This document describes a project on plant disease detection and classification using deep learning. The objectives are to automatically detect plant diseases as early as symptoms appear on leaves in order to increase crop productivity. Deep learning techniques like convolutional neural networks (CNNs) are implemented using libraries like TensorFlow and Keras. Two CNN models, VGG16 and VGG19, are compared for classifying diseases in a dataset of 38 classes and 87k images of 14 crop species. The system achieved over 95% accuracy on validation. Future work involves developing a mobile app and integrating disease recommendations to help farmers.