(
).
(
N
n
n
N
N
n
n
z
n
N
h
z
n
h
 
 




1
2
)
(
N
m
n
z
z
n
h N
m 
Professor A G Constantinides
15
FIR: Linear phase
• for N odd:
• I) On we have for N even, and
+ve sign
 
 




 











 



1
2
1
0
2
1
2
1
).
(
)
(
N
n
N
m
n
z
N
h
z
z
n
h
z
H
1
: 
z
C
 










 









 
 1
2
0
2
1
2
1
cos
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
e
e
H 


Professor A G Constantinides
16
FIR: Linear phase
• II) While for –ve sign
• [Note: antisymmetric case adds rads to
phase, with discontinuity at ]
• III) For N odd with +ve sign
 










 









 
 1
2
0
2
1
2
1
sin
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


2
/

0










 






 

2
1
)
( 2
1
N
h
e
e
H
N
T
j
T
j







 










 




2
3
0 2
1
cos
).
(
2
N
n
N
n
T
n
h 
Professor A G Constantinides
17
FIR: Linear phase
• IV) While with a –ve sign
• [Notice that for the antisymmetric case to
have linear phase we require
The phase discontinuity is as for N even]










 










 









 
 2
3
0
2
1
2
1
sin
).
(
.
2
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


.
0
2
1






 
N
h
Professor A G Constantinides
18
FIR: Linear phase
• The cases most commonly used in filter
design are (I) and (III), for which the
amplitude characteristic can be written as a
polynomial in
2
cos
T

Professor A G Constantinides
19
FIR: Linear phase
For phase linearity the FIR transfer
function must have zeros outside the
unit circle
Professor A G Constantinides
20
FIR: Linear phase
• To develop expression for phase response
set transfer function
• In factored form
• Where , is real &
zeros occur in conjugates
n
nz
h
z
h
z
h
h
z
H 






 ...
)
( 2
2
1
1
0
)
1
(
).
1
(
)
( 1
2
1
1
1
1




 
 
 z
z
K
z
H i
n
i
i
n
i


1
,
1 
 i
i 
 K
Professor A G Constantinides
21
FIR: Linear phase
• Let
where
• Thus
)
(
)
(
)
( 2
1 z
N
z
KN
z
H 
)
1
ln(
)
1
ln(
)
ln(
))
(
ln(
2
1
1
1
1
1
 

 






n
i
i
n
i
i z
z
K
z
H 

)
1
(
)
( 1
1
1
1


 
 z
z
N i
n
i
 )
1
(
)
( 1
2
1
2


 
 z
z
N i
n
i

Professor A G Constantinides
22
FIR: Linear phase
• Expand in a Laurent Series convergent
within the unit circle
• To do so modify the second sum as
)
1
1
ln(
)
ln(
)
1
ln(
2
1
1
2
1
1
2
1
z
z
z
i
n
i
i
n
i
i
n
i 

  

 

 





Professor A G Constantinides
23
FIR: Linear phase
• So that
• Thus
• where
)
1
1
ln(
)
1
ln(
)
ln(
)
ln(
))
(
ln(
2
1
1
1
1
2  

 






n
i i
n
i
i z
z
z
n
K
z
H


m
N
m
m
m
N
m
z
m
s
z
m
s
z
n
K
z
H
2
1
1
2 )
ln(
)
ln(
))
(
ln( 



 






1
1
1
n
i
m
i
N
m
s  




1
1
2
n
i
m
i
N
m
s 
Professor A G Constantinides
24
FIR: Linear phase
• are the root moments of the minimum
phase component
• are the inverse root moments of the
maximum phase component
• Now on the unit circle we have
and

j
e
z 
)
(
)
(
)
( 


 j
j
e
A
e
H 
1
N
m
s
2
N
m
s
Professor A G Constantinides
25
Fundamental Relationships
• hence (note Fourier form)



 jm
N
m
m
jm
N
m
j
e
m
s
e
m
s
jn
K
e
H
2
1
1
2
)
ln(
))
(
ln( 



 



)
(
))
(
ln(
)
)
(
ln(
))
(
ln( )
(



 


j
A
e
A
e
H j
j




 m
m
s
m
s
K
A
N
m
m
N
m
cos
)
(
)
ln(
))
(
ln(
2
1
1



 





 m
m
s
m
s
n
N
m
m
N
m
sin
)
(
)
(
2
1
1
2



 



