SlideShare a Scribd company logo
Eeng 360 1
Chapter4
Bandpass Signalling
 Definitions
 Complex Envelope Representation
 Representation of Modulated Signals
 Spectrum of Bandpass Signals
 Power of Bandpass Signals
 Examples
Huseyin Bilgekul
Eeng360 Communication Systems I
Department of Electrical and Electronic Engineering
Eastern Mediterranean University
Eeng 360 2
 Energy spectrum of a bandpass signal is
concentrated around the carrier frequency fc.
 A time portion of a bandpass signal. Notice the carrier and the baseband envelope.
Bandpass Signals
Bandpass Signal Spectrum
Time Waveform of
Bandpass Signal
Eeng 360 3
DEFINITIONS
Definitions:
The Bandpass communication signal is obtained by modulating a baseband analog
or digital signal onto a carrier.
 A baseband waveform has a spectral magnitude that is nonzero for frequencies in
the vicinity of the origin ( f=0) and negligible elsewhere.
 A bandpass waveform has a spectral magnitude that is nonzero for frequencies in
some band concentrated about a frequency where fc>>0. fc-Carrier frequency
 Modulation is process of imparting the source information onto a bandpass signal
with a carrier frequency fc by the introduction of amplitude or phase perturbations or
both.
 This bandpass signal is called the modulated signal s(t), and the baseband source
signal is called the modulating signal m(t).
c
f
f 

Transmission
medium
(channel)
Carrier
circuits
Signal
processing
Carrier
circuits
Signal
processing
Information
m
input m
~
)
(
~ t
g
)
(t
r
)
(t
s
)
(t
g
Communication System
Eeng 360 4
Complex Envelope Representation
 The waveforms g(t) , x(t), R(t), and are all baseband waveforms. Additionally all of
them except g(t) are real and g(t) is the Complex Envelope.
 
t

• g(t) is the Complex Envelope of v(t)
• x(t) is said to be the In-phase modulation associated with v(t)
• y(t) is said to be the Quadrature modulation associated with v(t)
• R(t) is said to be the Amplitude modulation (AM) on v(t)
• (t) is said to be the Phase modulation (PM) on v(t)
In communications, frequencies in the baseband signal g(t) are said to be heterodyned up to fc
 THEOREM: Any physical bandpass waveform v(t) can be represented as below
where fc is the CARRIER frequency and c=2 fc
 
( )
( ) ( ) ( ) ( ) ( ) j t
j g t
g t x t jy t g t e R t e 

   
   
     
   
Re cos
= cos sin
c
j t
c
c c
v t g t e R t t t
x t t y t t

 
 
 
  
 

Eeng 360 5
Generalized transmitter using the AM–PM generation
technique.
Eeng 360 6
Generalized transmitter using the quadrature
generation technique.
Eeng 360 7
v(t) – bandpass waveform with non-zero spectrum concentrated near f=fc
=> cn – non-zero for ‘n’ in the range
The physical waveform is real, and using , Thus we have:
Complex Envelope Representation
0
0 0
( ) 2 /
n
jn t
n
n
v t c e T

 


 

  0
0
1
Re 2 jn t
n
n
v t c c e 


 
 
 
 

     
0
1
Re ( ) Re 2 c
c c
n
j n t
j t j t
n
n
v t g t e c e e
 
 



 
 
   
 
 
 
 0
( )
1
( ) 2 c
j n t
n
n
g t c e  




 
0 c
nf f
 
PROOF: Any physical waveform may be represented by the Complex Fourier Series
*
n n
c c
 
cn - negligible magnitudes for n in the vicinity of 0 and, in particular, c0=0
Introducing an arbitrary parameter fc , we get
=> g(t) – has a spectrum concentrated near f=0 (i.e., g(t) - baseband waveform)
  
*
1 1
Re
2 2
    
 THEOREM: Any physical bandpass waveform v(t) can be represented by
where fc is the CARRIER frequency and c=2 fc
   
 
Re c
j t
v t g t e 

Eeng 360 8
 Converting from one form to the other form
 Equivalent representations of the Bandpass signals:
Complex Envelope Representation
     
cos sin Inphase and Quadrature (IQ) form
c c
v t x t t y t t
 
 
      ( ) ( )
( ) ( ) Complex Envelope of ( )
j g t j t
g t x t jy t g t e R t e v t


   
Inphase and Quadrature (IQ) Components.
   
