SlideShare a Scribd company logo
A COOPERATIVE-GAME APPROACH
TO SHARE ACCEPTABILITY
AND RANK ARGUMENTS
Stefano Bistarelli, Paolo Giuliodori,
Francesco Santini and Carlo Taticchi
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
INDEX
▸ Argumentation Theory
Argumentation Semantics
▸ Shapley Value
Definition
▸ SV-based semantics
Description + Example
▸ Conclusion
2
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
ABSTRACT ARGUMENTATION FRAMEWORKS1
3
a b c d e
1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person
games. Artificial Intelligence, 77(2):321–357.
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXTENSION-BASED SEMANTICS
4
a b c d e
ADM = {{}, {a}, {c}, {d}, {a, c}, {a, d}}
CF = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
STA = {{a,d}}
COM = {{a}, {a, c}, {a, d}}
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
LABELLING-BASED SEMANTICS2
5
a b c d e
2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
LABELLING-BASED SEMANTICS2
6
a b c d e
IN if it is attacked only by OUT arguments
OUT if it is attacked by at least an IN argument
UNDEC otherwise
2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 7
a b c d e
WHICH IS THE BEST?
LABELLING-BASED SEMANTICS2
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING-BASED SEMANTICS3
▸ Transforms an Argumentation Framework into a ranking
8
3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147.
≻a d ≻c ≻e ≻ b
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING-BASED SEMANTICS3
▸ Transforms an Argumentation Framework into a ranking
▸ Criteria: direct attacks, lengths of the incoming paths, rewards
9
3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147.
≻a d ≻c ≻e ≻ b
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING-BASED SEMANTICS3
▸ Transforms an Argumentation Framework into a ranking
▸ Criteria: direct attacks, lengths of the incoming paths, rewards
▸ Good properties
10
3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147.
≻a d ≻c ≻e ≻ b
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
CATEGORIZER4
11
Cat(x) =
1 if R−
1 (x) = 0
1
1 + ∑y∈R−
1 (x)
Cat(y)
otherwise
4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001.
a
b c
d e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
CATEGORIZER4
12
Cat(x) =
1 if R−
1 (x) = 0
1
1 + ∑y∈R−
1 (x)
Cat(y)
otherwise
4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001.
a
b c
d e
1 0.5
0.38
0.65 0.53
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
CATEGORIZER4
13
Cat(x) =
1 if R−
1 (x) = 0
1
1 + ∑y∈R−
1 (x)
Cat(y)
otherwise
4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001.
b ≻Cat
d ≻Cat
e ≻Cat
c ≻Cat
a
a
b c
d e
1 0.5
0.38
0.65 0.53
SV-BASED
SEMANTICS
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
THE SHAPLEY VALUE’S FORMULA5
▸ i is a player
▸ n is the number of players
▸ S-i is any set of agents which does not contain i
▸ s is the cardinality of S-i
▸ v is a ranking function
15
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
5Lloyd Stowell Shapley. Contributions to the Theory of Games. AM-28, Volume II - Princeton University Press, 1953.
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING FUNCTIONS
16
vI
σ,F(S) =