Professor A G Constantinides
26
FIR: Linear phase
• Thus for linear phase the second term in the
fundamental phase relationship must be identically
zero for all index values.
• Hence
• 1) the maximum phase factor has zeros which are
the inverses of the those of the minimum phase
factor
• 2) the phase response is linear with group delay
equal to the number of zeros outside the unit circle
Professor A G Constantinides
27
FIR: Linear phase
• It follows that zeros of linear phase FIR
trasfer functions not on the circumference
of the unit circle occur in the form
 1

 i
j
ie 

Professor A G Constantinides
28
Design of FIR filters: Windows
(i) Start with ideal infinite duration
(ii) Truncate to finite length. (This produces
unwanted ripples increasing in height near
discontinuity.)
(iii) Modify to
Weight w(n) is the window
 
)
(n
h
)
(
).
(
)
(
~
n
w
n
h
n
h 
Professor A G Constantinides
29
Windows
Commonly used windows
• Rectangular 1
• Bartlett
• Hann
• Hamming
•
• Blackman
•
• Kaiser
2
1


N
n
N
n
2
1







N
n

2
cos
1







N
n

2
cos
46
.
0
54
.
0














N
n
N
n 
 4
cos
08
.
0
2
cos
5
.
0
42
.
0
)
(
1
2
1 0
2
0 
 J
N
n
J
















Professor A G Constantinides
30
Kaiser window
• Kaiser window
β Transition
width (Hz)
Min. stop
attn dB
2.12 1.5/N 30
4.54 2.9/N 50
6.76 4.3/N 70
8.96 5.7/N 90
Professor A G Constantinides
31
Example
• Lowpass filter of length 51 and 2
/

 
c
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hann window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hamming window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Blackman window
Professor A G Constantinides
32
Frequency Sampling Method
• In this approach we are given and
need to find
• This is an interpolation problem and the
solution is given in the DFT part of the
course
• It has similar problems to the windowing
approach
2
/

 
c





 

1
0 1
2
.
1
1
).
(
1
)
(
N
k k
N
j
N
z
e
z
k
H
N
z
H 
)
(k
H
)
(z
H
Professor A G Constantinides
33
Linear-Phase FIR Filter
Design by Optimisation
• Amplitude response for all 4 types of linear-
phase FIR filters can be expressed as
where
)
(
)
(
)
( 

 A
Q
H 









4
Type
for
),
2
/
sin(
3
Type
for
),
sin(
2
Type
for
/2),
cos(
1
Type
for
,
1
)
(




Q
Professor A G Constantinides
34
Linear-Phase FIR Filter
Design by Optimisation
• Modified form of weighted error function
where
)]
(
)
(
)
(
)[
(
)
( 



 D
A
Q
W 

E
]
)
(
)[
(
)
( )
(
)
(




 Q
D
A
Q
W 

)]
(
~
)
(
)[
(
~


 D
A
W 

)
(
)
(
)
(
~


 Q
W
W 
)
(
/
)
(
)
(
~


 Q
D
D 
Professor A G Constantinides
35
Linear-Phase FIR Filter
Design by Optimisation
• Optimisation Problem - Determine
which minimise the peak absolute value
of
over the specified frequency bands
• After has been determined, construct
the original and hence h[n]
)]
(
~
)
cos(
]
[
~
)[
(
~
)
(
0



 D
k
k
a
W
L
k




E
]
[
~ k
a
R


)
( 
j
e
A
]
[
~ k
a
Professor A G Constantinides
36
Linear-Phase FIR Filter
Design by Optimisation
Solution is obtained via the Alternation
Theorem
The optimal solution has equiripple behaviour
consistent with the total number of available
parameters.
Parks and McClellan used the Remez
algorithm to develop a procedure for
designing linear FIR digital filters.
Professor A G Constantinides
37
FIR Digital Filter Order
Estimation
Kaiser’s Formula:
• ie N is inversely proportional to transition
band width and not on transition band
location





2
/
)
(
6
.
14
)
(
log
20 10
p
s
s
p
N



Professor A G Constantinides
38
FIR Digital Filter Order
Estimation
• Hermann-Rabiner-Chan’s Formula:
where
with