 
   
 
Re ( )cos ( )
Im ( )sin ( )
x t g t R t t
y t g t R t t


 
 
Envelope and Phase Components
  2 2
1
( ) ( ) ( )
( )
( ) ( ) tan ( )
( )
R t g t x t y t
y t
t g t
x t
 
  
  
   
     
Re cos Envelope and Phase form
c
j t
c
v t g t e R t t t

 
 
  
 
Eeng 360 9
 The complex envelope resulting from x(t) being a computer generated voice signal and
y(t) being a sinusoid. The spectrum of the bandpass signal generated from above signal.
Complex Envelope Representation
Eeng 360 10
Representation of Modulated Signals
• The complex envelope g(t) is a function of the modulating signal m(t) and is given
by: g(t)=g[m(t)] where g[• ] performs a mapping operation on m(t).
• The g[m] functions that are easy to implement and that will give desirable spectral
properties for different modulations are given by the TABLE 4.1
• At receiver the inverse function m[g] will be implemented to recover the message.
Mapping should suppress as much noise as possible during the recovery.
 Modulation is the process of encoding the source information m(t) into a bandpass
signal s(t). Modulated signal is just a special application of the bandpass
representation. The modulated signal is given by:
   
Re ( ) 2
c
j t
c c
s t g t e f

 
 
Eeng 360 11
Bandpass Signal Conversion
)
(t
g
)
(t
s
1 1 1
0 0
2
Ac 2
0
 Ac 2
n
X
X
Unipolar
Line Coder
cos(ct)
g(t)
Xn
c
A
)
(t
s
 On off Keying (Amplitude Modulation) of a unipolar line coded
signal for bandpass conversion.
Eeng 360 12
 Binary Phase Shift keying (Phase Modulation) of a polar line
code for bandpass conversion.
X
Polar
Line Coder
cos(ct)
g(t)
Xn
c
A
)
(t
s
)
(t
g
)
(t
s
1 1 1
0 0
2
Ac 2
 2
 Ac 2
n
X
Bandpass Signal Conversion
Eeng 360 13
Mapping Functions for Various Modulations
Eeng 360 14
Envelope and Phase for Various Modulations
Eeng 360 15
Spectrum of Bandpass Signals
   
  *
1 1
Re ( ) ( )
2 2
c c c
j t j t j t
v t g t e g t e g t e
  

  
 
   
   
 
t
j
t
j c
c
e
t
g
F
e
t
g
F
t
v
F
f
V 
 


 *
2
1
2
1
)
(
 
   
f
G
t
g
F 
 *
*
   
 
*
1
( ) - -
2
c c
V f G f f G f f
 
  
 
Theorem: If bandpass waveform is represented by
   
 
t
g
F
f
G   
f
Pg
Where is PSD of g(t)
Proof:
Thus,
Using and the frequency translation property:
We get,
   
   
*
1
Spectrum of Bandpass Signal ( )
2
1
PSD of Bandpass Signal ( )
4
c c
v g c g c
V f G f f G f f
P f P f f P f f
 
    
 
 
    
 
   
Re ( ) c
j t
v t g t e 

Eeng 360 16
PSD of Bandpass Signals
       
     
 
Re Re c
c j t
j t
v
R v t v t g t e g t e
 

   
   
       
*
2 1 2 1 2 1
1 1
Re Re Re Re
2 2
c c c c c c
 
2 ( ) c
j t
c g t e 
    
1
c
j t
c g t e  
 
 
       
       
 
*
1 1
Re Re
2 2
c c
c c
j t j t
j t j t
v
R g t g t e e g t g t e e
   
 
  
 

   
 
,
     
     
 
2
*
1 1
Re Re
2 2
c c c
j j t j
v
R g t g t e g t g t e e
    
  
   
     
     
 
2
*
1 1
Re Re
2 2
c c c
j j t j
v
R g t g t e g t g t e e
    
  
   