{
1, if S ∈ in(Lσ)
0, if otherwise
a b c d e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING FUNCTIONS
17
vI
σ,F(S) =
{
1, if S ∈ in(Lσ)
0, if otherwise
vO
σ,F(S) =
{
1, if S ∈ out(Lσ)
0, if otherwise
a b c d e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
RANKING FUNCTIONS
18
vI
σ,F(S) =
{
1, if S ∈ in(Lσ)
0, if otherwise
vO
σ,F(S) =
{
1, if S ∈ out(Lσ)
0, if otherwise
Depends on the semantics σ
a b c d e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
SV-BASED SEMANTICS
19
∀a, b ∈ A, a ≻ b iff
∙ ϕa(vI
σ,F) > ϕb(vI
σ,F), or
∙ ϕa(vI
σ,F) = ϕb(vI
σ,F) and ϕa(vO
σ,F) < ϕb(vO
σ,F)
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
SV-BASED SEMANTICS
20
∀a, b ∈ A, a ≻ b iff
∙ ϕa(vI
σ,F) > ϕb(vI
σ,F), or
∙ ϕa(vI
σ,F) = ϕb(vI
σ,F) and ϕa(vO
σ,F) < ϕb(vO
σ,F)
∀a, b ∈ A, a ≃ b iff
∙ ϕa(vI
σ,F) = ϕb(vI
σ,F) and ϕa(vO
σ,F) = ϕb(vO
σ,F)
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXAMPLE
21
in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
a
b
c
d
e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXAMPLE
22
in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
ϕa(v) =
0! ⋅ 4!
5!
⋅ (v({a}) − v({})) +
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
a
b
c
d
e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXAMPLE
23
in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
ϕa(v) =
0! ⋅ 4!
5!
⋅ (v({a}) − v({})) +
+
1! ⋅ 3!
5!
⋅ (v({a, b}) − v({b})) + … +
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
a
b
c
d
e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXAMPLE
24
in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
ϕa(v) =
0! ⋅ 4!
5!
⋅ (v({a}) − v({})) +
+
1! ⋅ 3!
5!
⋅ (v({a, b}) − v({b})) + … +
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
a
b
c
d
e
+
2! ⋅ 2!
5!
⋅ (v({a, b, d}) − v({b, d})) =
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
EXAMPLE
25
in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}}
ϕa(v) =
0! ⋅ 4!
5!
⋅ (v({a}) − v({})) +
+
1! ⋅ 3!
5!
⋅ (v({a, b}) − v({b})) + … +
ϕi(v) =
∑
S−i ⊆ G ∖ {i}
s!(n − 1 − s)!
n!
(v(S−i ∪ {i}) − v(S−i))
a
b
c
d
e
+
2! ⋅ 2!
5!
⋅ (v({a, b, d}) − v({b, d})) =
= 0 − 0.05 − 0.033 = − 0.084
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 26
EXAMPLE - RESULTS a b c d e
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
▸ Abstraction
▸ Independence
▸ Non-attacked Equivalence
▸ Argument Equivalence
SV-BASED SEMANTICS - PROPERTIES6
27
▸ Total order
▸ Self-contradiction (only for
the conflict-free semantics)
6Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, Nicolas Maudet. A Comparative Study of Ranking-Based Semantics for Abstract
Argumentation. AAAI 2016: 914-920.
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
CONCLUSION
28
▸ Ranking-based semantics
• Uses the Shapley Value
• Is parametric to σ
• Satisfies good properties
A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018
CONCLUSION
29
▸ Ranking-based semantics
• Uses the Shapley Value
• Is parametric to σ
• Satisfies good properties
▸ Next
• Refine the ranking function
• Check all the properties
• Compare with existing semantics
A COOPERATIVE-GAME APPROACH
TO SHARE ACCEPTABILITY
AND RANK ARGUMENTS
Thanks for your attention!

