SlideShare a Scribd company logo
@cataldomusto @pasqualelops
@semeraro_g @SWAP_research
A Multi-criteria Recommender System
Exploiting Aspect-based Sentiment
Analysis of Users’ Reviews
CATALDO MUSTO, MARCO DE GEMMIS, GIOVANNI SEMERARO, PASQUALE LOPS
UNIVERSITÀ DEGLI STUDI DI BARI ‘ALDO MORO’ - ITALY
RecSys 2017 - 11th ACM Conference on
Recommender Systems
Como, Italy
August 30, 2017
cataldo.musto@uniba.it
Multi-Criteria RecSys
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Not a new concept (*)
Each user evaluates
each aspect of
the item
(*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender
systems." Recommender Systems Handbook. Springer US, 2015. 847-880.
Multi-Criteria RecSys
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Not a new concept (*)
Each user evaluates
each aspect of
the item
(*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender
systems." Recommender Systems Handbook. Springer US, 2015. 847-880.
Problem:
Overwhelming!
Multi-Criteria RecSys
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Not a new concept (*)
Each user evaluates
each aspect of
the item
(*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender
systems." Recommender Systems Handbook. Springer US, 2015. 847-880.
Problem: Aspects
are not fixed!
Multi-Criteria RecSys
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Not a new concept (*)
Each user evaluates
each aspect of
the item
(*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender
systems." Recommender Systems Handbook. Springer US, 2015. 847-880.
Problem: Aspects can
be further modeled as a
hierarchy
Research Question
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
How to develop a
multi-criteria data model
without overwhelming
the user ?
Research Question
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
What is the performance of
such a data model in a
collaborative
recommendation scenario?
Our contribution
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
A multi-criteria collaborative
recommendation methodology exploiting
aspect-based sentiment analysis of users’ reviews
Methodology
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Input: textual reviews
Step 1: aspect extraction and sentiment analysis
Step 2: creating multi-criteria data model
Output: recommendations
Methodology
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Input: textual reviews
Step 1: aspect extraction and sentiment analysis
Step 2: creating multi-criteria data model
Output: recommendations
Methodology
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Input: textual reviews
Step 1: aspect extraction and sentiment analysis
Step 2: creating and filling our multi-criteria data model
Output: recommendations
Methodology
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Input: textual reviews
Step 1: aspect extraction and sentiment analysis
Step 2: creating and filling our multi-criteria data model
Output: recommendations
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Algorithm based on SABRE(*)
(Sentiment Aspect-based Retrieval Engine)
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews
Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) >
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Algorithm based on SABRE(*)
(Sentiment Aspect-based Retrieval Engine)
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews
Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) >
𝑟𝑖 =
𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘=
𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) =
i-th review
j-th aspect and k-th sub-aspect in the i-th review
relevance and sentiment
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Algorithm based on SABRE(*)
(Sentiment Aspect-based Retrieval Engine)
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews
Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) >
𝑟𝑖 =
𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘=
𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) =
i-th review
j-th aspect and k-th sub-aspect in the i-th review
relevance and sentiment
How do we extract aspects, relevance and sentiment?
