SlideShare a Scribd company logo
AGC
DSP
Professor A G Constantinides
1
Digital Filter Specifications
 Only the magnitude approximation problem
 Four basic types of ideal filters with magnitude
responses as shown below (Piecewise flat)
AGC
DSP
Professor A G Constantinides
2
Digital Filter Specifications
 These filters are unealisable because (one of
the following is sufficient)
 their impulse responses infinitely long non-
causal
 Their amplitude responses cannot be equal
to a constant over a band of frequencies
Another perspective that provides some
understanding can be obtained by looking
at the ideal amplitude squared.
AGC
DSP
Professor A G Constantinides
3
Digital Filter Specifications
 Consider the ideal LP response squared
(same as actual LP response)
AGC
DSP
Professor A G Constantinides
4
Digital Filter Specifications
 The realisable squared amplitude response
transfer function (and its differential) is
continuous in
 Such functions
 if IIR can be infinite at point but around
that point cannot be zero.
 if FIR cannot be infinite anywhere.
 Hence previous defferential of ideal response
is unrealisable

AGC
DSP
Professor A G Constantinides
5
Digital Filter Specifications
 A realisable response would effectively
need to have an approximation of the
delta functions in the differential
 This is a necessary condition
AGC
DSP
Professor A G Constantinides
6
Digital Filter Specifications
 For example the magnitude response
of a digital lowpass filter may be given as
indicated below
AGC
DSP
Professor A G Constantinides
7
Digital Filter Specifications
 In the passband we require
that with a deviation
 In the stopband we require
that with a deviation
1
)
( 

j
e
G
0
)
( 

j
e
G s

p


p

 

0


 

s
p
p
j
p e
G 


 




 ,
1
)
(
1







 s
s
j
e
G ,
)
(
AGC
DSP
Professor A G Constantinides
8
Digital Filter Specifications
Filter specification parameters
 - passband edge frequency
 - stopband edge frequency
 - peak ripple value in the
passband
 - peak ripple value in the
stopband
p

s

s

p

AGC
DSP
Professor A G Constantinides
9
Digital Filter Specifications
 Practical specifications are often given
in terms of loss function (in dB)

 Peak passband ripple
dB
 Minimum stopband attenuation
dB
)
(
log
20
)
( 10

 j
e
G


G
)
1
(
log
20 10 p
p 
 


)
(
log
20 10 s
s 
 

AGC
DSP
Professor A G Constantinides
10
Digital Filter Specifications
 In practice, passband edge frequency
and stopband edge frequency are
specified in Hz
 For digital filter design, normalized bandedge
frequencies need to be computed from
specifications in Hz using
T
F
F
F
F
p
T
p
T
p
p 

 2
2




T
F
F
F
F
s
T
s
T
s
s 

 2
2




s
F
p
F
AGC
DSP
Professor A G Constantinides
11
Digital Filter Specifications
 Example - Let kHz,
kHz, and kHz
 Then
7

p
F 3

s
F
25

T
F


 56
.
0
10
25
)
10
7
(
2
3
3




p


 24
.
0
10
25
)
10
3
(
2
3
3




s
AGC
DSP
Professor A G Constantinides
12
 The transfer function H(z) meeting the
specifications must be a causal transfer
function
 For IIR real digital filter the transfer function
is a real rational function of
 H(z) must be stable and of lowest order N or
M for reduced computational complexity
Selection of Filter Type
1

z
N
N
M
M
z
d
z
d
z
d
d
z
p
z
p
z
p
p
z
H 
















2
2
1
1
0
2
2
1
1
0
)
(
AGC
DSP
Professor A G Constantinides
13
Selection of Filter Type
 FIR real digital filter transfer function is a
polynomial in (order N) with real
coefficients
 For reduced computational complexity,
degree N of H(z) must be as small as possible
 If a linear phase is desired then we must
have:
 (More on this later)




N
n
n
z
n
h
z
H
0
]
[
)
(
]
[
]
[ n
N
h
n
h 


1

z
AGC
DSP
Professor A G Constantinides
14
Selection of Filter Type
 Advantages in using an FIR filter -
(1) Can be designed with exact linear phase
(2) Filter structure always stable with
quantised coefficients
 Disadvantages in using an FIR filter - Order of
an FIR filter is considerably higher than that
of an equivalent IIR filter meeting the same
specifications; this leads to higher
computational complexity for FIR
AGC
DSP
Professor A G Constantinides
15
FIR Design
FIR Digital Filter Design
Three commonly used approaches to
FIR filter design -
(1) Windowed Fourier series approach
(2) Frequency sampling approach
(3) Computer-based optimization
methods
AGC
DSP
Professor A G Constantinides
16
Finite Impulse Response
Filters
 The transfer function is given by
 The length of Impulse Response is N
 All poles are at .
 Zeros can be placed anywhere on the z-
plane





