SlideShare a Scribd company logo
Local and Non-Metric Similarities
        Between Images
               -
   Why, How and What for ?
      Frédéric Morain-Nicolier
      CReSTIC - URCA - Troyes

            2012.09.25




                 1
Outlines



• Local similarities
• Non metric similarities
• Conclusion :
  • Local non-metric similarities ?
  • solutions
  • open problems



                       2
Local Similarities




        3
Local Similarities,
      Why ?




         4
3D Acquisition




                      ?



[Troyes Library - Early Rennaissance Collection
             - Bibliothèque Bleue]

                       5
3D Acquisition




[Thanks to Le2I - Le Creusot Team]
                6
3D Acquisition : Economical Solution




                 7
3D Acquisition : An Example

                                             ANALYSIS AND CONSERVATION OF ANCIENT WOODEN STAMPS




                                                               ANALYSIS AND CONSERVATION OF ANCIENT WOODEN STAMPS                                   115




                                                                                                7   Range image (‘Pisces’ stamp) computed from projec-
                                      6   3D View of acquired points of ‘Pisces’ stamp: point       tion of point cloud
                                          cloud acquired with Minolta scanner
                                                                                                               Else t5Mzk*s (M.m and the neigh-
                                a stamp, the printing zones are high elevation ones;
                                                                                                    7   Range image (‘Pisces’ stamp) computed
                                                                                                               bourhood is in a low zone)
          6 3D View of acquired points of ‘Pisces’range imagespoint
                                the high grey-level pixels in the stamp: have to                        tion of point cloud
                                                                                                        End if
                                be binarized as black (pixel50). The non-printing                     If pixel.t Then pixel50
              cloud acquired with Minolta scanner
                                zones must therefore be binarized as white (pixel51).                        Else pixel51


Stamp                            3D model                                                               Range Image
                                  A modified Niblack’s algorithm is used to binarize                   End if           Else t5Mzk*s (M.m an
                                range images.11,12 The main task is to adapt the                    End Do
          a stamp, the printing zones are high elevation ones;
                                threshold over the image. The threshold is deter-                                      bourhood is in a low zone
                                                                                                  The local threshold computing can be summarized
          the high grey-level pixels from the local meanimageslocal standard
                                mined in the range and the have to                                           End if
                                                                                                by equation (1)
                                deviation, computed on a restricted neighbourhood                 t~max(M,m)zk às                             (1)
          be binarized as blackeach pixel.
                                for
                                      (pixel50). The non-printing                                            If pixel.t Then pixel50
                                                                                                By modifying the k parameter, it is possible to
          zones must therefore be binarized as white (pixel51).
                                  Define:                                                                                Else pixel51
                                                                                                simulate the inking and printing process for various
                                  m      the local mean computed on a [w6w]
                                                8
            A modified Niblack’s algorithm is used to binarize
                                         neighbourhood                                                        End if
                                                                                                conditions (ink quantity, paper quality or humidity,
                             11,12                                                              ink fluidity, exerted pressure etc.). Figure 8 shows the
3D Acquisition ➙ Virtual Printing

RVATION OF ANCIENT WOODEN STAMPS                              115




                                                                    local threshold

          7   Range image (‘Pisces’ stamp) computed from projec-
  point       tion of point cloud

                        Else t5Mzk*s (M.m and the neigh-
  ones;                 bourhood is in a low zone)
ave to          End if
 inting         If pixel.t Then pixel50
el51).                 Else pixel51
narize          End if
pt the        End Do
 deter-     The local threshold computing can be summarized
ndard     by equation (1)
rhood       t~max(M,m)zk às                             (1)
          By modifying the k parameter, it is possible to
          simulate the inking and printing process for various
w6w]
          conditions (ink quantity, paper quality or humidity,
          ink fluidity, exerted pressure etc.). Figure 8 shows the
mplete
          same range image as that used in Fig. 7, binarized for
          k50.1–0.8. Note the ‘inking’ variations produced by
d on a
          the k value modification.

          3.3 Comparison between virtual and real stamping
          In order to test the proposed method, the results of            9
          virtual printing were compared with real ones. For
3D : Virtual vs. Real Fidelity ?




 Virtual   Resolution !   Real




               10
A Local Comparison is needed !




              11
A Local Comparison is Needed !




              12
A Local Comparison is Needed !




   small diffs



                                scattered diffs




big localised diffs   13
A Local Comparison is Needed !




              14
Local Similarities,
      How ?




        15
Local Dissimilarity Map (LDM)


                                   Φ(       ,       )

                                    Which measure ?


              Which size ?
e 7.4 – Comparaison de deux groupes de lettres. L’image de la CDL indique clai
                                                              CDL indique cla
lisations des dissimilarités. La comparaison est également quantifiée.
                                                           quantifiée.
                                                        LDM



on de deux groupes de lettres. L’image de la CDL indique clairement
 n de deux                      L’image de la CDL indique clairement
milarités. La comparaison est également16quantifiée.
milarités.                     également quantifiée.
Local Dissimilarity Map
    Which measure
    between small
       images ?
• MSE - PSNR?

➡ pixel to pixel diffs
                                 A
 dA,B (p) = |A(p)   B(p)|

                                       |A(p)   B(p)|
➡ low information
  and
  hard to interpret              B



                            17
Local Dissimilarity Map
    Which measure
    between small
       images ?                    DH(A, B) = max (h(A, B), h(B, A))
                                                   ✓           ◆
• Binary image = set of              h(A, B) = max min d(a, b)
  pixels (foreground)                          a2A   b2B
                                     h(B, A)
➡ Hausdorff distance                                       DH(A, B)
  [Huttenlocher 1993]
   DH(A, Tv A) = kvk
➡ numerous variations,              A
  including partial HD
                ieme
                              B
 hK (A, B) =   Ka2A d(a, B)



                              18
Local Dissimilarity Map

Which size for the sliding
       window ?

  ➡ adaptative

  ➡ must encompass
    the «diffs» but no
    more
                                                              A                      B
                                                          (a) (a)                    (b) (b)                    (c
  ➡ increase until the
                       Figure 7.2 – Illustration de la notion de dissimilarité locale. Les Les imag
                           Figure 7.2 – Illustration de la notion de dissimilarité locale. image A
    measure equals itsdissimilaires. Les Les fenêtrescentrepetite et AetetABetcar carc), petites.perme
                           dissimilaires. fenêtres de taille
                                                       de taille petitemoyenne (en (en ne permetten
                       la dissimilarité locale au centre des des images
                           la dissimilarité locale au         images
                                                                          moyenne
                                                                               B trop
                                                                                          c), ne
                                                                                       trop petites.
    theoretical max            ⇒ stopping criterion
                                         Nous pouvons donner uneune idée générale. les pixels situés dans la
                                            Nous pouvons donner idée générale. Si Si les pixels situés dans
                                      partiennent à des des traits grossiers,fenêtre doitdoit avoir une taille su⇥
                                         partiennent à traits grossiers, la la fenêtre avoir une taille su⇥san
                                      écarts résultant de la comparaison de ces ces traits. les traits sont fins,
                                         écarts résultant de la comparaison de traits. Si Si les traits sont fi
                                      fenêtre soitsoit trop grande. Dans le cas contraire, des écarts qui sont plu
                                          fenêtre trop grande. Dans le cas contraire, des écarts qui ne ne sont
                                            19
rmax = max      r|DHW (p,r) (A, B) = r   .                   (7.27)
                                      r>0


                        Local Dissimilarity Map
      En pratique ce théorème indique que tant que la distance de Hausdor locale est égale au
   rayon de la fenêtre, la mesure optimale n’est pas atteinte.


In the Hausdorff distancedissimilarités locales
   7.1.4.4 Définition de la carte des
                                     case :
      La carte des dissimilarités locales est définie maintenant aisément. Elle regroupe l’ensemble
   des mesures de dissimilarités locales réalisés pour di érentes positions. L’algorithme général
   lorsque la distance locale est basée sur la distance de Hausdor est le suivant :

   Algorithme 7.1 Algorithme itératif de calcul de la carte des dissimilarités locales (CDL)
   entre deux images binaires A et B. W (p, n) désigne la fenêtre carrée centrée au pixel p et de
   rayon n.
   Pour chaque pixel p, faire
     1. n ⇤ 1
     2. tant que DHW (p,n) (A, B) = n et n ⇥ DH(A, B), faire
        n⇤n+1
     3. CDLA,B (p) = DHW (p,n    1) (A, B)   =n   1


                                                  84




                                                  20
Local Dissimilarity Map

With the Hausdorff distance : fast computation

         CDLA,B (p) = |A(p)          B(p)| max (d(p, A), d(p, B))


Distance transform (or function) based
                            TDA (p) = d(p, A)
(distance to the nearest foreground pixel : very fast with a chamfer distance)

⇒ linear expression (binary images) :

                    CDLA,B = A.TDB + B.TDA

     [Baudrier PhD - Pattern Recognition 2008]
                                      21
Local Dissimilarity Map : Toy Examples




                                                       CDLa,b



                                                       Figure 7.3 – Comportement de la CDL avec des motifs simp
                                                       comparer. d est la CDL entre a et b, e est la CDL entre b et c e
                                                           CDL de
                                                       le niveau b,c gris est foncé, plus grande est la valeur locale de la
          FigureFigure 7.3 – Comportement de la CDL avec des simples ; a,b,c sont lessont les images à
                    7.3 – Comportement de la CDL avec des motifs motifs simples ; a,b,c images à
          comparer. d est la d est la CDL et b, e est b, e est la CDL entreet fet cCDL la CDL entre Plus c. Plus
                   comparer. CDL entre a entre a et la CDL entre b et c b la et f entre a et c. a et
          le niveau de gris est foncé, plus grande est la valeur locale de la mesure.mesure.
                   le niveau de gris est foncé, plus grande est la valeur locale de la
                                                            Cet algorithme est coûteux en temps de calcul car itératif. En
                                     Figure 7.3 – Comportement de la CDL avec des motifs simples ; a,b,c sont le
                                                       est en O(m4 ) pour deux images composées deet f⇥ m pixels. No
                                     comparer. d est la CDL entre a et b, e est la CDL entre b et c m la CDL entre
                                             A quantified and localized information
                                     le niveau de gris est distance de grandeEn elaet, la complexité de mesure.
                                                       la foncé, plus Hausdor est utilisée dans de mesure locale de dis
                                                                                             locale la la calcul
              Cet algorithme est coûteuxcoûteux en temps de calcul car itératif.valeur et, la complexité de calcul
                                             en temps de calcul car itératif. est
7.3 – Comportement de algorithme est des motifs simples ; a,b,c sont les imagese à
                       Cet la CDL avec                 très rapide.                    En
. d est laest en entreen et b, 4 ) est la deux images composées de m ⇥ m pixels.c. Plus avons montré que lorsque
                       4 ) pour deux images composées de m ⇥ m pixels. Nous avons montré que lorsque
           CDL O(m a O(m e pour CDL entre b et c et f la CDL entre a et Nous
                   est
 de gris est distancedistance deest estvaleur locale Théorème mesure locale dedes dissimilaritéscalcul peut être
          la foncé,la de grande Hausdor est dansde la mesure.
                     plus Hausdor la utilisée utilisée dans la locale La dissimilarité, le calcul peut être entre deux
                                                         la mesure 7.8. de carte dissimilarité, le locales
                                                               22
Local Dissimilarity Map : Toy Examples




                 ➡ structural informations
                  23
3.7. G´n´ralisation aux images en niveaux de gris
       e e                                                85

 Local Dissimilarity Map : Toy Examples

➡How to save time during holidays ?




