The document describes a probabilistic model called recursive latent Dirichlet allocation (rLDA) for hierarchical image modeling. rLDA is based on latent Dirichlet allocation and has multiple layers of representations with increasing spatial support, where each layer learns representations jointly across layers through joint inference. This allows for distributed coding of local image features in a hierarchical manner while performing full Bayesian inference. The model is evaluated for its ability to learn hierarchical representations from images.