This document summarizes Mohammad Shakirul Islam's research paper on classifying tomato plant diseases using deep convolutional neural networks. The paper includes sections on motivation, literature review, proposed methodology, results discussion, and future work. The proposed methodology uses a dataset of 3000 images across 6 tomato disease classes. A convolutional neural network model with 5 convolution layers, 5 max pooling layers, and 2 dense layers is trained on 80% of the data and tested on the remaining 20% for classification performance. Results show the model achieved high training and validation accuracy for identifying different tomato diseases.