1
0
).
(
)
(
N
n
n
z
n
h
z
H
0

z
AGC
DSP
Professor A G Constantinides
17
FIR: Linear phase
For phase linearity the FIR transfer
function must have zeros outside
the unit circle
AGC
DSP
Professor A G Constantinides
18
FIR: Linear phase
 To develop expression for phase
response set transfer function (order n)
 In factored form
 Where , is
real & zeros occur in conjugates
n
nz
h
z
h
z
h
h
z
H 






 ...
)
( 2
2
1
1
0
)
1
(
).
1
(
)
( 1
2
1
1
1
1




 
 
 z
z
K
z
H i
n
i
i
n
i


1
,
1 
 i
i 
 K
AGC
DSP
Professor A G Constantinides
19
FIR: Linear phase
 Let
where
 Thus
)
(
)
(
)
( 2
1 z
N
z
KN
z
H 
)
1
ln(
)
1
ln(
)
ln(
))
(
ln(
2
1
1
1
1
1
 

 






n
i
i
n
i
i z
z
K
z
H 

)
1
(
)
( 1
1
1
1


 
 z
z
N i
n
i
 )
1
(
)
( 1
2
1
2


 
 z
z
N i
n
i

AGC
DSP
Professor A G Constantinides
20
FIR: Linear phase
 Expand in a Laurent Series
convergent within the unit circle
 To do so modify the second sum as
)
1
1
ln(
)
ln(
)
1
ln(
2
1
1
2
1
1
2
1
z
z
z
i
n
i
i
n
i
i
n
i 

  

 

 





AGC
DSP
Professor A G Constantinides
21
FIR: Linear phase
 So that
 Thus
 where
)
1
1
ln(
)
1
ln(
)
ln(
)
ln(
))
(
ln(
2
1
1
1
1
2  

 






n
i i
n
i
i z
z
z
n
K
z
H


m
N
m
m
m
N
m
z
m
s
z
m
s
z
n
K
z
H
2
1
1
2 )
ln(
)
ln(
))
(
ln( 



 






1
1
1
n
i
m
i
N
m
s  




1
1
2
n
i
m
i
N
m
s 
AGC
DSP
Professor A G Constantinides
22
FIR: Linear phase
 are the root moments of the
minimum phase component
 are the inverse root moments of
the maximum phase component
 Now on the unit circle we have
and

j
e
z 
)
(
)
(
)
( 


 j
j
e
A
e
H 
1
N
m
s
2
N
m
s
AGC
DSP
Professor A G Constantinides
23
Fundamental Relationships
 hence (note Fourier form)



 jm
N
m
m
jm
N
m
j
e
m
s
e
m
s
jn
K
e
H
2
1
1
2
)
ln(
))
(
ln( 



 



)
(
))
(
ln(
)
)
(
ln(
))
(
ln( )
(



 


j
A
e
A
e
H j
j




 m
m
s
m
s
K
A
N
m
m
N
m
cos
)
(
)
ln(
))
(
ln(
2
1
1



 





 m
m
s
m
s
n
N
m
m
N
m
sin
)
(
)
(
2
1
1
2



 



AGC
DSP
Professor A G Constantinides
24
FIR: Linear phase
 Thus for linear phase the second term in the
fundamental phase relationship must be
identically zero for all index values.
 Hence
 1) the maximum phase factor has zeros
which are the inverses of the those of the
minimum phase factor
 2) the phase response is linear with group
delay (normalised) equal to the number of
zeros outside the unit circle
AGC
DSP
Professor A G Constantinides
25
FIR: Linear phase
 It follows that zeros of linear phase FIR
trasfer functions not on the
circumference of the unit circle occur in
the form
 1

 i
j
ie 

AGC
DSP
Professor A G Constantinides
26
FIR: Linear phase
 For Linear Phase t.f. (order N-1)

 so that for N even:
)
1
(
)
( n
N
h
n
h 













1
2
1
2
0
).
(
).
(
)
(
N
N
n
n
N
n
n
z
n
h
z
n
h
z
H
 












1
2
0
)
1
(
1
2
0
).
1
(
).
(
N
n
n
N
N
n
n
z
n
N
h
z
n
h
 
 