2
/
)
(
]
2
/
)
)[(
,
(
)
,
( 2
p
s
p
s
s
p
s
p F
D
N



 
s
p
p
s
p a
a
a
D 



 10
3
10
2
2
10
1 log
]
)
(log
)
(log
[
)
,
( 



]
)
(log
)
(log
[ 6
10
5
2
10
4 a
a
a p
p 

 

]
log
[log
)
,
( 10
10
2
1 s
p
s
p b
b
F 


 


4761
.
0
,
07114
.
0
,
005309
.
0 3
2
1 


 a
a
a
4278
.
0
,
5941
.
0
,
00266
.
0 6
5
4 

 a
a
a
51244
.
0
,
01217
.
11 2
1 
 b
b
Professor A G Constantinides
39
FIR Digital Filter Order
Estimation
• Fred Harris’ guide:
where A is the attenuation in dB
• Then add about 10% to it


 2
/
)
(
20 p
s
A
N


Professor A G Constantinides
40
FIR Digital Filter Order
Estimation
• Formula valid for
• For , formula to be used is obtained
by interchanging and
• Both formulae provide only an estimate of
the required filter order N
• If specifications are not met, increase filter
order until they are met
s
p 
 
s
p 
 
p
 s


More Related Content

PPTX
New filters1 filler design for the dsp system
PPT
Digital filters (FIR).ppt
PPT
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
PPTX
Importance of FIR filters power point.pptx
PDF
1-Digital filters (FIR).pdf
PPT
Introduction, concepts, and mathematics of IIR filters.ppt
PPTX
Some important topics in IIR filter.pptx
PPTX
DSP-UNIT-V-PPT-1.pptx
New filters1 filler design for the dsp system
Digital filters (FIR).ppt
DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt
Importance of FIR filters power point.pptx
1-Digital filters (FIR).pdf
Introduction, concepts, and mathematics of IIR filters.ppt
Some important topics in IIR filter.pptx
DSP-UNIT-V-PPT-1.pptx

Similar to 6-Digital filters (FIR).ppt (20)

PPTX
Digital signal processing 22 scheme notes
PPT
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
PPTX
Filter Design techniques with digital signal processing.pptx
PPTX
Design of infinite impulse response digital filters 2
PDF
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
PDF
Filters.pdf
PPTX
lecture_37.pptx
PDF
DSP_FOEHU - Lec 11 - IIR Filter Design
PPTX
FIR Filters Lecture (What are FIR FIlters)pptx
PDF
Module iv sp
PPTX
computer-science_engineering_digital-signal-processing_iir-filter-design_note...
PPT
chap4_lecture 2 Bandpass Signals and Systems
PPT
Quadrature Amplitude Modulation. QAM Transmitter.ppt
PPTX
Design of digital filters
PDF
Optical coherence tomography powerpoint presentation
PPTX
lecture03_ee620_pll_analysis for using.pptx
PPT
Chapter communication_Lect7.ppt
PPT
1 finite wordlength
PDF
Active filters
Digital signal processing 22 scheme notes
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
Filter Design techniques with digital signal processing.pptx
Design of infinite impulse response digital filters 2
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
Filters.pdf
lecture_37.pptx
DSP_FOEHU - Lec 11 - IIR Filter Design
FIR Filters Lecture (What are FIR FIlters)pptx
Module iv sp
computer-science_engineering_digital-signal-processing_iir-filter-design_note...
chap4_lecture 2 Bandpass Signals and Systems
Quadrature Amplitude Modulation. QAM Transmitter.ppt
Design of digital filters
Optical coherence tomography powerpoint presentation
lecture03_ee620_pll_analysis for using.pptx
Chapter communication_Lect7.ppt
1 finite wordlength
Active filters
Ad

Recently uploaded (20)

PPTX
UNIT 4 Total Quality Management .pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
PPT on Performance Review to get promotions
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PPTX
CH1 Production IntroductoryConcepts.pptx
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
DOCX
573137875-Attendance-Management-System-original
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
web development for engineering and engineering
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
UNIT 4 Total Quality Management .pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPT on Performance Review to get promotions
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Internet of Things (IOT) - A guide to understanding
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Automation-in-Manufacturing-Chapter-Introduction.pdf
CH1 Production IntroductoryConcepts.pptx
R24 SURVEYING LAB MANUAL for civil enggi
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
573137875-Attendance-Management-System-original
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
web development for engineering and engineering
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Ad