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Statistical approach based on the Kullback-Leibler (KL) Divergence
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Statistical approach based on the Kullback-Leibler (KL) Divergence
Measures the difference between the distribution of a term
in a generic corpus (e.g. BNC) and its distribution in a domain corpus
(e.g. hotel reviews)
Insight: the higher the divergence, the higher the
importance of the term in the domain
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Statistical approach based on the Kullback-Leibler (KL) Divergence
Measures the difference between the distribution of a term
in a generic corpus (e.g. BNC) and its distribution in a domain corpus
(e.g. hotel reviews)
Insight: the higher the divergence, the higher the
importance of the term in the domain
KL(room, BNC, hotel-reviews) >> 0
KL(food, BNC, hotel-reviews) > 0
KL(place, BNC, hotel-reviews) ~ 0
KL(politics, BNC, hotel-reviews) ~ 0
We label as ‘aspects’ the
nouns whose
KL-divergence is higher
than zero
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Statistical approach based on the Kullback-Leibler (KL) Divergence
Measures the difference between the distribution of a term
in a generic corpus (e.g. BNC) and its distribution in a domain corpus
(e.g. hotel reviews)
Insight: the higher the divergence, the higher the
importance of the term in the domain
KL(room, BNC, hotel-reviews) >> 0 YES
KL(food, BNC, hotel-reviews) > 0 YES
KL(place, BNC, hotel-reviews) ~ 0 NO
KL(politics, BNC, hotel-reviews) ~ 0 NO
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Statistical approach based on the Kullback-Leibler (KL) Divergence
Measures the difference between the distribution of a term
in a generic corpus (e.g. BNC) and its distribution in a domain corpus
(e.g. hotel reviews)
Insight: the higher the divergence, the higher the
importance of the term in the domain
KL(room, BNC, hotel-reviews) >> 0 YES
KL(food, BNC, hotel-reviews) > 0 YES
KL(place, BNC, hotel-reviews) ~ 0 NO
KL(politics, BNC, hotel-reviews) ~ 0 NO
Distinguishing aspect:
the set is not fixed!
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Sub-aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Another distinguishing aspect: we can extract a hierarchy of terms
Based on Phraseness and Informativeness: They measure the gain
in information if two terms are modeled together
Insight: if phraseness and informativeness are high,
the terms have an high cohesion
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Sub-aspect Extraction
(*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A
Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78).
Another distinguishing aspect: we can extract a hierarchy of terms
Based on Phraseness and Informativeness: They measure the gain
in information if two terms are modeled together
Insight: if phraseness and informativeness are high,
the terms have an high cohesion
SUB(room, food, hotel-reviews) ~ 0 NO
SUB(room, shower, hotel-reviews) > 0 YES
SUB(food, wine, hotel-reviews) > 0 YES
SUB(food, service, hotel-reviews) ~ 0 NO
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Sabre@Work
(*) Real review of the hotel
we actually stay in Como :)
(*)
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
< 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 >
Sabre@Work
(*) Real review of the hotel
we actually stay in Como :)
(*)
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
< 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 >
No sub-aspects Relevance=KL-divergence score
Sentiment = lexicon-based approach based on AFINN
wordlist (*) or machine-learning based approach based on
CoreNLP (^)
(*) http://neuro.imm.dtu.dk/wiki/AFINN
(^) https://nlp.stanford.edu/sentiment/code.html
Sabre@Work
(*) Real review of the hotel
we actually stay in Como :)
(*)
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
< 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 >
< 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 >
Sabre@Work
(*) Real review of the hotel
we actually stay in Como :)
(*)
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
< 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 >
< 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 >
< 𝑟, 𝑟𝑜𝑜𝑚,∗, 1.3, 0.2 >
Sabre@Work
(*) Real review of the hotel
we actually stay in Como :)
(*)
Aspect Extraction and Sentiment Analysis
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
< 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 >
< 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 >
< 𝑟, 𝑟𝑜𝑜𝑚,∗, 1.3, 0.2 >
Sabre@Work
… … . 𝑒𝑡𝑐.
(*) Real review of the hotel
we actually stay in Como :)
(*)
Multi-Criteria Data Model
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
A multi-criteria
data model is
automatically
filled by
exploiting the
aspects
extracted from
the review and
their sentiment
Finer-Grained
Representation!
Providing Recommendations
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Similarity is
calculated through
multi-criteria
Euclidean distance
Recommendations
are provided by
exploiting both
User-to-User and
Item-to-Item
Collaborative
Filtering
Recommendation
Framework Recap
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Experiments
Which combination of the
parameters led to the best
predictive accuracy?
How does our framework perform
when compared to single-criteria
recommendations and matrix
factorization tecniques?