 PSD is obtained by first evaluating the autocorrelation for v(t):
Using the identity
where and
- Linear operators
     
*
g
g t g t R
 
 
but
   
 
1
Re
2
c
j
v g
R R e  
 

AC reduces to
       
* *
1
( )
4
v v g c g c g g
P f F R P f f P f f P P f
  
 
      
   
PSD =>
=>
We get
or g(t)
fc in
s
frequencie

Eeng 360 17
Evaluation of Power
   
2
v v
P v t P f df


  
     
1 2
j f
v v v
R F P f P f e df
 




 
 
  
   
0
v v
R P f df


 
   
     
     
 
*
1 1 1
0 Re 0 Re 0 Since Re
2 2 2
c
j
v g v g
R R g t g t R R e  
 
 
   
 
 
   
 
2
1
0 Re
2
v
R g t

   
2
1
0
2
v
R g t

 
g t
Theorem: Total average normalized power of a bandpass waveform v(t) is
Proof:
But
So,
or
But is always real
So,
       
2
2 1
0
2
v v v
P v t P f df R g t


   

Eeng 360 18
Example : Amplitude-Modulated Signal
 Evaluate the magnitude spectrum for an AM signal:
   
1
c
g t A m t
 
 
 
Complex envelope of an AM signal:
     
c c
G f A f A M f

 
Spectrum of the complex envelope:
         
1
2
c c c c c
S f A f f M f f f f M f f
 
       
 
 
AM spectrum:
 
1 1
, 0
2 2
1 1
, 0
2 2
A f f A M f f f
c c c c
S f
A f f A M f f f
c c c c


   
   
   
   
   
   
   
   

   

 
     

Magnitude spectrum:
AM signal waveform:      
Re ( ) 1 cos
c
j t
c c
s t g t e A m t t


 
  
 
   
 
       
   
*
*
*
Because ( ) is real and
do not over
1
( ) - -
2
and lap
c c
c c
S f G f f G f f
M f M f f f
G f f G f f
m t  
 
  
 
   
  
Eeng 360 19
Example : Amplitude-Modulated Signal
Spectrum of AM signal.
Eeng 360 20
   
   
   
 
 
 
2 2
2
2 2
2 2
2
Side
2
b
2
a
2
nd
2
2
If DC value of ( ) is zero
1
2
Carrier
1
Powe
1
1
2 2
1
1 2
2
1
1 2
2
1
1
2
1
1
2
Where
1
2
Sideband Po er
r w
s c
c
c
c
c
c m c
m
m
c
P g t A m t
A m t m t
A m t m t
A m t
A A P
P
P m
t
A P
t
P
m
  
  
 
  
 
 
 
 
     
  
Example : Amplitude-Modulated Signal
Total average power:
EEE 360 21
Study Examples
SA4-1.Voltage spectrum of an AM signal
Properties of the AM signal are:
g(t)=Ac[1+m(t)]; Ac=500 V; m(t)=0.8sin(21000t); fc=1150 kHz;
    2 1000 2 1000
0.8
0.8sin 2 1000
2
j t j t
m t t e e
j
 
 
 
  
 
       
     
250 100 1000 100 1000
250 100 1000 100 1000
c c c
c c c
S f f f j f f j f f
f f j f f j f f
  
  
       
       
     
0.4 1000 0.4 1000
M f j f j f
 
    
Fourier transform of m(t):
         
1
2
c c c c c
S f A f f M f f f f M f f
 
       
 
 
Spectrum of AM signal:
Substituting the values of Ac and M(f), we have
EEE 360 22
    0 0
2 2
0 o
cos A=0.8 and 2 1000
2 2
j j
m
A A
R e e
   
    

 
   
 
         
2 2
0 0 1000 1000
4 4
m
A A
P f f f f f f f
   
       
   
   
         
       
2
2
* 1 1
1
g c
c
R g t g t A m t m t
A m t m t m t m t
  
 
      
   
   
 
    
 
SA4-2. PSD for an AM signal
Autocorrelation for a sinusoidal signal (A sin w0t )
Autocorrelation for the complex envelope of the AM signal is
Study Examples
             