1
2
0
)
(
N
n
m
n
z
z
n
h n
N
m 

 1
AGC
DSP
Professor A G Constantinides
27
FIR: Linear phase
 for N odd:
 I) On we have for N even,
and +ve sign
 
 




 











 



1
2
1
0
2
1
2
1
).
(
)
(
N
n
N
m
n
z
N
h
z
z
n
h
z
H
1
: 
z
C
 










 









 
 1
2
0
2
1
2
1
cos
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
e
e
H 


AGC
DSP
Professor A G Constantinides
28
FIR: Linear phase
 II) While for –ve sign
 [Note: antisymmetric case adds rads
to phase, with discontinuity at ]
 III) For N odd with +ve sign
 










 









 
 1
2
0
2
1
2
1
sin
).
(
2
.
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


2
/

0










 






 

2
1
)
( 2
1
N
h
e
e
H
N
T
j
T
j







 










 




2
3
0 2
1
cos
).
(
2
N
n
N
n
T
n
h 
AGC
DSP
Professor A G Constantinides
29
FIR: Linear phase
 IV) While with a –ve sign
 [Notice that for the antisymmetric case to
have linear phase we require
The phase discontinuity is as for N even]










 










 









 
 2
3
0
2
1
2
1
sin
).
(
.
2
)
(
N
n
N
T
j
T
j N
n
T
n
h
j
e
e
H 


.
0
2
1






 
N
h
AGC
DSP
Professor A G Constantinides
30
FIR: Linear phase
 The cases most commonly used in filter
design are (I) and (III), for which the
amplitude characteristic can be written
as a polynomial in
2
cos
T

AGC
DSP
Professor A G Constantinides
31
Design of FIR filters: Windows
(i) Start with ideal infinite duration
(ii) Truncate to finite length. (This
produces unwanted ripples increasing in
height near discontinuity.)
(iii) Modify to
Weight w(n) is the window
 
)
(n
h
)
(
).
(
)
(
~
n
w
n
h
n
h 
AGC
DSP
Professor A G Constantinides
32
Windows
Commonly used windows
 Rectangular
 Bartlett
 Hann
 Hamming

 Blackman

 Kaiser
2
1


N
n
N
n
2
1







N
n

2
cos
1







N
n

2
cos
46
.
0
54
.
0














N
n
N
n 
 4
cos
08
.
0
2
cos
5
.
0
42
.
0
)
(
1
2
1 0
2
0 
 J
N
n
J
















AGC
DSP
Professor A G Constantinides
33
Kaiser window
 Kaiser window
β Transition
width (Hz)
Min. stop
attn dB
2.12 1.5/N 30
4.54 2.9/N 50
6.76 4.3/N 70
8.96 5.7/N 90
AGC
DSP
Professor A G Constantinides
34
Example
• Lowpass filter of length 51 and 2
/

 
c
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hann window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Hamming window
0 0.2 0.4 0.6 0.8 1
-100
-50
0
/
Gain,
dB
Lowpass Filter Designed Using Blackman window
AGC
DSP
Professor A G Constantinides
35
Frequency Sampling Method
• In this approach we are given and
need to find
• This is an interpolation problem and the
solution is given in the DFT part of the
course
• It has similar problems to the windowing
approach





 

1
0 1
2
.
1
1
).
(
1
)
(
N
k k
N
j
N
z
e
z
k
H
N
z
H 
)
(k
H
)
(z
H
AGC
DSP
Professor A G Constantinides
36
Linear-Phase FIR Filter
Design by Optimisation
 Amplitude response for all 4 types of
linear-phase FIR filters can be
expressed as
where
)
(
)
(
)
( 

 A
Q
H 









4
Type
for
),
2
/
sin(
3
Type
for
),
sin(
2
Type
for
/2),
cos(
1
Type
for
,
1
)
(




Q
AGC
DSP
Professor A G Constantinides
37
Linear-Phase FIR Filter
Design by Optimisation
 Modified form of weighted error function
where
)]
(
)
(
)
(
)[
(
)
( 



 D
A
Q
W 

E
]
)
(
)[
(
)
( )
(
)
(




 Q
D
A
Q
W 

)]
(
~
)
(
)[
(
~


 D
A
W 

)
(
)
(
)
(
~


 Q
W
W 
)
(
/
)
(
)
(
~


 Q
D
D 
AGC
DSP
Professor A G Constantinides
38
Linear-Phase FIR Filter
Design by Optimisation
 Optimisation Problem - Determine
which minimise the peak absolute value
of
over the specified frequency bands
 After has been determined,
construct the original and
hence h[n]
)]
(
~
)
cos(
]
[
~
)[
(
~
)
(
0