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Datasets
Yelp
45,981 users
11,537 items
229,606 ratings(*)
99.95% sparsity
TripAdvisor
536,952 users
3,945 items
796,958 ratings(*)
99.96% sparsity
Amazon
826,773 users
50,210 items
1,324,759 ratings(*)
99.99% sparsity
(*) Ratings = ratings + reviews
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Datasets
Yelp
45,981 users
11,537 items
229,606 ratings(*)
99.95% sparsity
TripAdvisor
536,952 users
3,945 items
796,958 ratings(*)
99.96% sparsity
Amazon
826,773 users
50,210 items
1,324,759 ratings(*)
99.99% sparsity
(*) Ratings = ratings + reviews
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Experimental Settings
Review Processing
◦ Stop-Word removed
◦ Entity and Collocations recognized
SABRE parameters
◦ With/without subaspects
◦ #aspects/#subaspects = 10, 50
◦ KL-divergence threshold = 0.1
◦ Only nouns!
Recommendations
◦ Multi-Criteria U2U and I2I
Metric
◦ MAE (calculated with Rival framework)
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Baselines
Single-Criteria Recommendations
techniques
◦ User-to-User Collaborative Filtering
◦ Item-to-Item Collaborative Filtering
Static Multi-Criteria Recommendations
◦ Only on TripAdvisor data
Matrix Factorization techniques
◦ SGD (Stochastic Gradient Descent)
◦ ParallelSGD
◦ ALSWR
◦ Implementations available in Mahout
◦ Tuning of parameters
Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro.
A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. UMAP 2017. Bratislava, Slovakia. July 12, 2017
Top-10 aspects
Place
Food
Service
Restaurant
Price
Menu
Staff
Drink
Lunch
Table
Hotel
Room
Staff
Location
Service
Breakfast
Restaurant
Bathroom
Price
View
Game
Graphic
Story
Character
Player
Price
Gameplay
Controller
Level
Music
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
0,7111
0,7564
0,7269
0,8007
0,65
0,67
0,69
0,71
0,73
0,75
0,77
0,79
0,81
0,83
TripAdvisor
10 neigh. / 10 aspects / sub-aspects 10 neigh. / 10 aspects / no sub-aspects
10 neigh. / 50 aspects / sub-aspects 10 neigh. / 50 aspects / no sub-aspects
Outcomes
Best-results obtained
with 10 aspects
Best-results obtained
by also introducing
sub-aspects
(Amazon had a
different behavior)
Lower MAE!
Results – Multi-Criteria User-to-User CF
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
0,7111
0,798
0,8245
0,8429
0,6
0,65
0,7
0,75
0,8
0,85
TripAdvisor
Multi-U2U Static-Multi-U2U Multi-I2I Static-Multi-I2I
Outcomes
TripAdvisors data
included ratings
about six static
aspects (cleanliness,
location, value,
service, sleep quality,
overall)
Our approach based
on unsupervised
aspect extraction also
improved these
results
Results – vs. Static Multi-Criteria RecSys
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
0,7111
0,8337
0,745 0,7449
0,9053
0,65
0,7
0,75
0,8
0,85
0,9
0,95
1
TripAdvisor
Multi-U2U Single-U2U Ratings-SGD Parallel-SGD ALSWR
Outcomes
Our approach
overcomes all the
baselines.
Our framework wins
the comparisons to
Single-U2U and
Single-I2I
Also matrix
factorization
techniques got an
higher MAE
Results – Baselines
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Recap
Results
☺ Our framework significantly improves all the baselines
☺ Unsupervised Aspect Extraction also overcomes static aspects
Future Work: evaluate data model with more sophisticated algorithms
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
Thanks!
cataldo.musto@uniba.it
@cataldomusto, @semeraro_g
@pasqualelops, @SWAP_research
Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops
A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017

More Related Content

PDF
Introduction to Genetic Algorithms and Evolutionary Computation
PDF
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
PPTX
Recommender Systems
PDF
Deep Learning for Recommender Systems RecSys2017 Tutorial
PDF
Calibrated Recommendations
PPTX
Recommender systems: Content-based and collaborative filtering
PDF
Classification Based Machine Learning Algorithms
PPTX
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...
Introduction to Genetic Algorithms and Evolutionary Computation
Tutorial on Deep Learning in Recommender System, Lars summer school 2019
Recommender Systems
Deep Learning for Recommender Systems RecSys2017 Tutorial
Calibrated Recommendations
Recommender systems: Content-based and collaborative filtering
Classification Based Machine Learning Algorithms
Recurrent Neural Network (RNN) | RNN LSTM Tutorial | Deep Learning Course | S...