2
But 1 1, 0, , 1
m g c m
m t m t m t m t R R A R
    
       
 
 
     
2 2
g c c m
P f A f A P f

 
   
2
1
g c m
R A R
 
 
 
 
Thus
   
1
( )
4
v g c g c
P f P f f P f f
 
    
 
Using
       
     
62500 10000 1000 10000 1000
62500 10000 1000 10000 1000
s c c c
c c c
P f f f f f f f
f f f f f f
  
  
       
       
PSD for an AM signal:
EEE 360 23
Study Examples
     
2
165
s s s
norm rms
P V P f df kW


  

 
 
2 5
1.65 10
3.3 kW
50
s rms
s norm
L
V
P
R

  
     
2
2 2
2 2
1 1 0.8
1 500 1 165
2 2 2
s s c m
norm rms rms
P V A V kW
 
 
 
      
 
 
   
 
 
SA4-3. Average power for an AM signal
Normalized average power
Alternate method: area under PDF for s(t)
Actual average power dissipated in the 50 ohm load:
 
 
2 5
4.05 10
8.1
50
PEP rms
PEP actual
L
P
P kW
R

  
SA4-4. PEP for an AM signal
     
2 2
2 2 2
1 1 1
max 1 max 500 1 0.8 405
2 2 2
PEP c
norm
P g t A m t kW
   
      
 
   
 
Normalized PEP:
Actual PEP for this AM voltage signal with a 50 ohm load:

More Related Content

PPT
chap4_lecture 1 Bandpass Signalling in analog communications
PPT
chap4_lecture 2 Bandpass Signals and Systems
PDF
Lecture 4-6.pdf
PDF
A Simple Communication System Design Lab #3 with MATLAB Simulink
PDF
Spacecraft RF Communications Course Sampler
PPTX
Lecture_ch6.pptx
PDF
Signal & system
PPT
chap4_lec4.ppt
chap4_lecture 1 Bandpass Signalling in analog communications
chap4_lecture 2 Bandpass Signals and Systems
Lecture 4-6.pdf
A Simple Communication System Design Lab #3 with MATLAB Simulink
Spacecraft RF Communications Course Sampler
Lecture_ch6.pptx
Signal & system
chap4_lec4.ppt

Similar to chap4_lec1.ppt Engineering and technical (20)

PDF
Lecture 5 - Superheterodyne Receivers.pdf
PDF
eecs242_lect3_rxarch.pdf
PPT
chap4_lec4 General Transmitters and Receivers.ppt
PPT
chap4_lec4.ppt
PPT
chap4_lecture3 Bandpass Circuits for implementing
PPT
Introduction to Memory Effects
PDF
Angle Modulation Notes.pdf communication system
PDF
Ch4 2 _fm modulator and demodulator15
PPT
Frequency modulation
PPT
Frequency Modulation.ppt
PPTX
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
PDF
AM - Modulator and Demodulator
PPTX
chap3.pptx
PPT
Noise in AM systems.ppt
PDF
few fundamental of frequency modulation pdf
PDF
UNIT5_1.pdf
PPTX
Alternating current and voltages
DOCX
ACS 22LIE12 lab Manul.docx
PDF
Lecture 5 - Superheterodyne Receivers.pdf
eecs242_lect3_rxarch.pdf
chap4_lec4 General Transmitters and Receivers.ppt
chap4_lec4.ppt
chap4_lecture3 Bandpass Circuits for implementing
Introduction to Memory Effects
Angle Modulation Notes.pdf communication system
Ch4 2 _fm modulator and demodulator15
Frequency modulation
Frequency Modulation.ppt
Notes 9 3317 Transmission Lines (Frequency Domain).pptx
AM - Modulator and Demodulator
chap3.pptx
Noise in AM systems.ppt
few fundamental of frequency modulation pdf
UNIT5_1.pdf
Alternating current and voltages
ACS 22LIE12 lab Manul.docx
Ad

Recently uploaded (20)