 D
k
k
a
W
L
k




E
]
[
~ k
a
R


)
( 
j
e
A
]
[
~ k
a
AGC
DSP
Professor A G Constantinides
39
Linear-Phase FIR Filter
Design by Optimisation
Solution is obtained via the Alternation
Theorem
The optimal solution has equiripple
behaviour consistent with the total
number of available parameters.
Parks and McClellan used the Remez
algorithm to develop a procedure for
designing linear FIR digital filters.
AGC
DSP
Professor A G Constantinides
40
FIR Digital Filter Order
Estimation
Kaiser’s Formula:
 ie N is inversely proportional to
transition band width and not on
transition band location





2
/
)
(
6
.
14
)
(
log
20 10
p
s
s
p
N



AGC
DSP
Professor A G Constantinides
41
FIR Digital Filter Order
Estimation
 Hermann-Rabiner-Chan’s Formula:
where
with










2
/
)
(
]
2
/
)
)[(
,
(
)
,
( 2
p
s
p
s
s
p
s
p F
D
N



 
s
p
p
s
p a
a
a
D 



 10
3
10
2
2
10
1 log
]
)
(log
)
(log
[
)
,
( 



]
)
(log
)
(log
[ 6
10
5
2
10
4 a
a
a p
p 

 

]
log
[log
)
,
( 10
10
2
1 s
p
s
p b
b
F 


 


4761
.
0
,
07114
.
0
,
005309
.
0 3
2
1 


 a
a
a
4278
.
0
,
5941
.
0
,
00266
.
0 6
5
4 

 a
a
a
51244
.
0
,
01217
.
11 2
1 
 b
b
AGC
DSP
Professor A G Constantinides
42
FIR Digital Filter Order
Estimation
 Formula valid for
 For , formula to be used is
obtained by interchanging and
 Both formulae provide only an estimate
of the required filter order N
 If specifications are not met, increase
filter order until they are met
s
p 
 
s
p 
 
p
 s

AGC
DSP
Professor A G Constantinides
43
FIR Digital Filter Order
Estimation
 Fred Harris’ guide:
where A is the attenuation in dB
 Then add about 10% to it


 2
/
)
(
20 p
s
A
N



More Related Content

DOCX
Frequency synthesizer
PPTX
Wavelet transform
PPTX
Complex integration
PPTX
Region of Convergence (ROC) in the z-plane
PPT
Z Transform
PPTX
Digital Image Processing - Frequency Filters
PDF
Design of FIR filters
PDF
Fourier series 1
Frequency synthesizer
Wavelet transform
Complex integration
Region of Convergence (ROC) in the z-plane
Z Transform
Digital Image Processing - Frequency Filters
Design of FIR filters
Fourier series 1

What's hot (20)

PPT
Spatial filtering
PDF
Chapter2 - Linear Time-Invariant System
PPT
Fourier transform
PPTX
Radio receivers
PPTX
Fourier transforms
PPTX
Z Transform
PPTX
Fourier transform
PDF
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
PPT
Z transform
PPTX
Z transforms and their applications
PDF
DFT and IDFT Matlab Code
PDF
Signals and Systems Formula Sheet
PDF
Z transform
PDF
Wiener Filter
PPTX
Fft analysis
PPTX
Band pass filter
PDF
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
PPTX
Design of Filters PPT
PDF
DSP_2018_FOEHU - Lec 04 - The z-Transform
PDF
DSP_FOEHU - Lec 10 - FIR Filter Design
Spatial filtering
Chapter2 - Linear Time-Invariant System
Fourier transform
Radio receivers
Fourier transforms
Z Transform
Fourier transform
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Z transform
Z transforms and their applications
DFT and IDFT Matlab Code
Signals and Systems Formula Sheet
Z transform
Wiener Filter
Fft analysis
Band pass filter
DIGITAL IMAGE PROCESSING - Day 4 Image Transform
Design of Filters PPT
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_FOEHU - Lec 10 - FIR Filter Design
Ad

Similar to DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt (20)