More Related Content

PDF
A Labelling Semantics for Weighted Argumentation Frameworks
PDF
Implementing Ranking-Based Semantics in ConArg
PDF
Acceptability Paradigms in Abstract Argumentation Frameworks
PDF
A Tool For Ranking Arguments Through Voting-Games Power Indexes
PDF
Handling Dynamic Aspects of Argumentation
PDF
A Concurrent Argumentation Language for Negotiation and Debating
PDF
Preliminary Study on Reinstatement Labelling for Weighted Argumentation Frame...
PDF
A Matrix Based Approach for Weighted Argumentation Frameworks
A Labelling Semantics for Weighted Argumentation Frameworks
Implementing Ranking-Based Semantics in ConArg
Acceptability Paradigms in Abstract Argumentation Frameworks
A Tool For Ranking Arguments Through Voting-Games Power Indexes
Handling Dynamic Aspects of Argumentation
A Concurrent Argumentation Language for Negotiation and Debating
Preliminary Study on Reinstatement Labelling for Weighted Argumentation Frame...
A Matrix Based Approach for Weighted Argumentation Frameworks

What's hot (20)

PDF
A Unifying Four-State Labelling Semantics for Bridging Abstract Argumentation...
PDF
Looking for Invariant Operators in Argumentation
PDF
Extending Labelling Semantics to Weighted Argumentation Frameworks
PDF
Ranking-Based Semantics from the Perspective of Claims
PDF
Introducing a Tool for Concurrent Argumentation
PDF
A Concurrent Language for Argumentation: Preliminary Notes
PDF
A Concurrent Language for Argumentation
PDF
Concurrent Argumentation with Time: an Overview
PDF
Timed Concurrent Language for Argumentation
PDF
Looking for Invariant Operators in Argumentation
PDF
Timed Concurrent Language for Argumentation: an Interleaving Approach
PDF
COnflict Free Feedback Vertex Set: A Parameterized Dichotomy
PPT
4 informed-search
PDF
Split Contraction: The Untold Story
PDF
DL-Foil:Class Expression Learning Revisited
PDF
Symbolic Solving of Extended Regular Expression Inequalities
PDF
Fine Grained Complexity
PDF
Complex Arguments in Adpositional Argumentation
PDF
Graph Modification: Beyond the known Boundaries
PDF
Polynomial Kernel for Interval Vertex Deletion
A Unifying Four-State Labelling Semantics for Bridging Abstract Argumentation...
Looking for Invariant Operators in Argumentation
Extending Labelling Semantics to Weighted Argumentation Frameworks
Ranking-Based Semantics from the Perspective of Claims
Introducing a Tool for Concurrent Argumentation
A Concurrent Language for Argumentation: Preliminary Notes
A Concurrent Language for Argumentation
Concurrent Argumentation with Time: an Overview
Timed Concurrent Language for Argumentation
Looking for Invariant Operators in Argumentation
Timed Concurrent Language for Argumentation: an Interleaving Approach
COnflict Free Feedback Vertex Set: A Parameterized Dichotomy
4 informed-search
Split Contraction: The Untold Story
DL-Foil:Class Expression Learning Revisited
Symbolic Solving of Extended Regular Expression Inequalities
Fine Grained Complexity
Complex Arguments in Adpositional Argumentation
Graph Modification: Beyond the known Boundaries
Polynomial Kernel for Interval Vertex Deletion
Ad

More from Carlo Taticchi (11)

PDF
Empowering Public Interest Communication with Argumentation - Project Overview
PDF
Modelling Dialogues in a Concurrent Language for Argumentation
PDF
Preserving Privacy in a (Timed) Concurrent Language for Argumentation
PDF
A Semantics-Aware Evaluation Order for Abstract Argumentation Frameworks
PDF
On the Role of Local Arguments in the (Timed) Concurrent Language for Argumen...
PDF
Session3_ 52_Taticchi.pdf
PDF
Arg-XAI: a Tool for Explaining Machine Learning Results
PDF
A Four-State Labelling Semantics for Weighted Argumentation Frameworks
PDF
A Chatbot Extended with Argumentation
PDF
Third International Competition on Computational Models of Argumentation
PDF
Containerisation and Dynamic Frameworks in ICCMA’19
Empowering Public Interest Communication with Argumentation - Project Overview
Modelling Dialogues in a Concurrent Language for Argumentation
Preserving Privacy in a (Timed) Concurrent Language for Argumentation
A Semantics-Aware Evaluation Order for Abstract Argumentation Frameworks
On the Role of Local Arguments in the (Timed) Concurrent Language for Argumen...
Session3_ 52_Taticchi.pdf
Arg-XAI: a Tool for Explaining Machine Learning Results
A Four-State Labelling Semantics for Weighted Argumentation Frameworks
A Chatbot Extended with Argumentation
Third International Competition on Computational Models of Argumentation
Containerisation and Dynamic Frameworks in ICCMA’19
Ad

Recently uploaded (20)

PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PPTX
2. Earth - The Living Planet earth and life
PDF
An interstellar mission to test astrophysical black holes
PPTX
Microbiology with diagram medical studies .pptx
PPTX
BIOMOLECULES PPT........................
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PDF
Sciences of Europe No 170 (2025)
PDF
Biophysics 2.pdffffffffffffffffffffffffff
PDF
The scientific heritage No 166 (166) (2025)
PDF
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
famous lake in india and its disturibution and importance
PPTX
The KM-GBF monitoring framework – status & key messages.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PDF
HPLC-PPT.docx high performance liquid chromatography
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
2Systematics of Living Organisms t-.pptx
Introduction to Cardiovascular system_structure and functions-1
2. Earth - The Living Planet earth and life
An interstellar mission to test astrophysical black holes
Microbiology with diagram medical studies .pptx
BIOMOLECULES PPT........................
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
POSITIONING IN OPERATION THEATRE ROOM.ppt
Sciences of Europe No 170 (2025)
Biophysics 2.pdffffffffffffffffffffffffff
The scientific heritage No 166 (166) (2025)
VARICELLA VACCINATION: A POTENTIAL STRATEGY FOR PREVENTING MULTIPLE SCLEROSIS
Introduction to Fisheries Biotechnology_Lesson 1.pptx
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
AlphaEarth Foundations and the Satellite Embedding dataset
famous lake in india and its disturibution and importance
The KM-GBF monitoring framework – status & key messages.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
HPLC-PPT.docx high performance liquid chromatography
bbec55_b34400a7914c42429908233dbd381773.pdf