PPT
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
PPT
Project quality management in manufacturing
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
web development for engineering and engineering
PPTX
OOP with Java - Java Introduction (Basics)
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Artificial Intelligence
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Geodesy 1.pptx...............................................
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PDF
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Introduction, IoT Design Methodology, Case Study on IoT System for Weather Mo...
Project quality management in manufacturing
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
web development for engineering and engineering
OOP with Java - Java Introduction (Basics)
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Internet of Things (IOT) - A guide to understanding
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Artificial Intelligence
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
Mechanical Engineering MATERIALS Selection
Geodesy 1.pptx...............................................
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
CH1 Production IntroductoryConcepts.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Unit I ESSENTIAL OF DIGITAL MARKETING.pdf
Ad

chap4_lec1.ppt Engineering and technical

  • 1. Eeng 360 1 Chapter4 Bandpass Signalling  Definitions  Complex Envelope Representation  Representation of Modulated Signals  Spectrum of Bandpass Signals  Power of Bandpass Signals  Examples Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical and Electronic Engineering Eastern Mediterranean University
  • 2. Eeng 360 2  Energy spectrum of a bandpass signal is concentrated around the carrier frequency fc.  A time portion of a bandpass signal. Notice the carrier and the baseband envelope. Bandpass Signals Bandpass Signal Spectrum Time Waveform of Bandpass Signal
  • 3. Eeng 360 3 DEFINITIONS Definitions: The Bandpass communication signal is obtained by modulating a baseband analog or digital signal onto a carrier.  A baseband waveform has a spectral magnitude that is nonzero for frequencies in the vicinity of the origin ( f=0) and negligible elsewhere.  A bandpass waveform has a spectral magnitude that is nonzero for frequencies in some band concentrated about a frequency where fc>>0. fc-Carrier frequency  Modulation is process of imparting the source information onto a bandpass signal with a carrier frequency fc by the introduction of amplitude or phase perturbations or both.  This bandpass signal is called the modulated signal s(t), and the baseband source signal is called the modulating signal m(t). c f f   Transmission medium (channel) Carrier circuits Signal processing Carrier circuits Signal processing Information m input m ~ ) ( ~ t g ) (t r ) (t s ) (t g Communication System
  • 4. Eeng 360 4 Complex Envelope Representation  The waveforms g(t) , x(t), R(t), and are all baseband waveforms. Additionally all of them except g(t) are real and g(t) is the Complex Envelope.   t  • g(t) is the Complex Envelope of v(t) • x(t) is said to be the In-phase modulation associated with v(t) • y(t) is said to be the Quadrature modulation associated with v(t) • R(t) is said to be the Amplitude modulation (AM) on v(t) • (t) is said to be the Phase modulation (PM) on v(t) In communications, frequencies in the baseband signal g(t) are said to be heterodyned up to fc  THEOREM: Any physical bandpass waveform v(t) can be represented as below where fc is the CARRIER frequency and c=2 fc   ( ) ( ) ( ) ( ) ( ) ( ) j t j g t g t x t jy t g t e R t e                     Re cos = cos sin c j t c c c v t g t e R t t t x t t y t t             
  • 5. Eeng 360 5 Generalized transmitter using the AM–PM generation technique.
  • 6. Eeng 360 6 Generalized transmitter using the quadrature generation technique.