PDF
1-Digital filters (FIR).pdf
PPTX
New filters1 filler design for the dsp system
PPT
6-Digital filters (FIR).ppt
PPT
Introduction, concepts, and mathematics of IIR filters.ppt
PPT
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
PPTX
DSP-UNIT-V-PPT-1.pptx
PPTX
Filter Design techniques with digital signal processing.pptx
PPT
chap4_lecture 2 Bandpass Signals and Systems
PPT
IIR filter design, Digital signal processing
PDF
Module iv sp
PPT
Chapter communication_Lect7.ppt
PPT
chap4_lecture 1 Bandpass Signalling in analog communications
PPT
1-DSP Fundamentals.ppt
PPTX
Design of digital filters
PPT
chap4_lec1.ppt Engineering and technical
PPTX
Design of infinite impulse response digital filters 2
PPTX
computer-science_engineering_digital-signal-processing_iir-filter-design_note...
PPTX
Importance of FIR filters power point.pptx
PPT
Fir and iir filter_design
PPTX
An introduction to discrete wavelet transforms
1-Digital filters (FIR).pdf
New filters1 filler design for the dsp system
6-Digital filters (FIR).ppt
Introduction, concepts, and mathematics of IIR filters.ppt
BUTTERWORTH FILTER AND CHEBYSHEW FILTERS
DSP-UNIT-V-PPT-1.pptx
Filter Design techniques with digital signal processing.pptx
chap4_lecture 2 Bandpass Signals and Systems
IIR filter design, Digital signal processing
Module iv sp
Chapter communication_Lect7.ppt
chap4_lecture 1 Bandpass Signalling in analog communications
1-DSP Fundamentals.ppt
Design of digital filters
chap4_lec1.ppt Engineering and technical
Design of infinite impulse response digital filters 2
computer-science_engineering_digital-signal-processing_iir-filter-design_note...
Importance of FIR filters power point.pptx
Fir and iir filter_design
An introduction to discrete wavelet transforms
Ad

More from debeshidutta2 (9)

PPTX
Nanosensor-basics, application and future.pptx
PPTX
FUNDAMENTALS OF MECHATRONICS AND APPLICATIONS.pptx
PPT
WEINER FILTERING AND BASIS FUNCTIONS.ppt
PPTX
Radiation Detectors-operation and applications.pptx
PPTX
Thermoluminiscent Dosimetry-Principle, Charateristics, and Applications.pptx
PPT
Introduction to adaptive filtering and its applications.ppt
PPT
BIOMEDICAL SENSORS AND MEASUREMENT SYSTEMS.ppt
PPTX
Basic programming in Python Environment.pptx
PPTX
Transducers in healthcare applications.pptx
Nanosensor-basics, application and future.pptx
FUNDAMENTALS OF MECHATRONICS AND APPLICATIONS.pptx
WEINER FILTERING AND BASIS FUNCTIONS.ppt
Radiation Detectors-operation and applications.pptx
Thermoluminiscent Dosimetry-Principle, Charateristics, and Applications.pptx
Introduction to adaptive filtering and its applications.ppt
BIOMEDICAL SENSORS AND MEASUREMENT SYSTEMS.ppt
Basic programming in Python Environment.pptx
Transducers in healthcare applications.pptx

Recently uploaded (20)

PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Sustainable Sites - Green Building Construction
PPTX
Welding lecture in detail for understanding
PPTX
web development for engineering and engineering
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
PPTX
Construction Project Organization Group 2.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
composite construction of structures.pdf
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
OOP with Java - Java Introduction (Basics)
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
R24 SURVEYING LAB MANUAL for civil enggi
Mechanical Engineering MATERIALS Selection
Sustainable Sites - Green Building Construction
Welding lecture in detail for understanding
web development for engineering and engineering
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
Construction Project Organization Group 2.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
The CXO Playbook 2025 – Future-Ready Strategies for C-Suite Leaders Cerebrai...
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
composite construction of structures.pdf
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Operating System & Kernel Study Guide-1 - converted.pdf
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
OOP with Java - Java Introduction (Basics)
CYBER-CRIMES AND SECURITY A guide to understanding
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...