                                                     24
Local Similarities,
   What for ?




         25
Ancients Printings


É. Baudrier et al. al. / Pattern Recognition 41 (2008) 1461 – 1478
   É. Baudrier et / Pattern Recognition 41 (2008) 1461 – 1478
                et                                                                    1471
                                                                                        1471
É. É. Baudrier al. al.Pattern Recognition 41 41 (2008) 1461 – 1478
   Baudrier et      / / Pattern Recognition (2008) 1461 – 1478                       14711471
  É. Baudrier et al. al. / Pattern Recognition 41 (2008) 1461 – 1478
     É. Baudrier et / Pattern Recognition 41 (2008) 1461 – 1478                    1471
                                                                                     1471
  É. É. Baudrier al. al.Pattern Recognition 41 41 (2008) 1461 – 1478
     Baudrier et et / / Pattern Recognition (2008) 1461 – 1478                    14711471




                            20 20                                        1616
                             20 20
                            20 20                                      1616
                                                                        16 1416
                            18 18
                             20 20
                                18                                       1416
                                                                       16 14
                                                                       14 14
                            18 18
                             1816                                       14 12
                                                                           14
                            16 18
                             18 16
                             16
                                                                       14 12
                                                                         12
                            16 16
                            14 14
                             16 16
                                14
                             1412
                                                                       12 12
                                                                        12 10
                                                                           12
                                                                       12 10
                            14 14
                             14 14                                       10
                                                                       10 10
                            12 12
                             12                                         10 10
                                                                       10 8 8
                            12 12
                            10 10
                             12 12
                             10810                                       8
                                                                       88 8
                            10 10
                             10 10                                     8 668
                            8 8
                             8                                           6
                                                                       66 6
                            8 8
                            6 6
                             8 8
                             64 6                                      6 44
                                                                         4
                                                                           6
                            6 6 26
                             6 6                                       44 4
                            4 4
                             4                                         4 224
                            4 4
                            2 2
                             4 4
                             2 2                                       22
Ancients Printings
                               É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478                                         1471
                                                                                                   É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478

                                 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478                                      1471
                                                                                                     É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478             16
                                                                                                                             20                                               16
                                                                                                                              20                                                16
                                                                                                                             18
                                                                                                                             20                                               1614
                                                                                                                              18
                                                                                                                              20                                              14
                                                                                                                             16
                                                                                                                             18
                                                                                                                              16                                                14
                                                                                                                                                                                12
                                                                                                                              18                                              14
                                                                                                                                                                              12
                                                                                                                             14
                                                                                                                             16
                                                                                                                              14                                                12
                                                                                                                              16                                              12
                                                                                                                                                                              1010
                                                                                                                             12
                                                                                                                             14
                                                                                                                              12
                                                                                                                              14                                                10
                                                                                                                             10
                                                                                                                             12
                                                                                                                              10
                                                                                                                              12                                              88
                                                                                                                                                                              10
                                                                                                                             810
                                                                                                                             10
                                                                                                                              8                                               88
                                                                                                                                                                              66
                                                                                                                             68
                                                                                                                             86
                                                                                                       É. Baudrier et al. 46 /4Pattern Recognition 41 (2008) 1461 – 1478      66
                                                                                                                                                                              44
                               É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478                                6                1471
                                                                                                                             24
                                                                                                                             42                                               44
                                                                                                                                                                              22
                                                                                                         É. Baudrier et al. 0 Pattern Recognition 41 (2008) 1461 – 1478
                                                                                                                             02/                                              22
                                                                                                                                                                              00
                                 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478                              2              1471
                                                                     20                                                      0 16
                                                                                                                              0
                                                                                                                              16                                              00
                                                                       20
                                                                       16
           20                                                        18
                                                                    16                                                        18
                                                                                                                             18  14
            20                                                         18                                                     14                                              1616
           18                                                        1614
                                                                       16                                                     16
                                                                                                                              18
                                                                                                                             18  12
            18                                                      14                                                       16
                                                                                                                              12                                              16
                                                                                                                                                                              1416
           16                                                        1412
                                                                       14                                                                                                       14
            16                                                      12                                                        14
                                                                                                                              16
                                                                                                                             16
                                                                                                                             14  10
           14                                                        12                                                       10                                              14
                                                                                                                                                                              1214
                                                                                                                                                                                12
            14                                                         12
                                                                       10                                                     12
                                                                                                                              14
                                                                                                                             14
                                                                                                                             12
           12                                                        10
                                                                    10 10                                                     8  8                                            12
                                                                                                                                                                              10
            12                                                                                                                10
                                                                                                                              12                                                12
                                                                                                                                                                                10
           10                                                        88
                                                                    88                                                       12
                                                                                                                             10  6
            10                                                                                                                6
                                                                                                                              8                                               10
                                                                                                                                                                              8810
           88                                                        666                                                     810
                                                                                                                             10
                                                                    6                                                         44
                                                                                                                              6                                               88
                                                                                                                                                                              66
           66                                                        4
                                                                    44
                                                                       4                                                     68
                                                                                                                             8
                                                                                                                              22
                                                                                                                              4                                               66
                                                                                                                                                                              44
           44                                                        2 2                                                     46
                                                                                                                             6
           2                                                         02
                                                                    20                                                        00
                                                                                                                              2                                               4
                                                                                                                                                                              24
            2                                                                                                                24
                                                                                                                             4                                                  2
           00                                                       00                                                        0
                                                                                                                              2                                               2
                                                                                                                                                                              02
                                                                                                                             2
                                                                                                                             0                                                  0
                                                                     1818                                                     0                                               0
                                                                                                                             0 16
                                                                                                                              16                                                0
            18
           18                                Fig. 8. Medieval impressions and their LDMaps. Here are four medieval impressions. Imp. 1, Imp. 2 and Imp. 3 illustrate the same scene with a di
                                                                     1616 and their LDMaps. Here are four medieval impressions. Imp. 1, Imp. 2 and Imp. 3 illustrate the same scene with a
                                        Fig. 8. Medieval impressions16 16
            16
           16                                kind 8. Medieval impressions Imp. their LDMaps. Here aare four medieval 14
                                                                      Comparaison d’illustrations 12
                                                                       14
                                                                                                                                 14
                                            Figure 20 – 14 Imp. their LDMaps. Here aare four 16 anciennes.Imp. 1, Imp. 22 and Imp. 3illustrate the same16 scene with a
                                             Fig. of grass and helmets in and 3. Imp. 4 illustrates distinct scene. impressions. Imp. 1, images a, b3et c représentent la a di
                                                             7.9 14 and 3. Imp. 4 illustrates distinct medieval impressions. Les Imp. and Imp. illustrate the same with m              scene