6-Digital filters (FIR).ppt

  • 1. Professor A G Constantinides 1 Digital Filter Specifications • We discuss in this course only the magnitude approximation problem • There are four basic types of ideal filters with magnitude responses as shown below
  • 2. Professor A G Constantinides 2 Digital Filter Specifications • These filters are unealizable because their impulse responses infinitely long non- causal • In practice the magnitude response specifications of a digital filter in the passband and in the stopband are given with some acceptable tolerances • In addition, a transition band is specified between the passband and stopband
  • 3. Professor A G Constantinides 3 Digital Filter Specifications • For example the magnitude response of a digital lowpass filter may be given as indicated below ) (  j e G
  • 4. Professor A G Constantinides 4 Digital Filter Specifications • In the passband we require that with a deviation • In the stopband we require that with a deviation 1 ) (   j e G 0 ) (   j e G s  p   p     0      s p p j p e G           , 1 ) ( 1         s s j e G , ) (
  • 5. Professor A G Constantinides 5 Digital Filter Specifications Filter specification parameters • - passband edge frequency • - stopband edge frequency • - peak ripple value in the passband • - peak ripple value in the stopband p  s  s  p 
  • 6. Professor A G Constantinides 6 Digital Filter Specifications • Practical specifications are often given in terms of loss function (in dB) • • Peak passband ripple dB • Minimum stopband attenuation dB ) ( log 20 ) ( 10   j e G   G ) 1 ( log 20 10 p p      ) ( log 20 10 s s    
  • 7. Professor A G Constantinides 7 Digital Filter Specifications • In practice, passband edge frequency and stopband edge frequency are specified in Hz • For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using T F F F F p T p T p p    2 2     T F F F F s T s T s s    2 2     s F p F
  • 8. Professor A G Constantinides 8 Digital Filter Specifications • Example - Let kHz, kHz, and kHz • Then 7  p F 3  s F 25  T F    56 . 0 10 25 ) 10 7 ( 2 3 3     p    24 . 0 10 25 ) 10 3 ( 2 3 3     s
  • 9. Professor A G Constantinides 9 • The transfer function H(z) meeting the specifications must be a causal transfer function • For IIR real digital filter the transfer function is a real rational function of • H(z) must be stable and of lowest order N for reduced computational complexity Selection of Filter Type 1  z N N M M z d z d z d d z p z p z p p z H                  2 2 1 1 0 2 2 1 1 0 ) (
  • 10. Professor A G Constantinides 10 Selection of Filter Type • For FIR real digital filter the transfer function is a polynomial in with real coefficients • For reduced computational complexity, degree N of H(z) must be as small as possible • If a linear phase is desired, the filter coefficients must satisfy the constraint:     N n n z n h z H 0 ] [ ) ( ] [ ] [ n N h n h    1  z
  • 11. Professor A G Constantinides 11 Selection of Filter Type • Advantages in using an FIR filter - (1) Can be designed with exact linear phase, (2) Filter structure always stable with quantised coefficients • Disadvantages in using an FIR filter - Order of an FIR filter, in most cases, is considerably higher than the order of an equivalent IIR filter meeting the same specifications, and FIR filter has thus higher computational complexity
  • 12. Professor A G Constantinides 12 FIR Design FIR Digital Filter Design Three commonly used approaches to FIR filter design - (1) Windowed Fourier series approach (2) Frequency sampling approach (3) Computer-based optimization methods
  • 13. Professor A G Constantinides 13 Finite Impulse Response Filters • The transfer function is given by • The length of Impulse Response is N • All poles are at . • Zeros can be placed anywhere on the z- plane      1 0 ). ( ) ( N n n z n h z H 0  z