DIGITAL FILTER SPECIFICATIONS AND MATHEMATICS.ppt

  • 1. AGC DSP Professor A G Constantinides 1 Digital Filter Specifications  Only the magnitude approximation problem  Four basic types of ideal filters with magnitude responses as shown below (Piecewise flat)
  • 2. AGC DSP Professor A G Constantinides 2 Digital Filter Specifications  These filters are unealisable because (one of the following is sufficient)  their impulse responses infinitely long non- causal  Their amplitude responses cannot be equal to a constant over a band of frequencies Another perspective that provides some understanding can be obtained by looking at the ideal amplitude squared.
  • 3. AGC DSP Professor A G Constantinides 3 Digital Filter Specifications  Consider the ideal LP response squared (same as actual LP response)
  • 4. AGC DSP Professor A G Constantinides 4 Digital Filter Specifications  The realisable squared amplitude response transfer function (and its differential) is continuous in  Such functions  if IIR can be infinite at point but around that point cannot be zero.  if FIR cannot be infinite anywhere.  Hence previous defferential of ideal response is unrealisable 
  • 5. AGC DSP Professor A G Constantinides 5 Digital Filter Specifications  A realisable response would effectively need to have an approximation of the delta functions in the differential  This is a necessary condition
  • 6. AGC DSP Professor A G Constantinides 6 Digital Filter Specifications  For example the magnitude response of a digital lowpass filter may be given as indicated below
  • 7. AGC DSP Professor A G Constantinides 7 Digital Filter Specifications  In the passband we require that with a deviation  In the stopband we require that with a deviation 1 ) (   j e G 0 ) (   j e G s  p   p     0      s p p j p e G           , 1 ) ( 1         s s j e G , ) (
  • 8. AGC DSP Professor A G Constantinides 8 Digital Filter Specifications Filter specification parameters  - passband edge frequency  - stopband edge frequency  - peak ripple value in the passband  - peak ripple value in the stopband p  s  s  p 
  • 9. AGC DSP Professor A G Constantinides 9 Digital Filter Specifications  Practical specifications are often given in terms of loss function (in dB)   Peak passband ripple dB  Minimum stopband attenuation dB ) ( log 20 ) ( 10   j e G   G ) 1 ( log 20 10 p p      ) ( log 20 10 s s    
  • 10. AGC DSP Professor A G Constantinides 10 Digital Filter Specifications  In practice, passband edge frequency and stopband edge frequency are specified in Hz  For digital filter design, normalized bandedge frequencies need to be computed from specifications in Hz using T F F F F p T p T p p    2 2     T F F F F s T s T s s    2 2     s F p F
  • 11. AGC DSP Professor A G Constantinides 11 Digital Filter Specifications  Example - Let kHz, kHz, and kHz  Then 7  p F 3  s F 25  T F    56 . 0 10 25 ) 10 7 ( 2 3 3     p    24 . 0 10 25 ) 10 3 ( 2 3 3     s
  • 12. AGC DSP Professor A G Constantinides 12  The transfer function H(z) meeting the specifications must be a causal transfer function  For IIR real digital filter the transfer function is a real rational function of  H(z) must be stable and of lowest order N or M for reduced computational complexity Selection of Filter Type 1  z N N M M z d z d z d d z p z p z p p z H                  2 2 1 1 0 2 2 1 1 0 ) (
  • 13. AGC DSP Professor A G Constantinides 13 Selection of Filter Type  FIR real digital filter transfer function is a polynomial in (order N) with real coefficients  For reduced computational complexity, degree N of H(z) must be as small as possible  If a linear phase is desired then we must have:  (More on this later)     N n n z n h z H 0 ] [ ) ( ] [ ] [ n N h n h    1  z
  • 14. AGC DSP Professor A G Constantinides 14 Selection of Filter Type  Advantages in using an FIR filter - (1) Can be designed with exact linear phase (2) Filter structure always stable with quantised coefficients  Disadvantages in using an FIR filter - Order of an FIR filter is considerably higher than that of an equivalent IIR filter meeting the same specifications; this leads to higher computational complexity for FIR