                                        kind 8. Medieval impressions
                                        Fig. of grass and helmets in   14in Imp. 3. Imp. 4 illustrates a distinct 16
                                                                                                                scene.                  20                                          16
                                        kindFigure 18CDL Imp.(f) CDL d’illustrations anciennes. Les images a, b et cde scènes dissimila
                                              of grass and 7.9 –12    Comparaison ; (g) CDLscene. (h) CDL . La comparaison représentent la m
            14
           14                                kind of grass and helmets
                                                              20       12                                                        12      20
                                                                                                                                        18                                            14
                                            scène. (e)18 10   helmets12 ; 3. Imp. 4 illustrates a distinct14
                                                                       in
                                                                       12                                       scene. ; 10
                                                                                                                  14                     18                                         14
            12
           12                                                           a,b
                                                                       10                    a,c                   a,d           10     16 c,d                                        12
            10
           10                                scène. (e)methods are (f) CDLa,c ; (g)réparties; sur CDLc,d .the measure result is h).image comparaison
                                            produit 14
                                                             16
                                                                CDLa,b ; importantes ones12a,d (h) whether La comparaison de scènes dissimila
                                                                     8
                                                                       10
                                                                       8                                                      8          16
                                             comparisondes valeurscompared with the CDLobtained 8 toute l’image (en g et an La (case of the LD
                                                              16    10                                            12                    14
                                                                                                                                         14
                                                                                                                                                                                    12
                                                                                                                                                                                      10
                                        comparison methods86are compared with the ones 10obtained 6 whether LSDMap) or aresultvalue (case of(case ofof the L
                                             comparisonThe five classification methods réparties sur toute l’image (en result is h).image comparaison
                                                              14
                                                                                                          ones obtained6
                                                               methods are compared with the are the follo-
                                                                       8                                          10                 whether the measure realet is an image 10 HD and LD
                                                                                                                                        12 the the measure               an          (case the its
           88
                                             produit 10 valeurs importantes
                                             manually. des   12                                                                      and
                                                                                                                                        10 faible measure g
                                                                                                                                         12
                                            scènes methods66 produit with the ones 8obtained 4 and the LSDMap) or a real value ou très8the HD and i
                                                              12
                                        manually. The10 five 64classification des valeurs importanteswhetherLSDMap) or a resultvalue(case of 8(case of is itsL
                                        comparison similaires classificationmethods are the follo-4                                                                           La the
                                                                                                                                       en the In the first case,(en is an (case of method the
                                                                                                                                                the nombrereal e) image the HD and
                                                                                                                                                                   the classification localisées
            6                                                           are compared methods are the follo-       8                      10
           6                                 wing ones: The five
                                             manually.               4                                                               and
                                                                                                                                     ations).                                                    a
           44                                scènes similaires produit methods are the follo-2 2 ations). Inin Sectioncase, In theclassificationmethod is is
                                        manually. The
                                        wing ones:
                                             wing ones: 6
                                                             8 five42classification des valeurs importantes enthe LSDMap) or a real valueou très6localisées
                                                              8
                                                                     2 4                                       6  6                 and 88 faible nombre (en e) (case of the HD and 6
                                                                                                                                     described the first case, the classification 4 an empirica
                                                                                                                                     ations).
                                                                                                                                        66             first 6.2. the second case, method a
            2                                                 6     20                                                                                                              4
           2                            wing ones: 44 based on the LDMap,
                                             • our method            02                                        4  4           0
                                                                                                                                 0 describedforthe first case,In the second case, an empirica
                                                                                                                                    ations). Inin each class C In and C
                                                                                                                                                     Section 6.2. the classification method is
                                                                                                                                     described Section 6.2. sim the second is computed from
                                                                                                                                        44
                                                                                                                                     tribution                                     case, an empiri
            0                                                       0                                                                                                                 2
                                                                                                                                                                    In and Cdissim 2 0
                                                                                                                                        2                                   dissim
           0                            • ourthe so-calledbased on the LDMap,
                                             • our method Local the LDMap,
                                                  method22    based on Simple Difference Map (LSDMap) us-
                                                                       0                                       22                        2
                                                                                                                                    describedfor eachthe modes of the dissim isis computed fr
                                                                                                                                                  in each class Csim and C empirical distribution
                                                                                                                                                     Section 6.2. sim the second case, an empiri
                                                                                                                                    tribution set. different C
  Medieval impressions and their LDMaps. Here are four medieval on the LDMap, Imp. 2 and Imp. 30illustrate the same 0                learning a As class
                                                                                                                                     tribution                                      0 computed fro
                                        • and are four illustrateLocal SimpleImp. theasimple difference locallythe same0 scene set. eachthe modes of the empiricalcomputed f
                                            ourImp. the medievalthe Simple with 1, Imp.Map (LSDMap) us-
                                        • the the
                                             • so-called
edieval impressions and their LDMaps.2Here ing so-called      based impressions. Imp. 1, different (LSDMap) us-
                                                                      impressions.
                                                  method00 Localmap, but Difference 2Map Imp. 316
                                                            distance same sceneDifference and
                                                                                                                  0illustrate
                                                                                                                                        scene with
                                                                                                                                    tribution with As the easy of the dissim 16 distribution
                                                                                                                                     learning for a different Csim and C empirical distributi
                                                                                                                                                          class                      is
                                                                                                                                                                                      16
ure andimpressions. Imp. Imp.Imp.d’illustrations anciennes.(F, G)imagesdifferencelocally learning ladefined, anmodesand efficient classification me
f medieval impressions. Imp. 1, Imp. 2 and Imp.33 illustrate the same scene with a different b 16 c représentent
   grass 7.9 – Comparaisonillustrates
                                    4                        20
medieval helmets Imp. 3. 3. 1, 4 illustrates a a distinctscene.
                    in Imp.                                  scene.                   with
                                                              20Local Simple Difference Map a,
                                                                                                                                     quite well
                                                                                                                                        20
                                                                                    Les simple ∩ W − Get W |,us- learning set.mêmeanmodesand efficient classification m
                                        • ing instead ofcthe HD: but with la = |F difference locally                                     20
 ons anciennes. Les images a, bdistance map, H SD W the même (LSDMap)
ass and helmets in
 t scene.
 scene.
                            Imp.            the ing the distance map, but with the simple
                                                  so-called
                                                  distinct
                                                 the et 18 représentent
                                                              18
                                                              18                                               14
                                                                                                                 14
                                                                                                                 ∩                  quite well defined, an easy method. empirical distributi
                                                                                                                                     quite maximum likelihood and the
                                                                                                                                         the
                                                                                                                                         18
                                                                                                                                        18
                                                                                                                                         18           As the easy of efficient 14
                                                                                                                                     is 18 well defined,                               14
                                                                                                                                                                                    classification
                                                                                                                                                                                    16
 e. (e) CDLa,b ; (f) CDLa,c ;insteadglobal the map,SD W (F, G)La=comparaisonW |, scènes16 well defined, an easymethod.
                                             (g) CDL16 HD: H but with . G) |F difference W de
                                             • instead of ; (h) CDL (F, simple W − G 12 |,
                                                             18
                                                             16
                                            ingthe of theHD,HD: H SD Wc,dthe = |F ∩∩ W − G 12locally
                                                  the distance16
                                                              a,d                                              16
                                                                                                                ∩ ∩
                                                                                                                  16                    16dissimilaires
                                                                                                                                    quite maximum likelihood and efficient 14
                                                                                                                                         16
                                                                                                                                    is 14 maximum likelihood method.
                                                                                                                                     is the
                                                                                                                                         the
                                                                                                                                         16
                                                                                                                                                                                      16
                                                                                                                                                                                      12
                                                                                                                                                                                     classification
                                                                                                                                                                                    12
La,d ; methods are c,d . La comparaison14HD, H SD W (F, G) =measure result1014 an image (case of the LDMap
          (h) CDL compared withinsteadglobal HD:             14de scènes dissimilaires
                                                              16
 arisondes valeurs importantes theones the sur whether the |F ∩ W g 14 W |, La comparaison likelihood method.                            14                                           14
duitmethods are comparedmeasuretherépartiesimage touteof the LDMap − Get12h). imageis 12 maximum de
son
                                             •         of 14
                                        • the global HD,
                                                      PHD,14 obtained
                                                             12
                                                              12                     l’image 27 result10 an
                                                                                                   (en          ∩is                      14
                                                                                                                                        14
                                                                                                                                        the
                                                                                                                                         12 of the LDMap
                                                                                                                                                                                    10
                                                                                                                                                                                    12
                                                                                                                                                                                      10
                                                                                                                                                                                      12
rties sur toute l’image (enresult isobtained comparaison de
   obtained        whether the with the g et 10 La (case
                                                   ones h).   an            whether the measure                12is
                                                                                                                 8                    (case
                                                                                                                                         12
                                                                                                                                        12
                                                                                                                                     6.3.2. Results
                                                                                                                                        10                                            8
Ancients Printings