  • 14. Professor A G Constantinides 14 FIR: Linear phase • Linear Phase: The impulse response is required to be • so that for N even: ) 1 ( ) ( n N h n h               1 2 1 2 0 ). ( ). ( ) ( N N n n N n n z n h z n h z H               1 2 0 ) 1 ( 1 2 0 ). 1 ( ). ( N n n N N n n z n N h z n h         1 2 ) ( N m n z z n h N m 
  • 15. Professor A G Constantinides 15 FIR: Linear phase • for N odd: • I) On we have for N even, and +ve sign                           1 2 1 0 2 1 2 1 ). ( ) ( N n N m n z N h z z n h z H 1 :  z C                           1 2 0 2 1 2 1 cos ). ( 2 . ) ( N n N T j T j N n T n h e e H   
  • 16. Professor A G Constantinides 16 FIR: Linear phase • II) While for –ve sign • [Note: antisymmetric case adds rads to phase, with discontinuity at ] • III) For N odd with +ve sign                           1 2 0 2 1 2 1 sin ). ( 2 . ) ( N n N T j T j N n T n h j e e H    2 /  0                      2 1 ) ( 2 1 N h e e H N T j T j                          2 3 0 2 1 cos ). ( 2 N n N n T n h 
  • 17. Professor A G Constantinides 17 FIR: Linear phase • IV) While with a –ve sign • [Notice that for the antisymmetric case to have linear phase we require The phase discontinuity is as for N even]                                     2 3 0 2 1 2 1 sin ). ( . 2 ) ( N n N T j T j N n T n h j e e H    . 0 2 1         N h
  • 18. Professor A G Constantinides 18 FIR: Linear phase • The cases most commonly used in filter design are (I) and (III), for which the amplitude characteristic can be written as a polynomial in 2 cos T 
  • 19. Professor A G Constantinides 19 FIR: Linear phase For phase linearity the FIR transfer function must have zeros outside the unit circle
  • 20. Professor A G Constantinides 20 FIR: Linear phase • To develop expression for phase response set transfer function • In factored form • Where , is real & zeros occur in conjugates n nz h z h z h h z H         ... ) ( 2 2 1 1 0 ) 1 ( ). 1 ( ) ( 1 2 1 1 1 1          z z K z H i n i i n i   1 , 1   i i   K
  • 21. Professor A G Constantinides 21 FIR: Linear phase • Let where • Thus ) ( ) ( ) ( 2 1 z N z KN z H  ) 1 ln( ) 1 ln( ) ln( )) ( ln( 2 1 1 1 1 1            n i i n i i z z K z H   ) 1 ( ) ( 1 1 1 1      z z N i n i  ) 1 ( ) ( 1 2 1 2      z z N i n i 
  • 22. Professor A G Constantinides 22 FIR: Linear phase • Expand in a Laurent Series convergent within the unit circle • To do so modify the second sum as ) 1 1 ln( ) ln( ) 1 ln( 2 1 1 2 1 1 2 1 z z z i n i i n i i n i                
  • 23. Professor A G Constantinides 23 FIR: Linear phase • So that • Thus • where ) 1 1 ln( ) 1 ln( ) ln( ) ln( )) ( ln( 2 1 1 1 1 2            n i i n i i z z z n K z H   m N m m m N m z m s z m s z n K z H 2 1 1 2 ) ln( ) ln( )) ( ln(             1 1 1 n i m i N m s       1 1 2 n i m i N m s 
  • 24. Professor A G Constantinides 24 FIR: Linear phase • are the root moments of the minimum phase component • are the inverse root moments of the maximum phase component • Now on the unit circle we have and  j e z  ) ( ) ( ) (     j j e A e H  1 N m s 2 N m s
  • 25. Professor A G Constantinides 25 Fundamental Relationships • hence (note Fourier form)     jm N m m jm N m j e m s e m s jn K e H 2 1 1 2 ) ln( )) ( ln(          ) ( )) ( ln( ) ) ( ln( )) ( ln( ) (        j A e A e H j j      m m s m s K A N m m N m cos ) ( ) ln( )) ( ln( 2 1 1            m m s m s n N m m N m sin ) ( ) ( 2 1 1 2        
  • 26. Professor A G Constantinides 26 FIR: Linear phase • Thus for linear phase the second term in the fundamental phase relationship must be identically zero for all index values. • Hence • 1) the maximum phase factor has zeros which are the inverses of the those of the minimum phase factor • 2) the phase response is linear with group delay equal to the number of zeros outside the unit circle
  • 27. Professor A G Constantinides 27 FIR: Linear phase • It follows that zeros of linear phase FIR trasfer functions not on the circumference of the unit circle occur in the form  1   i j ie  