  • 7. Eeng 360 7 v(t) – bandpass waveform with non-zero spectrum concentrated near f=fc => cn – non-zero for ‘n’ in the range The physical waveform is real, and using , Thus we have: Complex Envelope Representation 0 0 0 ( ) 2 / n jn t n n v t c e T           0 0 1 Re 2 jn t n n v t c c e                   0 1 Re ( ) Re 2 c c c n j n t j t j t n n v t g t e c e e                       0 ( ) 1 ( ) 2 c j n t n n g t c e         0 c nf f   PROOF: Any physical waveform may be represented by the Complex Fourier Series * n n c c   cn - negligible magnitudes for n in the vicinity of 0 and, in particular, c0=0 Introducing an arbitrary parameter fc , we get => g(t) – has a spectrum concentrated near f=0 (i.e., g(t) - baseband waveform)    * 1 1 Re 2 2       THEOREM: Any physical bandpass waveform v(t) can be represented by where fc is the CARRIER frequency and c=2 fc       Re c j t v t g t e  
  • 8. Eeng 360 8  Converting from one form to the other form  Equivalent representations of the Bandpass signals: Complex Envelope Representation       cos sin Inphase and Quadrature (IQ) form c c v t x t t y t t           ( ) ( ) ( ) ( ) Complex Envelope of ( ) j g t j t g t x t jy t g t e R t e v t       Inphase and Quadrature (IQ) Components.             Re ( )cos ( ) Im ( )sin ( ) x t g t R t t y t g t R t t       Envelope and Phase Components   2 2 1 ( ) ( ) ( ) ( ) ( ) ( ) tan ( ) ( ) R t g t x t y t y t t g t x t                   Re cos Envelope and Phase form c j t c v t g t e R t t t          
  • 9. Eeng 360 9  The complex envelope resulting from x(t) being a computer generated voice signal and y(t) being a sinusoid. The spectrum of the bandpass signal generated from above signal. Complex Envelope Representation
  • 10. Eeng 360 10 Representation of Modulated Signals • The complex envelope g(t) is a function of the modulating signal m(t) and is given by: g(t)=g[m(t)] where g[• ] performs a mapping operation on m(t). • The g[m] functions that are easy to implement and that will give desirable spectral properties for different modulations are given by the TABLE 4.1 • At receiver the inverse function m[g] will be implemented to recover the message. Mapping should suppress as much noise as possible during the recovery.  Modulation is the process of encoding the source information m(t) into a bandpass signal s(t). Modulated signal is just a special application of the bandpass representation. The modulated signal is given by:     Re ( ) 2 c j t c c s t g t e f     
  • 11. Eeng 360 11 Bandpass Signal Conversion ) (t g ) (t s 1 1 1 0 0 2 Ac 2 0  Ac 2 n X X Unipolar Line Coder cos(ct) g(t) Xn c A ) (t s  On off Keying (Amplitude Modulation) of a unipolar line coded signal for bandpass conversion.
  • 12. Eeng 360 12  Binary Phase Shift keying (Phase Modulation) of a polar line code for bandpass conversion. X Polar Line Coder cos(ct) g(t) Xn c A ) (t s ) (t g ) (t s 1 1 1 0 0 2 Ac 2  2  Ac 2 n X Bandpass Signal Conversion
  • 13. Eeng 360 13 Mapping Functions for Various Modulations
  • 14. Eeng 360 14 Envelope and Phase for Various Modulations
  • 15. Eeng 360 15 Spectrum of Bandpass Signals       * 1 1 Re ( ) ( ) 2 2 c c c j t j t j t v t g t e g t e g t e                    t j t j c c e t g F e t g F t v F f V       * 2 1 2 1 ) (       f G t g F   * *       * 1 ( ) - - 2 c c V f G f f G f f        Theorem: If bandpass waveform is represented by       t g F f G    f Pg Where is PSD of g(t) Proof: Thus, Using and the frequency translation property: We get,         * 1 Spectrum of Bandpass Signal ( ) 2 1 PSD of Bandpass Signal ( ) 4 c c v g c g c V f G f f G f f P f P f f P f f                       Re ( ) c j t v t g t e  