        • LDM classification

            • similar

            • dissimilar

        ➡ SVM

               Bonne classification (en %)    CDL    DPP     DH    PHD     MHD
                       pour Csim              98     90     60     83      77
                     pour Cdissim             97     92     75     81      83

Table 7.1 – Performances en classification d’images similaires issues de la base d’impressions
anciennes. CDL = carte des dissimilarités locales, DPP : di érence pixel à pixel, DH : distance
de Hausdor , PHD : distance de Hausdor partielle, MHD : distance de Hausdor modifiée
(voir 7.2.1.4).
                                   [Baudrier PhD]
                                              28
Tumor Evolution




                t1                    t2              t3
                (a)                  (b)             (c)
                          ?                     ?
                          Fig. 2.   Segmented MRI.
7.12 – Un exemple de la segmentation d’une tumeur. Seule une coupe d’u
 représentée, à trois dates di érentes.
        values in (f) do not reflect et al. 2007] in this case. As
                         [Nicolier the similarity
        a short conclusion, the LDMap is a useful tool for non-
                                     29
(S1) Coupes de la segmentation 1
                                             A. Segmentation Method R ESULTS
                                                                        III.
                                                                                                                   using SVM with RBF kernel.
                                                                                                                                             (j)
                                                              Tumor Evolution
                                             A. MRI images are acquired on a 1.5T GE (General
                                                  Segmentation Method
                                             Electric Co.) machine using an axial1.5T IR (Inversion
                                                                                     on a 3D Slices 18 to 23 (a-f) of the Local Distance Volu
                                                 MRI images are acquired Fig. 5. GE (General
                                             Recuperation) machine using an axialan axial FSE (Fast
                                             Electric Co.) T1-weighted sequence, 3D IR (Inversion
                                             Spin Echo) T2-weighted, ansequence, anPD-weighted 3) and 2 (fig 4). The distances are absolute
                                                                                    volumes 1 (fig se-
                                             Recuperation) T1-weighted axial FSE axial FSE (Fast
                                             quence and T2-weighted, an axial FSE examination, we distance histogram (logarithmic scale in g
                                             Spin Echo) an axial FLAIR. eq. one PD-weighted se-
                                                                                    For (3). (j) is the                       (a)                 (b)                    (c)
                                             have 24and an axial FLAIR.signals with a voxel size
                                             quence slices of the four colormap of images (a-f).
                                                                                    For one examination, we
                                             of 0.47 ⇥slices ⇥ 5.5 mm3. signals with a and all size
                                                           0.47 of the four All the slices voxel the                          (a)                 (b)                    (c)
                                             have 24
                                             examinations are⇥ 5.5 mm3. All SPM software. all the
                                             of 0.47 ⇥ 0.47 registrated using the slices and
                                             examinations are registrated using SPM software. using
                                                We use the first examination for training SVM
                                             RBF kernelthe first examination for training SVM using
                                                 We use [10]. The training set was obtained from one
                           (a)               slice(b) using mouse to(c)
 (c)                                         RBF by                         choose ten pixels into the tumour
                                                     kernel [10]. The training set was obtained from one                      (d)                 (e)                    (f)
                           (a)               and (b) outside. We perform theten pixels into the tumour
                                             sliceten using mouse to choose first segmentation of this
                                                     by                   (c)
 (c)
                                             volume by usingWe perform the first segmentation of this Fig. 4. Segmentation of the de (e) volume (slices from(f) to 23, a-f)
                                             and (b) outside. the SVM model obtained. So, we build using SVM with RBF kernel. second segmentation 18
                                                                                                                              (d) Coupes
                                                                                                                               (S2)                la                     2
 (c)        t1             (a)                      ten                   (c)hundred points into the tumour
                                             automatically about one model obtained. So, we build Fig. 4. Segmentation of the second volume (slices from 18 to 23, a-f)
                                             volume by using the SVM
his case. As                                 and outside from all one hundred slices. into retraining a using SVM with RBF kernel.
                                             automatically about the tumoral points We the tumour
                                             second SVM fromuse it fortumoral slices. Wesegmentation                                                            (a)                   (b)
 ol for non-
his case. As                                 and outside and all the perform a second retraining a
                                             for improve the first it for perform this last SVM model,                  As a true distance is used to compute the LDV, the
 ). It is non-
     for thus
 ol case. As               (d)               second SVM and use result. With a second segmentation
                                                   (e)                     (f)
his                                          we perform the segmentationWith                                        given scalar are true physical distance in mm. The given
 ). It is non-
          thus             (d)               for improve the first result. of others examinations. At
                  Fig. 3. Segmentation of the first volume (slices from (f) to 23, a-f) this last SVM model,
                                                   (e)                     18                                          As a true distance is used to compute the LDV, the
 ol for           using SVM with RBF kernel. eachperform the segmentation of others examinations. At given scalar are true physical there are mm. more low
                                             we segmentation of examination, we use this 2 steps
                                                                                                                    distances histogram indicates distance inmuch The given
 ). It is thus             (d) Coupesprocess for improve of examination, we use this 2 steps distances than (b) distances. This a coherent fact as non-
                  Fig. 3. Segmentation of thede (e) segmentation(f) to 23, Fig 2 contains an example
                            (S1)             each la  segmentation the 1
                                                first volume (slices from 18 result. a-f)                        (a) distances histogram indicates there are much more low
                                                                                                                                     high                 (c)
                  using SVM with RBF kernel.                                                                        zero LDV values aredistances. in theaintersection of as non-
                  Fig. 3. Segmentation of thede la obtained segmentation. All the nine slices of two
                                                 the for (slices from result. a-f)
                                             process segmentation18                                                 distances        high obtained This coherent fact the two
                            (S1) Coupesof first volumeimprove the 1 to 23, Fig 2 contains an example volumes. than intersection is locally filled with increasing
                                             segmented volumes are given All the and slices of two zero LDVThe are obtained in the intersection of the two
                  using SVM with RBF kernel. the obtained segmentation. in figs 3 nine 4.
                                             of                                                                                  values                         (d)                   (e)
 E (General                                                                                                         values, starting from zero locally filledmaximum local
                                             segmented volumesDetails  are given in figs 3 and 4.                    volumes. The intersection is up to the with increasing
 E (Inversion                                B. Implementation                                                      distance starting from volumes. to the maximum 7. Us    Fig.
     (General
 l FSE (Fast                                                                        Fig. 6. a new mageJ is 15.56mm. This represent the higher straight distance
                                                                                                                    values, between the zero the The maximum tumor hasvo
                                                                                                  A three-dimensional view of                        up LDV between re           local
                                                                                                                                                                             distance
 E (Inversion
     (General                                B. The computation DetailsLDV is done with
                                                  Implementation of the                                             distance between the volumes. The maximum has progresse  distance
 leighted se-
    FSE (Fast
R (Inversion
                                                                                    2.
                                             plugin computation2GHz opteron, donecomparison mageJ between the two volumes. the higher straight directed dista
                                                 The [6]. With a of the LDV is the with a new of the is 15.56mm. This represent
                                                                                                                (d)                  (e)                  (f)                distance
            t
weighted we 2
 ination, se-
 l voxel (Fast
    FSE
                           (a)                     (b) ⇥ 512 ⇥ 9 volumes is done in 39 seconds.
                                             plugin [6].
                                                                          (c)                                          The proposed Local Distance Volume can be used to
                                             two 512 With a 2GHz opteron, the comparison of the between the two volumes.                                                    and 4). (b) is
                                                                                                                                                                                       (j)
 ination, size
            we             (a)
                                                                                                       (VDM) - coupes duprecisely the variations between two volumes. S
                                                                                                                    track more volume des dissimilarités can be used to
                                                                                                                                                                     locales entre
weighted these-
 and all size                                two (b) ⇥                    (c)
                                             C. Results 512 ⇥ 9 volumes is done in 39 seconds.
                                                    512                                                                The proposed Local Distance Volume
   voxel we
 ination,
                                                                                                                                                      Fig. 5. Slices 18 to 23 (a-f) of the
                                                                                                                    The Hausdorff Distance in a window (eq. (3)) is defined as
                                                                                                                    track more precisely the variations between two2 volumes. ds
                                             C.The LDV is computed between Figure 1 and – Exemple de volume des dissimilarités (j) is the distance histogram (l
                                                                                         volumes 7.13 2. The the maximum of two directed distance. In(3)) is Les deux
                                                                                                                                                               locales.
 are.
 and all size              (a)                     (b)                    (c)                                                                         volumes 1 (fig 3) and (fig 4). The
   voxel the
 SVM using
                                                  Results                                                           The Hausdorff Distance in a window (eq. the present case
                                                                                                                                                      eq. (3).             defined as
  are.
 and all one                                 results LDVpresented in betweenS2)the z-resolution is L’histogramme indique la useful information.(a-f). (A, B)
                                                        are is computed fig 5. As sont 1 and 2. The the maximum of two directed distance.of imagespresent case(e
                                                                                                  comparées. the directed distances carry répartition des distances
                                                                                clearly seen (by high negative distances).                            colormap            hW
  d from the
                                                                                                 Local Dissimilary Volume
                                                 The                                     volumes                                                                 In the
 SVM using
  are. tumour                                slightly greather than the xfigy 5. As the (with a ratio of carry the information on voxels sont expriméesW (A, B)
                                             results are presented in               resolutions z-resolution is the directedniveaux de gris, present in vol. 1h ennot in
                                                                                        Les distances, traduites par des distances carry useful information. and mm.
                                                                                                                                      (j)
  the
  d from one
 SVMof this
         using             (d)               11.7), the obtained distance depends only(with a ratiothe vol. 2. SymmetricallyonW (B, A) carry in vol. 1 and not on
                                                   (e)                     (f)                                                  information h voxels Volume the information in
                                             slightly greather than the x y resolutions lightly on of carry the (a-f) of the Local Distance present between
ationtumour
   the                                                                                                Fig. 5. Slices 18 to 23
                                             z-axis information. distance dependsobtained distance is voxels present indistances andabsolute accordinginformation B)
                                                                      Only when the only lightly                    vol. 2. (fig 4). The vol. hWare not carry the to hW (A, on
                                                                                                                                             2 (B, A) in vol. 1. So
 o, from this
  d we build
           one             (d) Coupesgreathersegmentation the z-information has beenon the(fig 3) and 2 Symmetricallytumor has regressed and h (B, A)
                  Fig. 4. Segmentation of the11.7), the obtained from(f) to 23, a-f)
                            (S2)              de la                         2                         volumes 1
   the  of
ationtumour
  the tumour      using SVM with RBF kernel.
                                                   (e) than 11.7mm, 18
                                               second volume (slices
                  Fig. 4. Segmentation of the de (e) volume (slices froma18 to 23, a-f)
                                                                                                                        IV. CONCLUSION
                                             z-axis information. Only when the obtained distance (j) is the distance histogram the 2 and notinin vol. 1. the hW (A, B)
                                                                                                           taken indicates where (logarithmic scale gray) and So W
                                                                                                      eq. (3). is   voxels present in vol.
 ation build
 o, weof this              (d) Coupesinto account. Fig 6 is (f) z-information has been taken images (a-f). where the tumor has regressedillustrated(B, fig.
                            (S2)              second segmentation 2
                                                    la than 11.7mm, the
                                             greather                                                 colormap of
                                                                             three-dimensional representation where the tumor has progressed. This is and hW in A)
                                                                                                                    indicates
 retraining a
  the tumour      using SVM with RBF kernel.
 o, we build                                 of the LDV. Fig is 18 to 23, a-f)
                  Fig. 4. Segmentation of theinto account. (slices6from a three-dimensional representation
                                              second volume (a)                       (b)                (c)                                      97
                                                                                                                    7 and fig. 8. The has progressed. This central occlusion is
                                                                                                                    where the tumor augmentation of the is illustrated in fig.
egmentation
 retraining a
 VM tumour
  the model,      using SVM with RBF kernel. the LDV.
                                             of
                     As a true distance is used to compute the LDV, the               A distance measure between volumes has
                                                                                             30
                                                                                                                    7 and fig. 8. The augmentation of the central occlusion is
Binary Pattern Localization


                x


          y
                             P    I(x,y)
              I(x,y)

P

                            CDLP,I(x,y)

                       I



                       31
Binary Pattern Localization

  Local dissimilarities aggregation :

                            XX
                 MDGI,P =                 CDLI,P (k, l)
                            k        l


            with CDLI,P = I.TDP + P.TDI

                 ) DI,P = TD2            P +I   TD2
                            I                     P           sum of two
                                                          oriented measures
Chamfer score [Borgefors,
   1988]: how much
    I looks like à P?

                                32
Binary Pattern Localization : Example




                                        Fig. 2.Chamfer score                               MDG
                                                 In (c), image response by Borgefors chamfer matcher. – In (d), image
                                        obtained with symmetric LDM-matcher. – A good match with the reference
                                        pattern is reported by low values (with dark gray levels).
ce pattern, the ideal location in (a)

                                                            33
Binary Pattern Localization : Example

         I




      [Morain-Nicolier et al. 2009]
                   34
('%+*
    "#$
          Brain Internal Structures Segmentation
                                                                                                 !
                                       (',-*(','*
                                                                                             !
                                                                                    !        !
!                                                                               !
                                                                                !




                    !
            /01!!                                                                                                                                           !
                                                                                                                                                       !!
                              "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$!
                              "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$!
                             "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$!
                                                                                                             "#$!               !"%$!     !"&$         !
                            '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08!
                                                                              "#$!
                                                                               "#$!        !"%$!
                                                                                            !"%$!    !"&$
                                                                                                       !"&$                                      ! !
                            '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08!
                           '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08!
                                    35
Brain Internal Structures Segmentation


                                           caudate
            putamen                                                      putamen




                                          thalamus

"#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$!
                                                  36
Brain Internal Structures Segmentation
                                                                      !
                                          "#.        !
!                              !
!
!
!
!
!                                   Deformation ?
!
!
!
           Atlas                            %/'!         "#$!
                                                                 Test Volume
                                                                      %+'

                   !                                      !
    %&'!               !"($!       "#. !!                       )*+       %/'!   !%+'
                                                37
           !"#$!                    !!!
Brain Internal Structures Segmentation

Optimal transformation :
                                         regularization
           T ⇤ = argminT 2 {Esim (B, A T ) + Ereg (T )}

                         similarity measure
Classic solution :
                               1               2
               Esim (B, A T ) = kB      A Tk
                               2
Displacement field :
                         (A T   B)(p)
         u(p) =                            2 rB(p)
                  (A T    B)2 (p) + krB(p)k




                                38
representation of the corresponding structure in the deformed deformed shape map shapeaccording to the following p
                       representation of the corresponding structure in the        unified     unified MðpÞ map MðpÞ according to the
                                                                                           8
          atlas after the transformation T. Under the constraint of the shape the shape > Fs ðpÞ
                       atlas after the transformation T. Under the constraint of                     8
                                                                                           <  i      > Fsif Fsi ðpÞ Z0 Fsi ðpÞ Z0
                                                                                                     < i
                                                                                                          ðpÞ         if
          similarity term, the optimal transform would leadwould lead to the final maxðF ðpÞÞ maxðF ðpÞ o0if and ðpÞ o0F ðpÞÞj
                       similarity term, the optimal transform to the final