  • 15. AGC DSP Professor A G Constantinides 15 FIR Design FIR Digital Filter Design Three commonly used approaches to FIR filter design - (1) Windowed Fourier series approach (2) Frequency sampling approach (3) Computer-based optimization methods
  • 16. AGC DSP Professor A G Constantinides 16 Finite Impulse Response Filters  The transfer function is given by  The length of Impulse Response is N  All poles are at .  Zeros can be placed anywhere on the z- plane      1 0 ). ( ) ( N n n z n h z H 0  z
  • 17. AGC DSP Professor A G Constantinides 17 FIR: Linear phase For phase linearity the FIR transfer function must have zeros outside the unit circle
  • 18. AGC DSP Professor A G Constantinides 18 FIR: Linear phase  To develop expression for phase response set transfer function (order n)  In factored form  Where , is real & zeros occur in conjugates n nz h z h z h h z H         ... ) ( 2 2 1 1 0 ) 1 ( ). 1 ( ) ( 1 2 1 1 1 1          z z K z H i n i i n i   1 , 1   i i   K
  • 19. AGC DSP Professor A G Constantinides 19 FIR: Linear phase  Let where  Thus ) ( ) ( ) ( 2 1 z N z KN z H  ) 1 ln( ) 1 ln( ) ln( )) ( ln( 2 1 1 1 1 1            n i i n i i z z K z H   ) 1 ( ) ( 1 1 1 1      z z N i n i  ) 1 ( ) ( 1 2 1 2      z z N i n i 
  • 20. AGC DSP Professor A G Constantinides 20 FIR: Linear phase  Expand in a Laurent Series convergent within the unit circle  To do so modify the second sum as ) 1 1 ln( ) ln( ) 1 ln( 2 1 1 2 1 1 2 1 z z z i n i i n i i n i                
  • 21. AGC DSP Professor A G Constantinides 21 FIR: Linear phase  So that  Thus  where ) 1 1 ln( ) 1 ln( ) ln( ) ln( )) ( ln( 2 1 1 1 1 2            n i i n i i z z z n K z H   m N m m m N m z m s z m s z n K z H 2 1 1 2 ) ln( ) ln( )) ( ln(             1 1 1 n i m i N m s       1 1 2 n i m i N m s 
  • 22. AGC DSP Professor A G Constantinides 22 FIR: Linear phase  are the root moments of the minimum phase component  are the inverse root moments of the maximum phase component  Now on the unit circle we have and  j e z  ) ( ) ( ) (     j j e A e H  1 N m s 2 N m s
  • 23. AGC DSP Professor A G Constantinides 23 Fundamental Relationships  hence (note Fourier form)     jm N m m jm N m j e m s e m s jn K e H 2 1 1 2 ) ln( )) ( ln(          ) ( )) ( ln( ) ) ( ln( )) ( ln( ) (        j A e A e H j j      m m s m s K A N m m N m cos ) ( ) ln( )) ( ln( 2 1 1            m m s m s n N m m N m sin ) ( ) ( 2 1 1 2        
  • 24. AGC DSP Professor A G Constantinides 24 FIR: Linear phase  Thus for linear phase the second term in the fundamental phase relationship must be identically zero for all index values.  Hence  1) the maximum phase factor has zeros which are the inverses of the those of the minimum phase factor  2) the phase response is linear with group delay (normalised) equal to the number of zeros outside the unit circle
  • 25. AGC DSP Professor A G Constantinides 25 FIR: Linear phase  It follows that zeros of linear phase FIR trasfer functions not on the circumference of the unit circle occur in the form  1   i j ie  
  • 26. AGC DSP Professor A G Constantinides 26 FIR: Linear phase  For Linear Phase t.f. (order N-1)   so that for N even: ) 1 ( ) ( n N h n h               1 2 1 2 0 ). ( ). ( ) ( N N n n N n n z n h z n h z H               1 2 0 ) 1 ( 1 2 0 ). 1 ( ). ( N n n N N n n z n N h z n h          1 2 0 ) ( N n m n z z n h n N m    1
  • 27. AGC DSP Professor A G Constantinides 27 FIR: Linear phase  for N odd:  I) On we have for N even, and +ve sign                           1 2 1 0 2 1 2 1 ). ( ) ( N n N m n z N h z z n h z H 1 :  z C                           1 2 0 2 1 2 1 cos ). ( 2 . ) ( N n N T j T j N n T n h e e H   
  • 28. AGC DSP Professor A G Constantinides 28 FIR: Linear phase  II) While for –ve sign  [Note: antisymmetric case adds rads to phase, with discontinuity at ]  III) For N odd with +ve sign                           1 2 0 2 1 2 1 sin ). ( 2 . ) ( N n N T j T j N n T n h j e e H    2 /  0                      2 1 ) ( 2 1 N h e e H N T j T j                          2 3 0 2 1 cos ). ( 2 N n N n T n h 
  • 29. AGC DSP Professor A G Constantinides 29 FIR: Linear phase  IV) While with a –ve sign  [Notice that for the antisymmetric case to have linear phase we require The phase discontinuity is as for N even]                                     2 3 0 2 1 2 1 sin ). ( . 2 ) ( N n N T j T j N n T n h j e e H    . 0 2 1         N h