  • 28. Professor A G Constantinides 28 Design of FIR filters: Windows (i) Start with ideal infinite duration (ii) Truncate to finite length. (This produces unwanted ripples increasing in height near discontinuity.) (iii) Modify to Weight w(n) is the window   ) (n h ) ( ). ( ) ( ~ n w n h n h 
  • 29. Professor A G Constantinides 29 Windows Commonly used windows • Rectangular 1 • Bartlett • Hann • Hamming • • Blackman • • Kaiser 2 1   N n N n 2 1        N n  2 cos 1        N n  2 cos 46 . 0 54 . 0               N n N n   4 cos 08 . 0 2 cos 5 . 0 42 . 0 ) ( 1 2 1 0 2 0   J N n J                
  • 30. Professor A G Constantinides 30 Kaiser window • Kaiser window β Transition width (Hz) Min. stop attn dB 2.12 1.5/N 30 4.54 2.9/N 50 6.76 4.3/N 70 8.96 5.7/N 90
  • 31. Professor A G Constantinides 31 Example • Lowpass filter of length 51 and 2 /    c 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hann window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hamming window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Blackman window
  • 32. Professor A G Constantinides 32 Frequency Sampling Method • In this approach we are given and need to find • This is an interpolation problem and the solution is given in the DFT part of the course • It has similar problems to the windowing approach 2 /    c         1 0 1 2 . 1 1 ). ( 1 ) ( N k k N j N z e z k H N z H  ) (k H ) (z H
  • 33. Professor A G Constantinides 33 Linear-Phase FIR Filter Design by Optimisation • Amplitude response for all 4 types of linear- phase FIR filters can be expressed as where ) ( ) ( ) (    A Q H           4 Type for ), 2 / sin( 3 Type for ), sin( 2 Type for /2), cos( 1 Type for , 1 ) (     Q
  • 34. Professor A G Constantinides 34 Linear-Phase FIR Filter Design by Optimisation • Modified form of weighted error function where )] ( ) ( ) ( )[ ( ) (      D A Q W   E ] ) ( )[ ( ) ( ) ( ) (      Q D A Q W   )] ( ~ ) ( )[ ( ~    D A W   ) ( ) ( ) ( ~    Q W W  ) ( / ) ( ) ( ~    Q D D 
  • 35. Professor A G Constantinides 35 Linear-Phase FIR Filter Design by Optimisation • Optimisation Problem - Determine which minimise the peak absolute value of over the specified frequency bands • After has been determined, construct the original and hence h[n] )] ( ~ ) cos( ] [ ~ )[ ( ~ ) ( 0     D k k a W L k     E ] [ ~ k a R   ) (  j e A ] [ ~ k a
  • 36. Professor A G Constantinides 36 Linear-Phase FIR Filter Design by Optimisation Solution is obtained via the Alternation Theorem The optimal solution has equiripple behaviour consistent with the total number of available parameters. Parks and McClellan used the Remez algorithm to develop a procedure for designing linear FIR digital filters.
  • 37. Professor A G Constantinides 37 FIR Digital Filter Order Estimation Kaiser’s Formula: • ie N is inversely proportional to transition band width and not on transition band location      2 / ) ( 6 . 14 ) ( log 20 10 p s s p N   
  • 38. Professor A G Constantinides 38 FIR Digital Filter Order Estimation • Hermann-Rabiner-Chan’s Formula: where with           2 / ) ( ] 2 / ) )[( , ( ) , ( 2 p s p s s p s p F D N      s p p s p a a a D      10 3 10 2 2 10 1 log ] ) (log ) (log [ ) , (     ] ) (log ) (log [ 6 10 5 2 10 4 a a a p p      ] log [log ) , ( 10 10 2 1 s p s p b b F        4761 . 0 , 07114 . 0 , 005309 . 0 3 2 1     a a a 4278 . 0 , 5941 . 0 , 00266 . 0 6 5 4    a a a 51244 . 0 , 01217 . 11 2 1   b b
  • 39. Professor A G Constantinides 39 FIR Digital Filter Order Estimation • Fred Harris’ guide: where A is the attenuation in dB • Then add about 10% to it    2 / ) ( 20 p s A N  
  • 40. Professor A G Constantinides 40 FIR Digital Filter Order Estimation • Formula valid for • For , formula to be used is obtained by interchanging and • Both formulae provide only an estimate of the required filter order N • If specifications are not met, increase filter order until they are met s p    s p    p  s 