 Brain Internal Structures Segmentation
                                                                                   MðpÞ ¼     MðpÞs¼
                                                                                                   i
                                                                                                         if Fssi ðpÞÞ
                                                                                                               i
                                                                                                                         Fsi jmaxð and
                                                                                                                                    si
          segmented structure shape as closer as as closer asatlas.in the atlas. Therefore >
                       segmented structure shape that in the that Therefore                :0        >
                                                                                                     : 0 if F ðpÞ o0if and ðpÞ o0F ðpÞÞj
                                                                                                              si         Fsi jmaxð and
                                                                                                                                    si
          the above overall costoverall cost function can be modified as
                       the above function can be modified as
                                                                                            where e is the threshold, ethreshold, e ¼ Fsi ðpÞÞg. Ther
          E ¼ Esim ðB; A3TÞ¼ Esim ðB; A3TÞ þ Ereg ðB; A3TÞ þ Eshape ðFS ðAÞ; Fshape ðFSþ Ereg ðTÞ
                         E þ Ereg ðTÞ ¼ Eintensity ðTÞ ¼ Eintensity ðB; A3TÞ þ ESSD
                                                                                                         where e is the ¼ mini fmaxp ð mini fmaxp ðF
                                         SSD              SSD SSD               S ðA3TÞÞ ðAÞ; FS ðA3TÞÞ þ Ereg ðTÞ
                                                                                            in Eqs. (7),in Eqs. (7), (8)should be should be rep
                                                                                                           (8) and (10) and (10) replaced by M
                                                                                    ð8Þ          ð8Þ
                                                                                            implementation procedure. procedure.
                                                                                                         implementation
              By extending the originalthe original Demons registration[25],
                              By extending Demons registration algorithm algorithm [25],

Shape constraint introduction :
          an optimal an optimal solution can be obtained by the alternating strategy.
                          solution can be obtained by the alternating strategy.
          The displacement vectors related to the intensity and the shape at
                          The displacement vectors related to the intensity and the shape at
                                                                                            3.2. Topology correction strategy
                                                                                                         3.2. Topology correction strategy

          the point p theinterest regions are regions are
                          of point p of interest
                                                                                                As is mentioned, mentioned, topology preservatio
                                                                                                             As is topology preservation of a defor
                                       ðA3TðpÞÀBðpÞÞðA3TðpÞÀBðpÞÞ                           is important in registration-segmentation method
                                                                                                         is important in registration-segmentati
          uintensity ðpÞ ¼ À
                          uintensity ðpÞ ¼ À 2               rBðpÞ       rBðpÞ      ð9Þ          ð9Þ
                                  8          ðA3TðpÞÀBðpÞÞ 22
                              ðA3TðpÞÀBðpÞÞ þ JrBðpÞJ þ JrBðpÞJ        2                    brain case.brain case. bijectivity bijectivity and
                                                                                                            Although Although and smoothing
                                                                                            adopted in optimizing the cost function like Eq. (4) l
                                                                                                         adopted in optimizing the cost function o
                                  >0
                                  <
          ushape ðpÞ ¼ À shape ðpÞ ¼ À
                          u
                                       ðFS ðA3TðpÞÞÀFSSðA3TðpÞÞÀFS ðAðpÞÞÞ
                                                    ð F ðAðpÞÞÞ
                                                      2           2  2
                                                                                   p⇥C      helpful for preventing topology change, it ischange, it
                                                                       rFS ðAðpÞÞ 2 rFS ðAðpÞÞ           helpful for preventing topology hard to b
                           ðFS ðA3TðpÞÞÀFSSðA3TðpÞÞÀFrFS ðAðpÞÞJ rFS ðAðpÞÞJ
                                           ðF ðAðpÞÞÞ þJ S ðAðpÞÞÞ þJ                       theory. The topology preservation problem of t
                                                                                                         theory. The topology preservation pro

                          S  (p) = d(p, C)                                         p⇥S
                                                                                   ð10Þ     algorithm has been investigated in recent years [3
                                                                                               ð10Þ      algorithm has been investigated in rece
                                                                                            cases without topology preservation using this metho
                                                                                                         cases without topology preservation usin
                                  >
                                  :
          The combined displacement vector is vector is
                          The combined displacement                                         found in some published reliable experiments [3
                                                                                                         found in some published reliable exp
                                     d(p, C)
          uðpÞ ¼ ð1ÀbuðpÞ ¼ ð1ÀbÞuintensityðpÞ þ bushape ðpÞ
                          Þuintensity ðpÞ þ bushape                                p ⇥ ¬S
                                                                                   ð11Þ     experiments. By optimizing optimizing the cost fu
                                                                                               ð11Þ      experiments. By the cost function over
                                                                                            diffeomorphism, a diffeomorphic Demons algorith
                                                                                                         diffeomorphism, a diffeomorphic Demo
                                                                                            posed [36,37]. In this paper, a different simple topolog
                                                                                                         posed [36,37]. In this paper, a different sim
                                                                                            method is proposedis proposed based onfield vector
                                                                                                         method based on the vector the analys
                                                                                                Let T ¼ ðX; Y; ZÞ T ¼ ðX; Y; ZÞ deformation field, whe
                                                                                                             Let denote the denote the deformatio
                                                                                                         the new point p of point p ðx; y; zÞ afte
                                                                                            the new position of position ðx; y; zÞ after deformati




                                                                                                                           1             β1            β


                                                                                                                         0.5            0.5

                                                                                                                                       −       +      −       +
                                                                                                                                                                   x
                                                                                                                                      x0 x 0 x 0     x0 x 0 x 0
          Fig. 1. An example of the shape representationrepresentation (a) (b) its shape (b) its shape
                        Fig. 1. An example of the shape (a) the putamen the putamen
                               S
          distance representationrepresentation map.
                        distance map.
                                                                                            S                                       Fig. 2. The function parameter b.
                                                                                                                     Fig. 2. The function of the balance of the balance




                                                            39
Brain Internal Structures Segmentation

Shape cost function :

                forme                1                               2
               Esim       (A, A T ) = k            A        A   Tk
                                     2
Displacement field :
             u(p) = (1          )uintensite (p) + uforme (p)

with
                                    (A T          B)(p)
       uintensite (p) =                                          2 rB(p)
                          (A T       B)2 (p) + krB(p)k
                                (   A T           A )(p)
       uforme (p) =
                                          2 (p)                  2r      A (p)
                      (   A T        A)           + kr     A (p)k




                                      40
&


                     Brain Internal Structures Segmentation
                          !"#$%$&'($!)'*!& !"#$%$&'($!)'*!&



 /.&18&6;/&12<=<87>&<86/8:<6?&97:/.&818+2<=<.&7>=12<6;3&:54/2<341:/.&9?&<6:&9158.72?@&%6&A78&
   ./0123/.&45673/8&97:/.&18&6;/&12<=<87>&<86/8:<6?&97:/.&818+2<=<.&7>=12<6;3&:54/2<341:/.&9?&<6:&9158.72?@&%6&A78&

376A;&9/6B//8&6;/&>/06&76>7:&45673/8&78.&<6:&./0123/.&C/2:<18&<:&816&C/2?&=11.@&D8./2&6;/&
 9/&://8&6;76&6;/&:;74/&376A;&9/6B//8&6;/&>/06&76>7:&45673/8&78.&<6:&./0123/.&C/2:<18&<:&816&C/2?&=11.@&D8./2&6;/&

;&6;/&<86/8:<6?&78.&6;/&:;74/F&6;/&2/0/2/8A/&:;74/&78.&6;/&672=/6&:;74/&B<>>&376A;&7:&35A;&7:&
   E1<86&A18:627<8:&10&916;&6;/&<86/8:<6?&78.&6;/&:;74/F&6;/&2/0/2/8A/&:;74/&78.&6;/&672=/6&:;74/&B<>>&376A;&7:&35A;&7:&

<8=&6;/&42141:/.&3/6;1.&B<6;&6;/&<86/=276/.&:;74/&3/62<AF&7&9/66/2&:/=3/8676<18&<:&1967<8/.F&
  41::<9>/@&!;/2/012/F&5:<8=&6;/&42141:/.&3/6;1.&B<6;&6;/&<86/=276/.&:;74/&3/62<AF&7&9/66/2&:/=3/8676<18&<:&1967<8/.F&

=52/&H@&IJ0K@&
   B;<A;&<:&:;1B/.&<8&G<=52/&H@&IJ0K@&

        &
                      Volume                                             segmentation                                    putamen shape&
                                                                                      Figure 8.4 – Exemple de segmentation obtenue avec la con
                                                                                G<=52/H@& I& $/=3/8676<18& 2/:5>6:L& A13472<:18& 9/6B//8& M/318:& 818+2<=<.& 2/=<:
                                                                                       rence (atlas) où les structures d’intérêt sont surlignées ; (b) re
                                                                                2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/
                                                                                       gauche de l’atlas ; (c) image à segmenter ; (d) segmentation
                                                                                :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&4
                                                                                       d’intensité ; (e) représentation de forme du putamen déform
                                                                                6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652
                                                                                       obtenue en incluant la contrainte de forme.
                                                                                6;/&42141:/.&3/6;1.@&