A Cooperative-game Approach to Share Acceptability and Rank Arguments

  • 1. A COOPERATIVE-GAME APPROACH TO SHARE ACCEPTABILITY AND RANK ARGUMENTS Stefano Bistarelli, Paolo Giuliodori, Francesco Santini and Carlo Taticchi
  • 2. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 INDEX ▸ Argumentation Theory Argumentation Semantics ▸ Shapley Value Definition ▸ SV-based semantics Description + Example ▸ Conclusion 2
  • 3. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 ABSTRACT ARGUMENTATION FRAMEWORKS1 3 a b c d e 1Phan Minh Dung. On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2):321–357.
  • 4. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXTENSION-BASED SEMANTICS 4 a b c d e ADM = {{}, {a}, {c}, {d}, {a, c}, {a, d}} CF = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} STA = {{a,d}} COM = {{a}, {a, c}, {a, d}}
  • 5. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 LABELLING-BASED SEMANTICS2 5 a b c d e 2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
  • 6. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 LABELLING-BASED SEMANTICS2 6 a b c d e IN if it is attacked only by OUT arguments OUT if it is attacked by at least an IN argument UNDEC otherwise 2Martin Caminada. On the Issue of Reinstatement in Argumentation. JELIA 2006: 111-123.
  • 7. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 7 a b c d e WHICH IS THE BEST? LABELLING-BASED SEMANTICS2
  • 8. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING-BASED SEMANTICS3 ▸ Transforms an Argumentation Framework into a ranking 8 3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147. ≻a d ≻c ≻e ≻ b
  • 9. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING-BASED SEMANTICS3 ▸ Transforms an Argumentation Framework into a ranking ▸ Criteria: direct attacks, lengths of the incoming paths, rewards 9 3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147. ≻a d ≻c ≻e ≻ b
  • 10. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING-BASED SEMANTICS3 ▸ Transforms an Argumentation Framework into a ranking ▸ Criteria: direct attacks, lengths of the incoming paths, rewards ▸ Good properties 10 3Leila Amgoud, Jonathan Ben-Naim. Ranking-Based Semantics for Argumentation Frameworks. SUM 2013: 134-147. ≻a d ≻c ≻e ≻ b
  • 11. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 CATEGORIZER4 11 Cat(x) = 1 if R− 1 (x) = 0 1 1 + ∑y∈R− 1 (x) Cat(y) otherwise 4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001. a b c d e
  • 12. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 CATEGORIZER4 12 Cat(x) = 1 if R− 1 (x) = 0 1 1 + ∑y∈R− 1 (x) Cat(y) otherwise 4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001. a b c d e 1 0.5 0.38 0.65 0.53
  • 13. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 CATEGORIZER4 13 Cat(x) = 1 if R− 1 (x) = 0 1 1 + ∑y∈R− 1 (x) Cat(y) otherwise 4P. Besnard and A. Hunter. A logic-based theory of deductive arguments. Artificial Intelligence 128(1-2):203–235. 2001. b ≻Cat d ≻Cat e ≻Cat c ≻Cat a a b c d e 1 0.5 0.38 0.65 0.53
  • 15. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 THE SHAPLEY VALUE’S FORMULA5 ▸ i is a player ▸ n is the number of players ▸ S-i is any set of agents which does not contain i ▸ s is the cardinality of S-i ▸ v is a ranking function 15 ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) 5Lloyd Stowell Shapley. Contributions to the Theory of Games. AM-28, Volume II - Princeton University Press, 1953.