What's hot (20)

PDF
Performance Evaluation for Classifiers tutorial
PDF
Personalizing the listening experience
PPTX
Depth estimation using deep learning
PDF
Introduction to Generative Adversarial Networks (GANs)
PDF
Recent Trends in Personalization at Netflix
PPTX
Collaborative Filtering Recommendation System
PDF
Sentiment Analysis
PPTX
Linear models and multiclass classification
PPTX
Data Analysis: Evaluation Metrics for Supervised Learning Models of Machine L...
PDF
Bayes Belief Networks
PDF
Multi-armed Bandits
PPT
Amazon Item-to-Item Recommendations
PDF
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
PDF
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
PDF
Boston ML - Architecting Recommender Systems
PDF
XGBoost & LightGBM
PDF
Deep Learning for Recommender Systems
PDF
Graph Neural Networks for Recommendations
PDF
Time, Context and Causality in Recommender Systems
PDF
Sequential Decision Making in Recommendations
Performance Evaluation for Classifiers tutorial
Personalizing the listening experience
Depth estimation using deep learning
Introduction to Generative Adversarial Networks (GANs)
Recent Trends in Personalization at Netflix
Collaborative Filtering Recommendation System
Sentiment Analysis
Linear models and multiclass classification
Data Analysis: Evaluation Metrics for Supervised Learning Models of Machine L...
Bayes Belief Networks
Multi-armed Bandits
Amazon Item-to-Item Recommendations
Hands on Explainable Recommender Systems with Knowledge Graphs @ RecSys22
Visualization of Deep Learning Models (D1L6 2017 UPC Deep Learning for Comput...
Boston ML - Architecting Recommender Systems
XGBoost & LightGBM
Deep Learning for Recommender Systems
Graph Neural Networks for Recommendations
Time, Context and Causality in Recommender Systems
Sequential Decision Making in Recommendations
Ad

Similar to A Multi-Criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users' Reviews (20)

PPTX
IIR 2017, Lugano Switzerland
PDF
[MMIR@MM2023] On Popularity Bias of Multimodal-aware Recommender Systems: A M...
PDF
Correlation of feature score to to overall sentiment score for identifying th...
PDF
The sarcasm detection with the method of logistic regression
PDF
Affect- and Personality-based Recommender Systems Part I: Motivation, Models
PDF
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
PDF
QuESo: a Quality Model for Open Source Software Ecosystems
PDF
D018212428
PDF
Analysis, design and implementation of a Multi-Criteria Recommender System ba...
PDF
IRJET- Review on Different Recommendation Techniques for GRS in Online Social...
PDF
A Review on Sentimental Analysis of Application Reviews
PDF
Ijmer 46067276
PDF
Ijmer 46067276
DOCX
httpowl.english.purdue.eduowlresource54401 The Pur
PDF
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
PDF
Streaming Analytics
PDF
Music Recommendation System with User-based and Item-based Collaborative Filt...
PDF
A Novel Latent Factor Model For Recommender System
PDF
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
PDF
Modeling For Sustainability: Or How to Make Smart CPS Smarter?
IIR 2017, Lugano Switzerland
[MMIR@MM2023] On Popularity Bias of Multimodal-aware Recommender Systems: A M...
Correlation of feature score to to overall sentiment score for identifying th...
The sarcasm detection with the method of logistic regression
Affect- and Personality-based Recommender Systems Part I: Motivation, Models
Semantics-aware Recommender Systems Exploiting Linked Open Data and Graph-bas...
QuESo: a Quality Model for Open Source Software Ecosystems
D018212428
Analysis, design and implementation of a Multi-Criteria Recommender System ba...
IRJET- Review on Different Recommendation Techniques for GRS in Online Social...
A Review on Sentimental Analysis of Application Reviews
Ijmer 46067276
Ijmer 46067276
httpowl.english.purdue.eduowlresource54401 The Pur
A REVIEW PAPER ON BFO AND PSO BASED MOVIE RECOMMENDATION SYSTEM | J4RV4I1015
Streaming Analytics
Music Recommendation System with User-based and Item-based Collaborative Filt...
A Novel Latent Factor Model For Recommender System
A Framework for Holistic User Modeling Merging Heterogeneous Digital Footprints
Modeling For Sustainability: Or How to Make Smart CPS Smarter?
Ad

More from Cataldo Musto (20)

PDF
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
PDF
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
PDF
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
PDF
Exploring the Effects of Natural Language Justifications in Food Recommender ...
PDF
Exploiting Distributional Semantics Models for Natural Language Context-aware...
PDF
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
PDF
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
PDF
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
PDF
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
PDF
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
PDF
Explanation Strategies - Advances in Content-based Recommender System
PDF
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
PDF
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
PDF
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
PDF
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
PDF
Holistic User Modeling for Personalized Services in Smart Cities
PDF
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
PDF
Il Linguaggio dell'Odio sui Social Network
PDF
Mappare l'Odio - Hate Speech & Social Media
PDF
Recommender Systems based on Linked Open Data
MyrrorBot: a Digital Assistant Based on Holistic User Models for Personalize...
Fairness and Popularity Bias in Recommender Systems: an Empirical Evaluation
Intelligenza Artificiale e Social Media - Monitoraggio della Farnesina e La M...
Exploring the Effects of Natural Language Justifications in Food Recommender ...
Exploiting Distributional Semantics Models for Natural Language Context-aware...
Towards a Knowledge-aware Food Recommender System Exploiting Holistic User Mo...
Towards Queryable User Profiles: Introducing Conversational Agents in a Platf...
Hybrid Semantics aware Recommendations Exploiting Knowledge Graph Embeddings
Natural Language Justifications for Recommender Systems Exploiting Text Summa...
L'IA per l'Empowerment del Cittadino: Hate Map, Myrror, PA Risponde
Explanation Strategies - Advances in Content-based Recommender System
Justifying Recommendations through Aspect-based Sentiment Analysis of Users R...
ExpLOD: un framework per la generazione di spiegazioni per recommender system...
Myrror: una piattaforma per Holistic User Modeling e Quantified Self
Semantic Holistic User Modeling for Personalized Access to Digital Content an...
Holistic User Modeling for Personalized Services in Smart Cities
eHealth, mHealth in Otorinolaringoiatria: innovazioni dirompenti o disastrose?
Il Linguaggio dell'Odio sui Social Network
Mappare l'Odio - Hate Speech & Social Media
Recommender Systems based on Linked Open Data

Recently uploaded (20)

PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PPTX
Institutional Correction lecture only . . .
PDF
O5-L3 Freight Transport Ops (International) V1.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
Computing-Curriculum for Schools in Ghana
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
master seminar digital applications in india
PPTX
Cell Types and Its function , kingdom of life
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
PPTX
Renaissance Architecture: A Journey from Faith to Humanism
PPTX
GDM (1) (1).pptx small presentation for students
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
Pre independence Education in Inndia.pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
Insiders guide to clinical Medicine.pdf
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Institutional Correction lecture only . . .
O5-L3 Freight Transport Ops (International) V1.pdf
RMMM.pdf make it easy to upload and study
TR - Agricultural Crops Production NC III.pdf
PPH.pptx obstetrics and gynecology in nursing
Computing-Curriculum for Schools in Ghana
Module 4: Burden of Disease Tutorial Slides S2 2025
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
master seminar digital applications in india
Cell Types and Its function , kingdom of life
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
Chapter 2 Heredity, Prenatal Development, and Birth.pdf
Renaissance Architecture: A Journey from Faith to Humanism
GDM (1) (1).pptx small presentation for students
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Complications of Minimal Access Surgery at WLH
Pre independence Education in Inndia.pdf
Final Presentation General Medicine 03-08-2024.pptx
Insiders guide to clinical Medicine.pdf

A Multi-Criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users' Reviews

  • 1. @cataldomusto @pasqualelops @semeraro_g @SWAP_research A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews CATALDO MUSTO, MARCO DE GEMMIS, GIOVANNI SEMERARO, PASQUALE LOPS UNIVERSITÀ DEGLI STUDI DI BARI ‘ALDO MORO’ - ITALY RecSys 2017 - 11th ACM Conference on Recommender Systems Como, Italy August 30, 2017 cataldo.musto@uniba.it
  • 2. Multi-Criteria RecSys Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Not a new concept (*) Each user evaluates each aspect of the item (*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender systems." Recommender Systems Handbook. Springer US, 2015. 847-880.
  • 3. Multi-Criteria RecSys Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Not a new concept (*) Each user evaluates each aspect of the item (*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender systems." Recommender Systems Handbook. Springer US, 2015. 847-880. Problem: Overwhelming!
  • 4. Multi-Criteria RecSys Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Not a new concept (*) Each user evaluates each aspect of the item (*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender systems." Recommender Systems Handbook. Springer US, 2015. 847-880. Problem: Aspects are not fixed!
  • 5. Multi-Criteria RecSys Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Not a new concept (*) Each user evaluates each aspect of the item (*) Adomavicius, Gediminas, and YoungOk Kwon. "Multi-criteria recommender systems." Recommender Systems Handbook. Springer US, 2015. 847-880. Problem: Aspects can be further modeled as a hierarchy
  • 6. Research Question Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 How to develop a multi-criteria data model without overwhelming the user ?
  • 7. Research Question Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 What is the performance of such a data model in a collaborative recommendation scenario?
  • 8. Our contribution Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 A multi-criteria collaborative recommendation methodology exploiting aspect-based sentiment analysis of users’ reviews
  • 9. Methodology Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Input: textual reviews Step 1: aspect extraction and sentiment analysis Step 2: creating multi-criteria data model Output: recommendations
  • 10. Methodology Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Input: textual reviews Step 1: aspect extraction and sentiment analysis Step 2: creating multi-criteria data model Output: recommendations
  • 11. Methodology Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Input: textual reviews Step 1: aspect extraction and sentiment analysis Step 2: creating and filling our multi-criteria data model Output: recommendations
  • 12. Methodology Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Input: textual reviews Step 1: aspect extraction and sentiment analysis Step 2: creating and filling our multi-criteria data model Output: recommendations
  • 13. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Algorithm based on SABRE(*) (Sentiment Aspect-based Retrieval Engine) (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). 𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) >
  • 14. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Algorithm based on SABRE(*) (Sentiment Aspect-based Retrieval Engine) (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). 𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) > 𝑟𝑖 = 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘= 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) = i-th review j-th aspect and k-th sub-aspect in the i-th review relevance and sentiment
  • 15. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Algorithm based on SABRE(*) (Sentiment Aspect-based Retrieval Engine) (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). 𝑅 = {𝑟1, 𝑟2 … 𝑟 𝑛}Input: set of reviews Output: quintuples < 𝑟𝑖, 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘, 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) > 𝑟𝑖 = 𝑎𝑖𝑗, 𝑎𝑖𝑗𝑘= 𝑟𝑒𝑙 𝑎𝑖𝑗𝑘, 𝑟𝑖 , 𝑠𝑒𝑛𝑡(𝑎𝑖𝑗𝑘, 𝑟𝑖) = i-th review j-th aspect and k-th sub-aspect in the i-th review relevance and sentiment How do we extract aspects, relevance and sentiment?
  • 16. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Statistical approach based on the Kullback-Leibler (KL) Divergence
  • 17. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Statistical approach based on the Kullback-Leibler (KL) Divergence Measures the difference between the distribution of a term in a generic corpus (e.g. BNC) and its distribution in a domain corpus (e.g. hotel reviews) Insight: the higher the divergence, the higher the importance of the term in the domain
  • 18. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Statistical approach based on the Kullback-Leibler (KL) Divergence Measures the difference between the distribution of a term in a generic corpus (e.g. BNC) and its distribution in a domain corpus (e.g. hotel reviews) Insight: the higher the divergence, the higher the importance of the term in the domain KL(room, BNC, hotel-reviews) >> 0 KL(food, BNC, hotel-reviews) > 0 KL(place, BNC, hotel-reviews) ~ 0 KL(politics, BNC, hotel-reviews) ~ 0 We label as ‘aspects’ the nouns whose KL-divergence is higher than zero
  • 19. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Statistical approach based on the Kullback-Leibler (KL) Divergence Measures the difference between the distribution of a term in a generic corpus (e.g. BNC) and its distribution in a domain corpus (e.g. hotel reviews) Insight: the higher the divergence, the higher the importance of the term in the domain KL(room, BNC, hotel-reviews) >> 0 YES KL(food, BNC, hotel-reviews) > 0 YES KL(place, BNC, hotel-reviews) ~ 0 NO KL(politics, BNC, hotel-reviews) ~ 0 NO
  • 20. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Statistical approach based on the Kullback-Leibler (KL) Divergence Measures the difference between the distribution of a term in a generic corpus (e.g. BNC) and its distribution in a domain corpus (e.g. hotel reviews) Insight: the higher the divergence, the higher the importance of the term in the domain KL(room, BNC, hotel-reviews) >> 0 YES KL(food, BNC, hotel-reviews) > 0 YES KL(place, BNC, hotel-reviews) ~ 0 NO KL(politics, BNC, hotel-reviews) ~ 0 NO Distinguishing aspect: the set is not fixed!
  • 21. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Sub-aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Another distinguishing aspect: we can extract a hierarchy of terms Based on Phraseness and Informativeness: They measure the gain in information if two terms are modeled together Insight: if phraseness and informativeness are high, the terms have an high cohesion
  • 22. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Sub-aspect Extraction (*) Caputo, A., Basile, P., de Gemmis, M., Lops, P., Semeraro, G., & Rossiello, G. (2017). SABRE: A Sentiment Aspect-Based Retrieval Engine. In Information Filtering and Retrieval (pp. 63-78). Another distinguishing aspect: we can extract a hierarchy of terms Based on Phraseness and Informativeness: They measure the gain in information if two terms are modeled together Insight: if phraseness and informativeness are high, the terms have an high cohesion SUB(room, food, hotel-reviews) ~ 0 NO SUB(room, shower, hotel-reviews) > 0 YES SUB(food, wine, hotel-reviews) > 0 YES SUB(food, service, hotel-reviews) ~ 0 NO
  • 23. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Sabre@Work (*) Real review of the hotel we actually stay in Como :) (*)
  • 24. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 < 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 > Sabre@Work (*) Real review of the hotel we actually stay in Como :) (*)
  • 25. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 < 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 > No sub-aspects Relevance=KL-divergence score Sentiment = lexicon-based approach based on AFINN wordlist (*) or machine-learning based approach based on CoreNLP (^) (*) http://neuro.imm.dtu.dk/wiki/AFINN (^) https://nlp.stanford.edu/sentiment/code.html Sabre@Work (*) Real review of the hotel we actually stay in Como :) (*)
  • 26. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 < 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 > < 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 > Sabre@Work (*) Real review of the hotel we actually stay in Como :) (*)
  • 27. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 < 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 > < 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 > < 𝑟, 𝑟𝑜𝑜𝑚,∗, 1.3, 0.2 > Sabre@Work (*) Real review of the hotel we actually stay in Como :) (*)
  • 28. Aspect Extraction and Sentiment Analysis Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 < 𝑟, 𝑏𝑟𝑒𝑎𝑘𝑓𝑎𝑠𝑡,∗, 1.5, 0.5 > < 𝑟, 𝑟𝑜𝑜𝑚, 𝑠ℎ𝑜𝑤𝑒𝑟, 1.2, −0.5 > < 𝑟, 𝑟𝑜𝑜𝑚,∗, 1.3, 0.2 > Sabre@Work … … . 𝑒𝑡𝑐. (*) Real review of the hotel we actually stay in Como :) (*)
  • 29. Multi-Criteria Data Model Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 A multi-criteria data model is automatically filled by exploiting the aspects extracted from the review and their sentiment Finer-Grained Representation!
  • 30. Providing Recommendations Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017 Similarity is calculated through multi-criteria Euclidean distance Recommendations are provided by exploiting both User-to-User and Item-to-Item Collaborative Filtering Recommendation
  • 31. Framework Recap Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 32. Experiments Which combination of the parameters led to the best predictive accuracy? How does our framework perform when compared to single-criteria recommendations and matrix factorization tecniques? Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 33. Datasets Yelp 45,981 users 11,537 items 229,606 ratings(*) 99.95% sparsity TripAdvisor 536,952 users 3,945 items 796,958 ratings(*) 99.96% sparsity Amazon 826,773 users 50,210 items 1,324,759 ratings(*) 99.99% sparsity (*) Ratings = ratings + reviews Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 34. Datasets Yelp 45,981 users 11,537 items 229,606 ratings(*) 99.95% sparsity TripAdvisor 536,952 users 3,945 items 796,958 ratings(*) 99.96% sparsity Amazon 826,773 users 50,210 items 1,324,759 ratings(*) 99.99% sparsity (*) Ratings = ratings + reviews Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 35. Experimental Settings Review Processing ◦ Stop-Word removed ◦ Entity and Collocations recognized SABRE parameters ◦ With/without subaspects ◦ #aspects/#subaspects = 10, 50 ◦ KL-divergence threshold = 0.1 ◦ Only nouns! Recommendations ◦ Multi-Criteria U2U and I2I Metric ◦ MAE (calculated with Rival framework) Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 36. Baselines Single-Criteria Recommendations techniques ◦ User-to-User Collaborative Filtering ◦ Item-to-Item Collaborative Filtering Static Multi-Criteria Recommendations ◦ Only on TripAdvisor data Matrix Factorization techniques ◦ SGD (Stochastic Gradient Descent) ◦ ParallelSGD ◦ ALSWR ◦ Implementations available in Mahout ◦ Tuning of parameters Alessandro Suglia, Claudio Greco, Cataldo Musto, Marco de Gemmis, Pasquale Lops, Giovanni Semeraro. A Deep Architecture for Content-based Recommendations Exploiting Recurrent Neural Networks. UMAP 2017. Bratislava, Slovakia. July 12, 2017
  • 37. Top-10 aspects Place Food Service Restaurant Price Menu Staff Drink Lunch Table Hotel Room Staff Location Service Breakfast Restaurant Bathroom Price View Game Graphic Story Character Player Price Gameplay Controller Level Music Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 38. 0,7111 0,7564 0,7269 0,8007 0,65 0,67 0,69 0,71 0,73 0,75 0,77 0,79 0,81 0,83 TripAdvisor 10 neigh. / 10 aspects / sub-aspects 10 neigh. / 10 aspects / no sub-aspects 10 neigh. / 50 aspects / sub-aspects 10 neigh. / 50 aspects / no sub-aspects Outcomes Best-results obtained with 10 aspects Best-results obtained by also introducing sub-aspects (Amazon had a different behavior) Lower MAE! Results – Multi-Criteria User-to-User CF Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 39. 0,7111 0,798 0,8245 0,8429 0,6 0,65 0,7 0,75 0,8 0,85 TripAdvisor Multi-U2U Static-Multi-U2U Multi-I2I Static-Multi-I2I Outcomes TripAdvisors data included ratings about six static aspects (cleanliness, location, value, service, sleep quality, overall) Our approach based on unsupervised aspect extraction also improved these results Results – vs. Static Multi-Criteria RecSys Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 40. 0,7111 0,8337 0,745 0,7449 0,9053 0,65 0,7 0,75 0,8 0,85 0,9 0,95 1 TripAdvisor Multi-U2U Single-U2U Ratings-SGD Parallel-SGD ALSWR Outcomes Our approach overcomes all the baselines. Our framework wins the comparisons to Single-U2U and Single-I2I Also matrix factorization techniques got an higher MAE Results – Baselines Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 41. Recap Results ☺ Our framework significantly improves all the baselines ☺ Unsupervised Aspect Extraction also overcomes static aspects Future Work: evaluate data model with more sophisticated algorithms Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017
  • 42. Thanks! cataldo.musto@uniba.it @cataldomusto, @semeraro_g @pasqualelops, @SWAP_research Cataldo Musto, Marco de Gemmis, Giovanni Semeraro. Pasquale Lops A Multi-criteria Recommender System Exploiting Aspect-based Sentiment Analysis of Users’ Reviews. RECSYS 2017. Como, Italy. August 30, 2017