                                                                         &            &            &
                                         &                           &
                                                                                          *1347276<C/& :65.</:& 9/6B//8& 6;/& 12<=<87>& M/318:& 3/6;1.& 78.& 6;
8& 2/:5>6:L&Figure 8.4 AtlasM/318:& 818+2<=<.& 2/=<:6276<18& 78.& 818+2<=<.& 2/=<:6276<18& 78.& 6;/& 42141:/.& 3/6;1.@& réfé-
ExempleA13472<:18& 9/6B//8& obtenue segmentation M/318:& 6;/& 42141:/.& 3/6;1.@& réfé-
    G<=52/H@& de$/=3/8676<18& 2/:5>6:L& A13472<:18& la contrainte de formela (a) image J7K& 6;/&
                         – Exemple de avec 9/6B//8& obtenue avec : contrainte de forme : (a) image J7K& 6;/&
              I& segmentation                                                                                                                       &
                                                                       putamen shape
ù les structures d’intérêtles structures d’intérêt sont surlignées ;forme du putamen de forme du putamen
          rence (atlas) où sont surlignées ; (b) représentation de (b) représentation                                        segmentation
41:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&45673/8&<8&6;/&76>7:&                &
   2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&45673/8&<8&6;/&76>7:&
                                                                                    :/=3/86<8=&927<8&<86/287>&:625A652/:&0213&7>>&C1>53/:@&)/:5>6&18&7&6?4<A7
           gauche de l’atlas ; (c) image à segmenter ; (d) segmentation obtenue avec la seule contrainte
las ; (c) image à segmenter ; (d) segmentation obtenue avec la ExempleA13472<:18&
                                                             Figure 8.4 – seule contrainte
   :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2<=<.&2/=<:6276<18&J/K& la contrainte de forme : (
                                                       G<=52/H@& I& $/=3/8676<18& 2/:5>6:L& de segmentation obtenue avec
52/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2<=<.&2/=<:6276<18&J/K& 9/6B//8& M/318:& 818+2<=<.& 2/=<:6276<18& 78.& 6;/& 42141:/
 ) représentation de (e) représentation de forme rencede (d) ; où les structures d’intérêt sont surlignées ; (b) représentation de form
           d’intensité ; forme du putamen déformé du putamen déformé issu de (d) ; (f) segmentation
                                                             issu (atlas) (f) segmentation
                                                                               6;2//&4>78/:&:54/241:/.&B<6;&6;/&:/=3/86/.&:59A126<A7>&:625A652/:&78.&6;/&0
                                                      2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&4
   6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=3/8676<18&97:/.&18&
 10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=3/8676<18&97:/.&18&
cluant laobtenue en incluant la contrainte de forme.
            contrainte de forme.                             gauche de l’atlas ; (c) image à segmenter ; (d) segmentation obtenue avec la se
   6;/&42141:/.&3/6;1.@&                                                                                                                       114
                                                      :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2
                                                             d’intensité ; (e) représentation de forme du putamen déformé issu de (d) ; (f)
                                                                               41
         &                                                   obtenue en incluant la contrainte de forme.                                    +&,-&+&
                                                      6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=
Brain Internal Structures Segmentation

            Shape constraint contribution (15 segmentations) :



         Structure      Caudate g.     Caudate d.     Putamen g.     Putamen d.      Thalam g.       Thalam d.
          Méthode      avec   sans    avec    sans    avec  sans     avec  sans     avec   sans     avec   sans
            max       0,812 0,729    0,813 0,691     0,831 0,752    0,829 0,759    0,857 0,806     0,850 0,788
            min       0,539 0,537    0,567 0,571     0,694 0,633    0,743 0,666    0,735 0,680     0,747 0,665
            moy.      0,739 0,699    0,717 0,658     0,767 0,725    0,783 0,739    0,809 0,740     0,801 0,730
         écart-type   0,072 0,049    0,062 0,031     0,037 0,029    0,031 0,027    0,031 0,032     0,030 0,032

able 8.2 – Comparaison quantitative des segmentations obtenues avec et sans contrainte de forme (ligne « Méthode ») po
usieurs structures. Les valeurs minimale, maximale et moyenne de l’indice sont données. En gras sont indiquées les meille
sultats.                                                  2 ⇥ VP
                                         =
                                                2 ⇥ VP + FN + FP



                          [Lin PhD - Pattern Recognition 2010]
                                                           42
Local Similarities,
Future Directions




        43
Gray-Level Local Dissimilarity

             Distance
            transforms

   CDLA,B (p) = |A    B| max (TDA , TDB )

 Distance transform generalizations :
              1
dGW D (a, b) = (I(a) + I(b)) ⇥ ||a b||                  CDL
              2 q                                SSIM
                               2
dW DOCS (a, b) =   (I(a) + I(b)) + ||a   b||2

 Foreground / background
    distinction needed

                     [Morain-Nicolier et al. 2009]
                                            44
Gray-Level Local Dissimilarity

            Distance
           transforms

  CDLA,B (p) = |A          B| max (TDA , TDB )
   Hypograph [Molchanov, 2003] :
   (other solutions are available)
   It = {(p, t) ⇤ R2        R : I(p) ⇥ t}
                           b
                           X
                   1
       TDI =                     TDIi   i
               b       a   i=a


No foreground / background

      [Work in Progress - Morain-Nicolier / Bouchot]
                                                 45
2. Outils d’analyse de séquences d’images fonctionnelles


Gray-Level Loc. Dissim. : application
     La radiothérapie et le suivi des patients pendant et après traitement sont l’unes des
     applications bénéficiant des séquences d’images fonctionnelles. Typiquement, pour un
     examen, nous pouvons avoir plusieurs centaines d’images. Les outils d’analyse sont alors
     nécessaires pour extraire efficacement l’information pertinente des images sous forme

                              18FDG PET Images
     synthétique et faciliter son stockage.


                                              Volume d’images
                                                                   t1                       t2         t3




             y                                    …                                                z


                          x
                                                                                     t
                                                                   t4                        t5             t6

                      Figure 6. Quantité énorme de données pour un seul examen




t1               t2                 t3                             t7                        t8             t9




                                                                   t10                       t11
t4               t5                      t6

                                                        Figure. Séquence d’images dynamiques TEP
                                                  46
Gray-Level Loc. Dissim. : application

               18FDG PET Images




        8000

        7000

        6000

        5000
                                                              Tumeur
        4000
                                                              Aorte
        3000

        2000

        1000

           0
               1   2   3    4   5   6   7   8   9   10   11




                           47
Gray-Level Local Dissim. : application




                                                            Figure. Résultat de la segmentation



                          LDM between mean
Figure. Résultat de la carte de la dissimilarité
                                                                              Segmentation
                               images



                                           [Ketata PhD - in progress]
                                                       48
fenêtre ;
(9.11)      : lorsque la fenêtre croît, le mesure locale croît. mesure locale ne repose pas sur les propriétés de
                   Gray-Leveldéfinir une dépendent de la partir d’une mesure quelconque sous ré
                                           Local Dissimilarity Dans le
                                  Cependant le principe de la
De nombreux critères di érents sont envisageables et mesure locale à mesure choisie.
                               possible de
cas de la distance de Hausdor , le critère est :propriétés [Baudrier, la fenêtre est maximale et
                              vérifie certaines si la mesure dans 2005].
que la valeur maximale K n’est pas atteinte, alors la fenêtre est agrandie. Ce critère convient
bien pour une distance max-min. Il peut Carte des dissimilarités locales généralisée moins
              Other internal 9.1.2.1
                                        être assoupli pour des mesures qui atteignent
facilement la valeur maximale. Un exemple 9.2.critère possible est le suivant. et B et W (A, B) une mesure de
                               Théorème de Soient deux images binaires A
                  measures dans une fenêtre W , qui vérifie les propriétés suivantes :
                               locale,
Corollaire 9.3. Soit un paramètre           ⌥ [0, 1], si la mesure dans la fenêtre est supérieure à
 M , où M est la valeur maximale possible dans la fenêtre et que(A, B) = 0 maximale K n’est W
                                                              W la valeur ⇧⌃ A    W =B
pas atteinte, alors la fenêtre est agrandie.                  K > 0,    W (A, B)   K,
                                                                       W1 ⇤ W2 ⌃    W1 (A, B)        W2 (A, B),
Algorithme Pour chaque pixel p, faire
  1. n ⌅ k (initialisation de lail est alorsla fenêtre) définir un critère pour fixer la mesure locale des dissimila
                                 taille de possible de
  2. tant que    W (p,n) (A, B) ⇥ M , faire
                                                                Compatible with pixel to
                                   L’interprétation des propriétés est la suivante :
      n⌅n+1                        (9.9)
                                                                   pixel diffs (e.g. PSNR)
                                               : si la valeur de la mesure locale est nulle, alors les extraits des deux
  3. CDLA,B (p) =       W (p,n 1) (A, B)       identiques ;
                                   (9.10)      : les valeurs de la mesure locale sont majorées par une valeur indépe
                                               fenêtre ;
                                   (9.11)      : lorsque la fenêtre croît, le mesure locale croît.
                                                 128
                                   De nombreux critères di érents sont envisageables et dépendent de la mesure ch
                                   cas de la distance de Hausdor , le critère est : si la mesure dans la fenêtre est
                                   que la valeur maximale K n’est pas atteinte, alors la fenêtre est agrandie. Ce cri
                                                      49
Gray-Level Local Dissimilarity

          other internal                       • Segmentations
         representations
                                               • Sparse
                                                 representation
               ✓                          ◆
DH(A, B) = max max d(p, A), max d(p, B)
                   p2A      p2B                • SIFT

     Image = set of pixels
                                               • internal distance
   Image = set of graphical                      needed = distance
         elements                                between two
                                                 elements (x, y,
                                                 small image/

                                          50
Non-Metric Similarities



   a work in progress ...




             51
Non-Metric Similarities,
       Why ?




           52
Binary Pattern Localization


                x


          y
                             P    I(x,y)
              I(x,y)

P

                            CDLP,I(x,y)

                       I



                       53
Binary Pattern Localization

  Local dissimilarites aggregation :

                           XX
                MDGI,P =                  CDLI,P (k, l)
                            k        l


            with CDLI,P = I.TDP + P.TDI

                ) DI,P = TD2             P +I   TD2
                           I                      P           sum of two
                                                          oriented measures
Chamfer score [Borgefors,
   1988]: how much
    I looks like à P?

                                54
Non-Metric Similarity


Some classical                 similarity = distance ?
similarities :
 •   Minkowski
                               Identity
 • Jeffrey divergence
                                    d(x, y) = 0 , x = y
 • χ2
                               Symmetry
 • Levenstein distance              d(x, y) = d(y, x)
 • Earth Mover Distance
                               Triangular inequality
 • Hausdorff distance
                                    d(x, z)  d(x, y) + d(y, z)
 • ...


                          55
Non-Metric Similarity : Psychological Aspects


                                       • Recognition task :
Identity
    d(x, y) = 0 , x = y                  P(A|A) < P(A|B)
Symmetry                                 ⇒ d(A,A) > d(A,B) !
    d(x, y) = d(y, x)
                                       • auto-similarity
Triangular inequality
    d(x, z)  d(x, y) + d(y, z)          = prototypality
                                         ≈ complexity,
                                         number of
                                         attributes, ...