  • 16. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING FUNCTIONS 16 vI σ,F(S) = { 1, if S ∈ in(Lσ) 0, if otherwise a b c d e
  • 17. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING FUNCTIONS 17 vI σ,F(S) = { 1, if S ∈ in(Lσ) 0, if otherwise vO σ,F(S) = { 1, if S ∈ out(Lσ) 0, if otherwise a b c d e
  • 18. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 RANKING FUNCTIONS 18 vI σ,F(S) = { 1, if S ∈ in(Lσ) 0, if otherwise vO σ,F(S) = { 1, if S ∈ out(Lσ) 0, if otherwise Depends on the semantics σ a b c d e
  • 19. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 SV-BASED SEMANTICS 19 ∀a, b ∈ A, a ≻ b iff ∙ ϕa(vI σ,F) > ϕb(vI σ,F), or ∙ ϕa(vI σ,F) = ϕb(vI σ,F) and ϕa(vO σ,F) < ϕb(vO σ,F)
  • 20. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 SV-BASED SEMANTICS 20 ∀a, b ∈ A, a ≻ b iff ∙ ϕa(vI σ,F) > ϕb(vI σ,F), or ∙ ϕa(vI σ,F) = ϕb(vI σ,F) and ϕa(vO σ,F) < ϕb(vO σ,F) ∀a, b ∈ A, a ≃ b iff ∙ ϕa(vI σ,F) = ϕb(vI σ,F) and ϕa(vO σ,F) = ϕb(vO σ,F)
  • 21. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXAMPLE 21 in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) a b c d e
  • 22. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXAMPLE 22 in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} ϕa(v) = 0! ⋅ 4! 5! ⋅ (v({a}) − v({})) + ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) a b c d e
  • 23. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXAMPLE 23 in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} ϕa(v) = 0! ⋅ 4! 5! ⋅ (v({a}) − v({})) + + 1! ⋅ 3! 5! ⋅ (v({a, b}) − v({b})) + … + ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) a b c d e
  • 24. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXAMPLE 24 in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} ϕa(v) = 0! ⋅ 4! 5! ⋅ (v({a}) − v({})) + + 1! ⋅ 3! 5! ⋅ (v({a, b}) − v({b})) + … + ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) a b c d e + 2! ⋅ 2! 5! ⋅ (v({a, b, d}) − v({b, d})) =
  • 25. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 EXAMPLE 25 in(LCF) = {{}, {a}, {b}, {c}, {d}, {a, c}, {a, d}, {b, d}} ϕa(v) = 0! ⋅ 4! 5! ⋅ (v({a}) − v({})) + + 1! ⋅ 3! 5! ⋅ (v({a, b}) − v({b})) + … + ϕi(v) = ∑ S−i ⊆ G ∖ {i} s!(n − 1 − s)! n! (v(S−i ∪ {i}) − v(S−i)) a b c d e + 2! ⋅ 2! 5! ⋅ (v({a, b, d}) − v({b, d})) = = 0 − 0.05 − 0.033 = − 0.084
  • 26. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 26 EXAMPLE - RESULTS a b c d e
  • 27. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 ▸ Abstraction ▸ Independence ▸ Non-attacked Equivalence ▸ Argument Equivalence SV-BASED SEMANTICS - PROPERTIES6 27 ▸ Total order ▸ Self-contradiction (only for the conflict-free semantics) 6Elise Bonzon, Jérôme Delobelle, Sébastien Konieczny, Nicolas Maudet. A Comparative Study of Ranking-Based Semantics for Abstract Argumentation. AAAI 2016: 914-920.
  • 28. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 CONCLUSION 28 ▸ Ranking-based semantics • Uses the Shapley Value • Is parametric to σ • Satisfies good properties
  • 29. A Cooperative-game Approach to Share Acceptability and Rank ArgumentsCarlo Taticchi — November 21, 2018 CONCLUSION 29 ▸ Ranking-based semantics • Uses the Shapley Value • Is parametric to σ • Satisfies good properties ▸ Next • Refine the ranking function • Check all the properties • Compare with existing semantics
  • 30. A COOPERATIVE-GAME APPROACH TO SHARE ACCEPTABILITY AND RANK ARGUMENTS Thanks for your attention!