  • 30. AGC DSP Professor A G Constantinides 30 FIR: Linear phase  The cases most commonly used in filter design are (I) and (III), for which the amplitude characteristic can be written as a polynomial in 2 cos T 
  • 31. AGC DSP Professor A G Constantinides 31 Design of FIR filters: Windows (i) Start with ideal infinite duration (ii) Truncate to finite length. (This produces unwanted ripples increasing in height near discontinuity.) (iii) Modify to Weight w(n) is the window   ) (n h ) ( ). ( ) ( ~ n w n h n h 
  • 32. AGC DSP Professor A G Constantinides 32 Windows Commonly used windows  Rectangular  Bartlett  Hann  Hamming   Blackman   Kaiser 2 1   N n N n 2 1        N n  2 cos 1        N n  2 cos 46 . 0 54 . 0               N n N n   4 cos 08 . 0 2 cos 5 . 0 42 . 0 ) ( 1 2 1 0 2 0   J N n J                
  • 33. AGC DSP Professor A G Constantinides 33 Kaiser window  Kaiser window β Transition width (Hz) Min. stop attn dB 2.12 1.5/N 30 4.54 2.9/N 50 6.76 4.3/N 70 8.96 5.7/N 90
  • 34. AGC DSP Professor A G Constantinides 34 Example • Lowpass filter of length 51 and 2 /    c 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hann window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Hamming window 0 0.2 0.4 0.6 0.8 1 -100 -50 0 / Gain, dB Lowpass Filter Designed Using Blackman window
  • 35. AGC DSP Professor A G Constantinides 35 Frequency Sampling Method • In this approach we are given and need to find • This is an interpolation problem and the solution is given in the DFT part of the course • It has similar problems to the windowing approach         1 0 1 2 . 1 1 ). ( 1 ) ( N k k N j N z e z k H N z H  ) (k H ) (z H
  • 36. AGC DSP Professor A G Constantinides 36 Linear-Phase FIR Filter Design by Optimisation  Amplitude response for all 4 types of linear-phase FIR filters can be expressed as where ) ( ) ( ) (    A Q H           4 Type for ), 2 / sin( 3 Type for ), sin( 2 Type for /2), cos( 1 Type for , 1 ) (     Q
  • 37. AGC DSP Professor A G Constantinides 37 Linear-Phase FIR Filter Design by Optimisation  Modified form of weighted error function where )] ( ) ( ) ( )[ ( ) (      D A Q W   E ] ) ( )[ ( ) ( ) ( ) (      Q D A Q W   )] ( ~ ) ( )[ ( ~    D A W   ) ( ) ( ) ( ~    Q W W  ) ( / ) ( ) ( ~    Q D D 
  • 38. AGC DSP Professor A G Constantinides 38 Linear-Phase FIR Filter Design by Optimisation  Optimisation Problem - Determine which minimise the peak absolute value of over the specified frequency bands  After has been determined, construct the original and hence h[n] )] ( ~ ) cos( ] [ ~ )[ ( ~ ) ( 0     D k k a W L k     E ] [ ~ k a R   ) (  j e A ] [ ~ k a
  • 39. AGC DSP Professor A G Constantinides 39 Linear-Phase FIR Filter Design by Optimisation Solution is obtained via the Alternation Theorem The optimal solution has equiripple behaviour consistent with the total number of available parameters. Parks and McClellan used the Remez algorithm to develop a procedure for designing linear FIR digital filters.
  • 40. AGC DSP Professor A G Constantinides 40 FIR Digital Filter Order Estimation Kaiser’s Formula:  ie N is inversely proportional to transition band width and not on transition band location      2 / ) ( 6 . 14 ) ( log 20 10 p s s p N   
  • 41. AGC DSP Professor A G Constantinides 41 FIR Digital Filter Order Estimation  Hermann-Rabiner-Chan’s Formula: where with           2 / ) ( ] 2 / ) )[( , ( ) , ( 2 p s p s s p s p F D N      s p p s p a a a D      10 3 10 2 2 10 1 log ] ) (log ) (log [ ) , (     ] ) (log ) (log [ 6 10 5 2 10 4 a a a p p      ] log [log ) , ( 10 10 2 1 s p s p b b F        4761 . 0 , 07114 . 0 , 005309 . 0 3 2 1     a a a 4278 . 0 , 5941 . 0 , 00266 . 0 6 5 4    a a a 51244 . 0 , 01217 . 11 2 1   b b
  • 42. AGC DSP Professor A G Constantinides 42 FIR Digital Filter Order Estimation  Formula valid for  For , formula to be used is obtained by interchanging and  Both formulae provide only an estimate of the required filter order N  If specifications are not met, increase filter order until they are met s p    s p    p  s 
  • 43. AGC DSP Professor A G Constantinides 43 FIR Digital Filter Order Estimation  Fred Harris’ guide: where A is the attenuation in dB  Then add about 10% to it    2 / ) ( 20 p s A N  