                                  56
Non-Metric Similarity : Psychological Aspects


Identity
    d(x, y) = 0 , x = y

Symmetry
    d(x, y) = d(y, x)

Triangular inequality                    Prototypality ≈ «Good
    d(x, z)  d(x, y) + d(y, z)                  shape»
                                             [Tversky 1977]
                                       ⇒ symmetric, regular,
                                       stable, harmonious,
                                       homogeneous, ...
                                       [Gestalt]
                                  57
Non-Metric Similarity : Psychological Aspects


Identity
    d(x, y) = 0 , x = y

Symmetry
    d(x, y) = d(y, x)

Triangular inequality
    d(x, z)  d(x, y) + d(y, z)        B. Pitt looks like my brother

                  (B. Pitt is more prototypical)

                                       My brother looks like B. Pitt

                                  58
Non-Metric Similarity : Psychological Aspects


Identity
    d(x, y) = 0 , x = y

Symmetry
    d(x, y) = d(y, x)

Triangular inequality                [Veltkamp et Hagedoorn, 2000]
                     Figure 9.8 – Un exemple de violation de la transitivité de la
    d(x, z)  d(x, y) + d(y, z)

           9.2.4.3                     • Transitity not verified
                        Non-vérification de l’inégalité triangulaire
                                          • Suspicions on triangular
              Trouver des exemples inequality [Ashbyl’inégalité triangulaire
                                       de violation de et Perrin, 1988]
                                       ➡ inégalité à tester, si D est
           [Ashby et Perrin, 1988]. Cette 4 inequalities [Tversky] : une mesur
                                      «corner inequality»
           verse d’une ressemblance) est
                                     59
Non-Metric Similarities,
       How ?




           60
Non-Metric Similarity : How ?

Psychology inspired measures


              S(A, B) = f (A  B)        f (A   B)   ⇥f (B   A) [Tversky]
                    D(A, B) = F [d(A, B) + r(A) + c(B)]           [Nosofsky]

A connection with Local Dissimilarities :
          A                          B                                  A.TD(B)




                                                        B.TD(A)


        CRL(A, B) = AB max(TD¬A , TD¬B )             A.TDB    ⇥B.TDA




                                      61
Non-Metric Similarities,
     What for ?




           62
perform those with a higher weight on the target compound                         tives. For example, these actives may come from HTS screen-
                                                                               in terms of the ability to retrieve active analogues. This can                    ing or serendipity, and we want to quickly identify and test
                                                                               serve as evidence of the presence of asymmetry in chemical                        their analogues to confirm the series and hopefully find some



              NM Similarity : A Practical Motivation
                                                                               similarity measures. The observed asymmetry can be interpret-                     preliminary SARs. Then, highly symmetric similarity measures
                                                                               ed by the directionality or inequality that is inherent in a                      should be the choice for this purpose, based on the results of
                                                                               chemical similarity search: the probe compounds used in prac-                     this study. Another goal we often seek is to identify remotely
                                                                               tice are always active, whereas the target compounds can be                       similar analogues. For example, when we follow the lead struc-
                                                                               either active or inactive so that their unique structural descrip-                tures reported by our competitors, we may wish to identify
                                                                               tors may not be as important as those of the probe com-                           some new structures that are similar to these lead structures


         Let’s do some chimistry :
                                                                               pounds regarding their contribution to biological activity.                       so that they will have better chances of being active as well,
                                                                                  Figures 2 and 3 also clearly indicate that the degree of asym-                 yet not so similar that they fall under protection of the com-
                                                                               metry is positively correlated to the degree of similarity itself,                petitors’ patents. In this case, we now know highly asymmetric


         «similar structure» ≈ «similar» properties
                                                                               in general. In other words, the red region becomes ever more                      similarity measures should be adopted.
                                                                               inclined to the right side with an increasing number of nearest                      Asymmetry can be easily introduced into many other popu-
                                                                               neighbors. Therefore, to retrieve more remotely similar active                    lar similarity measures, such as that recently proposed by
                                                                               compounds, a more asymmetric similarity measure should be                         Flinger et al.[15] We expect to see more studies on this concept
                                                                               used, that is, more weight should be put on the probe com-                        and more applications of the related techniques in computer-
                                                                               pound. On the other hand, to retrieve more highly similar                         assisted drug discovery in the future.
                                                                               active compounds, approximately equal weights should be put




 Table 2. Optimal a values.[a]

                       MACCS                   TGD                  PDR-FP
 BEN                   0.6                     0.5                  –
 CAT                   0.6                     0.7                  –
 HH2                   0.8                     0.6                  –
 NNI                   0.2                     0.1                  –
 TNF                   0.6                     0.8                  –

 [a] a values producing minimal overlap between intraclass and class-NCI
 Tversky similarity value distributions are shown as determined by graphi-
 cal analysis of Figure 4. PDR-FP calculations are independent of a values
 because of its constant bit density. Therefore the overlap is also constant
 (see Figure 4 c).
                                                                               Figure 2. Hit-rate maps for the NCI anti-AIDS database using a) atom pairs, b) Daylight fingerprints, and c) MACCS keys as structural descriptors. Average hit
                                                                               rate is represented in the color scale shown.


        [Wang et al., 2007]                                                    ChemMedChem 2007, 2, 180 – 182      [Chen et al., 2007]
                                                                                                                            2007 Wiley-VCH Verlag GmbH  Co. KGaA, Weinheim                    www.chemmedchem.org                      181

tives including moderately active compounds (see Table 3).
These numbers were very similar but not identical to those re-
                                       S(A, B) = f (A  B)
ported by Chen and Brown, which we attribute to the use of                                    f (A                 B)               ⇥f (B                    A)
slightly different (updated) versions of NCI. We then calculated
fingerprint bit densities for active and inactive NCI compounds
(Table 3). For MACCS and TGD, on average five more bits were
set on in active than in inactive compounds, which rationalizes
the preference for a values greater than 0.5 and explains the
slight asymmetry observed in the hit-rate maps of Chen and                                63
Local and Non-Metric Similarities



         some conclusions




                64
Local Similarity

             Where is the information ?


• A good solution with Local Dissimilarity Map

• Global - local
  or
  Local - global ?


• Open problem
   • What is the local intrinsic scale of
     information in an image ?
                         65
Non-Metric Similarity



• Many problems are intrinsically asymmetric !
    • Stereovision : point correspondence
      (occlusions)
    • Database request (CBIR)
    • Pattern matching :




                      66
Non-Metric Similarity


• Solutions
 • Psychological high level models
    (simple rule : do not take into account only common
    information or missing information, but mix them -
    with orientation)
 • De-symmetrizing some measures
    (e.g. scalar product, pixel to pixel diff)
 • Using naturally asymmetric measures
   (e.g. conditional probability, ...)


                         67
Non-Metric Similarity




• Open problems
 • How to classify with such measures ?
   (SVM ? KNN ?)
 • How to make an efficient search [T. Skopal
   works] ?




                     68
Local Non-Metric Similarities




• High level LDM (pixel - graphical element) ?


• Semantic gap ?
  (working on similarity measures and not on
  descriptors)




                        69
Local Non-Metric Similarity




  frederic.nicolier@univ-reims.fr


      http://pixel-shaker.fr
(papers, discussions and reference
         implementation)




               70

More Related Content

PDF
Accelerometers to Augmented Reality
PDF
nternational Journal of Computational Engineering Research(IJCER)
PPTX
PDF
20140530.journal club
ZIP
ICPRAM 2012
PDF
20150703.journal club
PPT
Real-time Shadowing Techniques: Shadow Volumes
PDF
Clustered defered and forward shading
Accelerometers to Augmented Reality
nternational Journal of Computational Engineering Research(IJCER)
20140530.journal club
ICPRAM 2012
20150703.journal club
Real-time Shadowing Techniques: Shadow Volumes
Clustered defered and forward shading

What's hot (20)

PDF
Image Denoising Techniques Preserving Edges
PDF
A DIGITAL COLOR IMAGE WATERMARKING SYSTEM USING BLIND SOURCE SEPARATION
PDF
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
DOCX
Numerical darkfielddlhm riao_2019_jigs
PDF
Implementing kohonen's som with missing data in OTB
PPTX
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
PPT
Discrete cosine transform
PDF
Enhancement of SAR Imagery using DWT
PDF
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
PDF
Lightspeed Preprint
PPT
CS 354 GPU Architecture
PDF
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
PDF
Ad24210214
PDF
Pr045 deep lab_semantic_segmentation
PDF
A probabilistic model for recursive factorized image features ppt
PDF
Bft mr-clouds-of-clouds-discco2012 - navtalk
PPTX
DirectX 11 Rendering in Battlefield 3
PPTX
Quality enhamcment
PDF
Performance Analysis of Image Enhancement Using Dual-Tree Complex Wavelet Tra...
PDF
Image pcm 09
Image Denoising Techniques Preserving Edges
A DIGITAL COLOR IMAGE WATERMARKING SYSTEM USING BLIND SOURCE SEPARATION
EFFICIENT STEREO VIDEO ENCODING FOR MOBILE APPLICATIONS USING THE 3D+F CODEC
Numerical darkfielddlhm riao_2019_jigs
Implementing kohonen's som with missing data in OTB
DeepLab V3+: Encoder-Decoder with Atrous Separable Convolution for Semantic I...
Discrete cosine transform
Enhancement of SAR Imagery using DWT
Practical and Robust Stenciled Shadow Volumes for Hardware-Accelerated Rendering
Lightspeed Preprint
CS 354 GPU Architecture
Kernel Estimation of Videodeblurringalgorithm and Motion Compensation of Resi...
Ad24210214
Pr045 deep lab_semantic_segmentation
A probabilistic model for recursive factorized image features ppt
Bft mr-clouds-of-clouds-discco2012 - navtalk
DirectX 11 Rendering in Battlefield 3
Quality enhamcment
Performance Analysis of Image Enhancement Using Dual-Tree Complex Wavelet Tra...
Image pcm 09
Ad

Viewers also liked (20)

PDF
Practising Fourier Analysis with Digital Images
PDF
SRC - SAV - Système Visuel et Auditif Humain
PDF
GEII - Ma3 - Suites et séries
PDF
SRC - SAV - La lumière
PDF
GEII - Ma3 - Matrices
PDF
Mesures de dissimilarités locales et globales entre images, symétriques et as...
PDF
GEII - Ma3 - Représentations de Fourier et convolution
PDF
Capteurs de positions
PPTX
2 signaux et systèmes slideshare
PDF
Batel f re v66
PDF
Cours1
PPT
Ccna day5
PPT
Ccna day4
PPT
Ccna day2
PPT
Ccna day1
PPT
Ccna day3
PPT
Presentation wpf
PPTX
1 introduction générale à l'automatique slideshare
Practising Fourier Analysis with Digital Images
SRC - SAV - Système Visuel et Auditif Humain
GEII - Ma3 - Suites et séries
SRC - SAV - La lumière
GEII - Ma3 - Matrices
Mesures de dissimilarités locales et globales entre images, symétriques et as...
GEII - Ma3 - Représentations de Fourier et convolution
Capteurs de positions
2 signaux et systèmes slideshare
Batel f re v66
Cours1
Ccna day5
Ccna day4
Ccna day2
Ccna day1
Ccna day3
Presentation wpf
1 introduction générale à l'automatique slideshare
Ad