  • 16. Eeng 360 16 PSD of Bandpass Signals                 Re Re c c j t j t v R v t v t g t e g t e                    * 2 1 2 1 2 1 1 1 Re Re Re Re 2 2 c c c c c c   2 ( ) c j t c g t e       1 c j t c g t e                         * 1 1 Re Re 2 2 c c c c j t j t j t j t v R g t g t e e g t g t e e                   ,               2 * 1 1 Re Re 2 2 c c c j j t j v R g t g t e g t g t e e                           2 * 1 1 Re Re 2 2 c c c j j t j v R g t g t e g t g t e e              PSD is obtained by first evaluating the autocorrelation for v(t): Using the identity where and - Linear operators       * g g t g t R     but       1 Re 2 c j v g R R e      AC reduces to         * * 1 ( ) 4 v v g c g c g g P f F R P f f P f f P P f                 PSD => => We get or g(t) fc in s frequencie 
  • 17. Eeng 360 17 Evaluation of Power     2 v v P v t P f df            1 2 j f v v v R F P f P f e df                  0 v v R P f df                       * 1 1 1 0 Re 0 Re 0 Since Re 2 2 2 c j v g v g R R g t g t R R e                     2 1 0 Re 2 v R g t      2 1 0 2 v R g t    g t Theorem: Total average normalized power of a bandpass waveform v(t) is Proof: But So, or But is always real So,         2 2 1 0 2 v v v P v t P f df R g t       
  • 18. Eeng 360 18 Example : Amplitude-Modulated Signal  Evaluate the magnitude spectrum for an AM signal:     1 c g t A m t       Complex envelope of an AM signal:       c c G f A f A M f    Spectrum of the complex envelope:           1 2 c c c c c S f A f f M f f f f M f f               AM spectrum:   1 1 , 0 2 2 1 1 , 0 2 2 A f f A M f f f c c c c S f A f f A M f f f c c c c                                                  Magnitude spectrum: AM signal waveform:       Re ( ) 1 cos c j t c c s t g t e A m t t                            * * * Because ( ) is real and do not over 1 ( ) - - 2 and lap c c c c S f G f f G f f M f M f f f G f f G f f m t                
  • 19. Eeng 360 19 Example : Amplitude-Modulated Signal Spectrum of AM signal.
  • 20. Eeng 360 20                   2 2 2 2 2 2 2 2 Side 2 b 2 a 2 nd 2 2 If DC value of ( ) is zero 1 2 Carrier 1 Powe 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 1 2 Where 1 2 Sideband Po er r w s c c c c c c m c m m c P g t A m t A m t m t A m t m t A m t A A P P P m t A P t P m                             Example : Amplitude-Modulated Signal Total average power:
  • 21. EEE 360 21 Study Examples SA4-1.Voltage spectrum of an AM signal Properties of the AM signal are: g(t)=Ac[1+m(t)]; Ac=500 V; m(t)=0.8sin(21000t); fc=1150 kHz;     2 1000 2 1000 0.8 0.8sin 2 1000 2 j t j t m t t e e j                          250 100 1000 100 1000 250 100 1000 100 1000 c c c c c c S f f f j f f j f f f f j f f j f f                             0.4 1000 0.4 1000 M f j f j f        Fourier transform of m(t):           1 2 c c c c c S f A f f M f f f f M f f               Spectrum of AM signal: Substituting the values of Ac and M(f), we have
  • 22. EEE 360 22     0 0 2 2 0 o cos A=0.8 and 2 1000 2 2 j j m A A R e e                             2 2 0 0 1000 1000 4 4 m A A P f f f f f f f                                       2 2 * 1 1 1 g c c R g t g t A m t m t A m t m t m t m t                              SA4-2. PSD for an AM signal Autocorrelation for a sinusoidal signal (A sin w0t ) Autocorrelation for the complex envelope of the AM signal is Study Examples               2 But 1 1, 0, , 1 m g c m m t m t m t m t R R A R                        2 2 g c c m P f A f A P f        2 1 g c m R A R         Thus     1 ( ) 4 v g c g c P f P f f P f f          Using               62500 10000 1000 10000 1000 62500 10000 1000 10000 1000 s c c c c c c P f f f f f f f f f f f f f                       PSD for an AM signal:
  • 23. EEE 360 23 Study Examples       2 165 s s s norm rms P V P f df kW           2 5 1.65 10 3.3 kW 50 s rms s norm L V P R           2 2 2 2 2 1 1 0.8 1 500 1 165 2 2 2 s s c m norm rms rms P V A V kW                          SA4-3. Average power for an AM signal Normalized average power Alternate method: area under PDF for s(t) Actual average power dissipated in the 50 ohm load:     2 5 4.05 10 8.1 50 PEP rms PEP actual L P P kW R     SA4-4. PEP for an AM signal       2 2 2 2 2 1 1 1 max 1 max 500 1 0.8 405 2 2 2 PEP c norm P g t A m t kW                    Normalized PEP: Actual PEP for this AM voltage signal with a 50 ohm load: