SlideShare a Scribd company logo
Weiwei Cheng & Eyke Hüllermeier
Knowledge Engineering & Bioinformatics Lab
Department of Mathematics and Computer Science
University of Marburg, Germany
Label Ranking (an example)
Learning customers’ preferences on cars:

                                 label ranking  
       customer 1           MINI      Toyota    BMW 
       customer 2           BMW      MINI      Toyota
       customer 3           BMW      Toyota      MINI
       customer 4           Toyota      MINI      BMW
       new customer                   ???

   where the customers are typically described by feature 
   vectors, e.g., (gender, age, place of birth, has child, …)
                                                                1/16
Label Ranking (an example)
Learning customers’ preferences on cars:

                        MINI       Toyota      BMW
       customer 1         1          2           3
       customer 2         2          3           1
       customer 3         3          2           1
       customer 4         2           1          3
       new customer       ?           ?          ?


        π(i) = position of the i‐th label in the ranking
             1: MINI        2: Toyota       3: BMW
                                                           2/16
Label Ranking (more formally)
Given:
  a set of training instances 
  a set of labels
  for each training instance     : a set of pairwise preferences
  of the form

Find:
  a ranking function (            mapping) that maps each           
  to a ranking      of L (permutation     )


                                                                   3/16
Model‐Based Approaches
… essentially reduce label ranking to classification:

  Ranking by pairwise comparison (RPC)
  Fürnkranz and Hüllermeier,  ECML‐03



  Constraint classification (CC)
  Har‐Peled , Roth and Zimak,  NIPS‐03



  Log linear models for label ranking (LL)
  Dekel, Manning and Singer,  NIPS‐03
                                                        4/16
Instance‐Based Approach (this work)
 Lazy learning: Instead of eagerly inducing a model 
 from the data, simply store the observations.

 Target functions are estimated on demand in a local 
 way, no need to define the       mapping explicitly.

 Core part is the aggregation of preference (order) 
 information from neighbored examples.

                                                        5/16
Related Work
Case‐based Label Ranking (Brinker and Hüllermeier, ECML‐06)

Aggregation of complete rankings is done by
    median ranking
    Borda count


Our aggregation method is based on a probabilistic model 
and can handle both complete and incomplete rankings.


                                                              6/16
Instance‐Based Prediction
Basic assumption: Distribution of output is (approximately) 
constant in the neighborhood of the query; consider outputs 
of neighbors as an i.i.d. sample. 

Conventional classification: 
  discrete distribution on class labels
  estimate probabilities by relative class frequencies
  class prediction by majority vote 



                                                           7/16
Probabilistic Model for Ranking 
Mallows model (Mallows, Biometrika, 1957)


with 
center ranking
spread parameter
and        is a right invariant metric on permutations




                                                         8/16
Inference (full rankings)
We have observed        from the neighbors.

                             ML




                                              monotone in θ
Inference (incomplete ranking)
“marginal” distibution

where       denotes all consistent extensions of    .

Example for label set {a,b,c}:
              Observation σ        Extensions E(σ)
                                      a      b   c
                  a   b               a c        b
                                      c      a   b



                                                        10/16
Inference (incomplete ranking)  cont.
The corresponding likelihood:




ML estimation                                         becomes more difficult.

                                                                          11/16
Inference
Not only the estimated ranking     is of interest …

… but also the spread parameter    , which is a measure of 
precision and, therefore, reflects the confidence/reliability of 
the prediction (just like the variance of an estimated mean). 

The bigger   , the more peaked the distribution around the 
center ranking.



                                                               12/16
Experimental Setting
Data sets
  Name        #instances   #features    #labels
  Iris1           150         4            3
  Wine1           178         13           3
  Glass1          214         9           6
  Vehicle1       846          18          4
  Dtt2           2465         24          4
  Cold2          2465         24          4

 1 UCI data sets. 
 2 Phylogenetic profiles and DNA microarray expression data.

                                                               13/16
Accuracy (Kendall tau)
A typical run:
        Kendall tau




                            missing rate of labels
Main observation:  Our approach is quite competitive with the state‐of‐the‐art  
model based approaches. 
                                                                                   14/16
Accuracy‐Rejection Curve
θ as a measure of the reliability of a prediction




                          ratio of the data that predicted

Main observation:  Decreasing curve confirms that θ is a reasonable measure of 
confidence.
                                                                              15/16
Take‐away Messages
  An instance‐based label ranking approach using a 
  probabilistic model.
  Suitable for complete and incomplete rankings.
  Comes with a natural measure of the reliability of a 
  prediction.

o More efficient inference for the incomplete case. 
o Generalization: distance‐weighted prediction.
o Dealing with variants of the label ranking problem, such as 
  calibrated label ranking and multi‐label classification.

                                                             16/16
A new instance-based label ranking approach using the Mallows model
Median rank
                     MINI     Toyota      BMW
      ranking 1       1         3          2
      ranking 2       2         3          1
      ranking 3       3         2          1
      median rank     2         3          1



  ‐ tends to optimize Spearman footrule
Borda count
        ranking 1           MINI      Toyota      BMW 
        ranking 2           BMW      MINI      Toyota
        ranking 3           BMW      Toyota      MINI
        Borda count        BMW: 4  MINI: 3  Toyota:2



‐ tends to optimize Spearman rank correlation
21
22

More Related Content

PPTX
Functional dependencies and normalization
PDF
Decision tree and instance-based learning for label ranking
PPTX
Normalization
PDF
Database Systems - Normalization of Relations(Chapter 4/3)
PPTX
variables, values and expressions
PDF
Types of normalization
PPTX
Normalization of Data Base
Functional dependencies and normalization
Decision tree and instance-based learning for label ranking
Normalization
Database Systems - Normalization of Relations(Chapter 4/3)
variables, values and expressions
Types of normalization
Normalization of Data Base

What's hot (18)

PPTX
Database normalization
PDF
Normalization in Database
PPTX
Normalization in a Database
PDF
Normalization in DBMS
PPTX
Database Concept - Normalization (1NF, 2NF, 3NF)
PDF
Normalization | (1NF) |(2NF) (3NF)|BCNF| 4NF |5NF
PPTX
Database normalization
PPTX
Database normalization
PPTX
Normalization
PPTX
PDF
Abstract Symbolic Automata: Mixed syntactic/semantic similarity analysis of e...
PPTX
Computer Scinece:RDBMS :Normalisation
PPTX
Database Normalisation
PDF
Infections as Abstract Symbolic Finite Automata: Formal Model and Applications
PDF
PPTX
Relational database
PDF
Unveiling Metamorphism by Abstract Interpretation of Code Properties
Database normalization
Normalization in Database
Normalization in a Database
Normalization in DBMS
Database Concept - Normalization (1NF, 2NF, 3NF)
Normalization | (1NF) |(2NF) (3NF)|BCNF| 4NF |5NF
Database normalization
Database normalization
Normalization
Abstract Symbolic Automata: Mixed syntactic/semantic similarity analysis of e...
Computer Scinece:RDBMS :Normalisation
Database Normalisation
Infections as Abstract Symbolic Finite Automata: Formal Model and Applications
Relational database
Unveiling Metamorphism by Abstract Interpretation of Code Properties
Ad

Similar to A new instance-based label ranking approach using the Mallows model (20)

PDF
A Simple Instance-Based Approach to Multilabel Classi cation Using the Mallow...
PDF
Recommender Systems from A to Z – Model Evaluation
PDF
Label Ranking with Partial Abstention using Ensemble Learning
PDF
Latent Structured Ranking
PDF
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
PDF
Cutting Edge Predictive Modeling For Classification
PDF
Bayesian Personalized Ranking for Non-Uniformly Sampled Items
DOC
Presentation on Machine Learning and Data Mining
PDF
Machine Learning.pdf
PDF
Binary search query classifier
PDF
Opinion mining framework using proposed RB-bayes model for text classication
PDF
Proposing an Appropriate Pattern for Car Detection by Using Intelligent Algor...
PDF
data-science-lifecycle-ebook.pdf
PPT
Part 1
PDF
How to Optimize Your Embedding Model Selection and Development through TDA Cl...
PDF
Introduction to behavior based recommendation system
DOC
Open06
PDF
Big & Personal: the data and the models behind Netflix recommendations by Xa...
PDF
An Approach to Software Testing of Machine Learning Applications
PPTX
Multivalued Subsets Under Information Theory
A Simple Instance-Based Approach to Multilabel Classi cation Using the Mallow...
Recommender Systems from A to Z – Model Evaluation
Label Ranking with Partial Abstention using Ensemble Learning
Latent Structured Ranking
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Cutting Edge Predictive Modeling For Classification
Bayesian Personalized Ranking for Non-Uniformly Sampled Items
Presentation on Machine Learning and Data Mining
Machine Learning.pdf
Binary search query classifier
Opinion mining framework using proposed RB-bayes model for text classication
Proposing an Appropriate Pattern for Car Detection by Using Intelligent Algor...
data-science-lifecycle-ebook.pdf
Part 1
How to Optimize Your Embedding Model Selection and Development through TDA Cl...
Introduction to behavior based recommendation system
Open06
Big & Personal: the data and the models behind Netflix recommendations by Xa...
An Approach to Software Testing of Machine Learning Applications
Multivalued Subsets Under Information Theory
Ad

Recently uploaded (20)

PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PDF
Enhancing emotion recognition model for a student engagement use case through...
PDF
Building Integrated photovoltaic BIPV_UPV.pdf
PDF
Approach and Philosophy of On baking technology
PDF
Mushroom cultivation and it's methods.pdf
PPTX
A Presentation on Artificial Intelligence
PPTX
Tartificialntelligence_presentation.pptx
PDF
Encapsulation theory and applications.pdf
PDF
Hybrid model detection and classification of lung cancer
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
PPTX
OMC Textile Division Presentation 2021.pptx
PDF
Web App vs Mobile App What Should You Build First.pdf
PDF
1 - Historical Antecedents, Social Consideration.pdf
PDF
Hindi spoken digit analysis for native and non-native speakers
PDF
WOOl fibre morphology and structure.pdf for textiles
gpt5_lecture_notes_comprehensive_20250812015547.pdf
Group 1 Presentation -Planning and Decision Making .pptx
Enhancing emotion recognition model for a student engagement use case through...
Building Integrated photovoltaic BIPV_UPV.pdf
Approach and Philosophy of On baking technology
Mushroom cultivation and it's methods.pdf
A Presentation on Artificial Intelligence
Tartificialntelligence_presentation.pptx
Encapsulation theory and applications.pdf
Hybrid model detection and classification of lung cancer
SOPHOS-XG Firewall Administrator PPT.pptx
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
Programs and apps: productivity, graphics, security and other tools
ENT215_Completing-a-large-scale-migration-and-modernization-with-AWS.pdf
OMC Textile Division Presentation 2021.pptx
Web App vs Mobile App What Should You Build First.pdf
1 - Historical Antecedents, Social Consideration.pdf
Hindi spoken digit analysis for native and non-native speakers
WOOl fibre morphology and structure.pdf for textiles

A new instance-based label ranking approach using the Mallows model