Similar to 2012.09.25 - Local and non-metric similarities between images - why, how and what for ? (20)

PDF
Manuscript document digitalization and recognition: a first approach
PDF
An Open Source solution for Three-Dimensional documentation: archaeological a...
PDF
Paper fingerprinting using alpha-masked image matching
PPT
Fingerprint High Level Classification
PDF
Fcv scene hebert
PDF
Is2415291534
PPT
Open source print quality software
PPT
Object based image analysis tools for opticks
PPTX
3rd Seminar
PPTX
3rd Seminar
PDF
SAL3D presentation - AQSENSE's 3D machine vision library
PDF
Structlight
PDF
GI2012 cajthaml-quality
PDF
clipping
PDF
PDF
Machine learning for high-speed corner detection
PDF
Lect11 clipping in3d
PDF
Ip unit 1
PDF
A Region-Based Randomized Voting Scheme for Stereo Matching
PDF
2008 brokerage 03 scalable 3 d models [compatibility mode]
Manuscript document digitalization and recognition: a first approach
An Open Source solution for Three-Dimensional documentation: archaeological a...
Paper fingerprinting using alpha-masked image matching
Fingerprint High Level Classification
Fcv scene hebert
Is2415291534
Open source print quality software
Object based image analysis tools for opticks
3rd Seminar
3rd Seminar
SAL3D presentation - AQSENSE's 3D machine vision library
Structlight
GI2012 cajthaml-quality
clipping
Machine learning for high-speed corner detection
Lect11 clipping in3d
Ip unit 1
A Region-Based Randomized Voting Scheme for Stereo Matching
2008 brokerage 03 scalable 3 d models [compatibility mode]

Recently uploaded (20)

PDF
Reach Out and Touch Someone: Haptics and Empathic Computing
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PDF
Encapsulation theory and applications.pdf
PPTX
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
PDF
Approach and Philosophy of On baking technology
PPTX
Spectroscopy.pptx food analysis technology
PPTX
MYSQL Presentation for SQL database connectivity
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PDF
Machine learning based COVID-19 study performance prediction
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
Encapsulation_ Review paper, used for researhc scholars
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
KodekX | Application Modernization Development
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PPTX
Cloud computing and distributed systems.
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Reach Out and Touch Someone: Haptics and Empathic Computing
20250228 LYD VKU AI Blended-Learning.pptx
Encapsulation theory and applications.pdf
Detection-First SIEM: Rule Types, Dashboards, and Threat-Informed Strategy
Approach and Philosophy of On baking technology
Spectroscopy.pptx food analysis technology
MYSQL Presentation for SQL database connectivity
“AI and Expert System Decision Support & Business Intelligence Systems”
Machine learning based COVID-19 study performance prediction
NewMind AI Weekly Chronicles - August'25 Week I
Encapsulation_ Review paper, used for researhc scholars
The AUB Centre for AI in Media Proposal.docx
KodekX | Application Modernization Development
Per capita expenditure prediction using model stacking based on satellite ima...
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
TokAI - TikTok AI Agent : The First AI Application That Analyzes 10,000+ Vira...
Digital-Transformation-Roadmap-for-Companies.pptx
Cloud computing and distributed systems.
Unlocking AI with Model Context Protocol (MCP)
Profit Center Accounting in SAP S/4HANA, S4F28 Col11

2012.09.25 - Local and non-metric similarities between images - why, how and what for ?

  • 1. Local and Non-Metric Similarities Between Images - Why, How and What for ? Frédéric Morain-Nicolier CReSTIC - URCA - Troyes 2012.09.25 1
  • 2. Outlines • Local similarities • Non metric similarities • Conclusion : • Local non-metric similarities ? • solutions • open problems 2
  • 5. 3D Acquisition ? [Troyes Library - Early Rennaissance Collection - Bibliothèque Bleue] 5
  • 6. 3D Acquisition [Thanks to Le2I - Le Creusot Team] 6
  • 7. 3D Acquisition : Economical Solution 7
  • 8. 3D Acquisition : An Example ANALYSIS AND CONSERVATION OF ANCIENT WOODEN STAMPS ANALYSIS AND CONSERVATION OF ANCIENT WOODEN STAMPS 115 7 Range image (‘Pisces’ stamp) computed from projec- 6 3D View of acquired points of ‘Pisces’ stamp: point tion of point cloud cloud acquired with Minolta scanner Else t5Mzk*s (M.m and the neigh- a stamp, the printing zones are high elevation ones; 7 Range image (‘Pisces’ stamp) computed bourhood is in a low zone) 6 3D View of acquired points of ‘Pisces’range imagespoint the high grey-level pixels in the stamp: have to tion of point cloud End if be binarized as black (pixel50). The non-printing If pixel.t Then pixel50 cloud acquired with Minolta scanner zones must therefore be binarized as white (pixel51). Else pixel51 Stamp 3D model Range Image A modified Niblack’s algorithm is used to binarize End if Else t5Mzk*s (M.m an range images.11,12 The main task is to adapt the End Do a stamp, the printing zones are high elevation ones; threshold over the image. The threshold is deter- bourhood is in a low zone The local threshold computing can be summarized the high grey-level pixels from the local meanimageslocal standard mined in the range and the have to End if by equation (1) deviation, computed on a restricted neighbourhood t~max(M,m)zk à s (1) be binarized as blackeach pixel. for (pixel50). The non-printing If pixel.t Then pixel50 By modifying the k parameter, it is possible to zones must therefore be binarized as white (pixel51). Define: Else pixel51 simulate the inking and printing process for various m the local mean computed on a [w6w] 8 A modified Niblack’s algorithm is used to binarize neighbourhood End if conditions (ink quantity, paper quality or humidity, 11,12 ink fluidity, exerted pressure etc.). Figure 8 shows the
  • 9. 3D Acquisition ➙ Virtual Printing RVATION OF ANCIENT WOODEN STAMPS 115 local threshold 7 Range image (‘Pisces’ stamp) computed from projec- point tion of point cloud Else t5Mzk*s (M.m and the neigh- ones; bourhood is in a low zone) ave to End if inting If pixel.t Then pixel50 el51). Else pixel51 narize End if pt the End Do deter- The local threshold computing can be summarized ndard by equation (1) rhood t~max(M,m)zk à s (1) By modifying the k parameter, it is possible to simulate the inking and printing process for various w6w] conditions (ink quantity, paper quality or humidity, ink fluidity, exerted pressure etc.). Figure 8 shows the mplete same range image as that used in Fig. 7, binarized for k50.1–0.8. Note the ‘inking’ variations produced by d on a the k value modification. 3.3 Comparison between virtual and real stamping In order to test the proposed method, the results of 9 virtual printing were compared with real ones. For
  • 10. 3D : Virtual vs. Real Fidelity ? Virtual Resolution ! Real 10
  • 11. A Local Comparison is needed ! 11
  • 12. A Local Comparison is Needed ! 12
  • 13. A Local Comparison is Needed ! small diffs scattered diffs big localised diffs 13
  • 14. A Local Comparison is Needed ! 14
  • 16. Local Dissimilarity Map (LDM) Φ( , ) Which measure ? Which size ? e 7.4 – Comparaison de deux groupes de lettres. L’image de la CDL indique clai CDL indique cla lisations des dissimilarités. La comparaison est également quantifiée. quantifiée. LDM on de deux groupes de lettres. L’image de la CDL indique clairement n de deux L’image de la CDL indique clairement milarités. La comparaison est également16quantifiée. milarités. également quantifiée.
  • 17. Local Dissimilarity Map Which measure between small images ? • MSE - PSNR? ➡ pixel to pixel diffs A dA,B (p) = |A(p) B(p)| |A(p) B(p)| ➡ low information and hard to interpret B 17
  • 18. Local Dissimilarity Map Which measure between small images ? DH(A, B) = max (h(A, B), h(B, A)) ✓ ◆ • Binary image = set of h(A, B) = max min d(a, b) pixels (foreground) a2A b2B h(B, A) ➡ Hausdorff distance DH(A, B) [Huttenlocher 1993] DH(A, Tv A) = kvk ➡ numerous variations, A including partial HD ieme B hK (A, B) = Ka2A d(a, B) 18
  • 19. Local Dissimilarity Map Which size for the sliding window ? ➡ adaptative ➡ must encompass the «diffs» but no more A B (a) (a) (b) (b) (c ➡ increase until the Figure 7.2 – Illustration de la notion de dissimilarité locale. Les Les imag Figure 7.2 – Illustration de la notion de dissimilarité locale. image A measure equals itsdissimilaires. Les Les fenêtrescentrepetite et AetetABetcar carc), petites.perme dissimilaires. fenêtres de taille de taille petitemoyenne (en (en ne permetten la dissimilarité locale au centre des des images la dissimilarité locale au images moyenne B trop c), ne trop petites. theoretical max ⇒ stopping criterion Nous pouvons donner uneune idée générale. les pixels situés dans la Nous pouvons donner idée générale. Si Si les pixels situés dans partiennent à des des traits grossiers,fenêtre doitdoit avoir une taille su⇥ partiennent à traits grossiers, la la fenêtre avoir une taille su⇥san écarts résultant de la comparaison de ces ces traits. les traits sont fins, écarts résultant de la comparaison de traits. Si Si les traits sont fi fenêtre soitsoit trop grande. Dans le cas contraire, des écarts qui sont plu fenêtre trop grande. Dans le cas contraire, des écarts qui ne ne sont 19
  • 20. rmax = max r|DHW (p,r) (A, B) = r . (7.27) r>0 Local Dissimilarity Map En pratique ce théorème indique que tant que la distance de Hausdor locale est égale au rayon de la fenêtre, la mesure optimale n’est pas atteinte. In the Hausdorff distancedissimilarités locales 7.1.4.4 Définition de la carte des case : La carte des dissimilarités locales est définie maintenant aisément. Elle regroupe l’ensemble des mesures de dissimilarités locales réalisés pour di érentes positions. L’algorithme général lorsque la distance locale est basée sur la distance de Hausdor est le suivant : Algorithme 7.1 Algorithme itératif de calcul de la carte des dissimilarités locales (CDL) entre deux images binaires A et B. W (p, n) désigne la fenêtre carrée centrée au pixel p et de rayon n. Pour chaque pixel p, faire 1. n ⇤ 1 2. tant que DHW (p,n) (A, B) = n et n ⇥ DH(A, B), faire n⇤n+1 3. CDLA,B (p) = DHW (p,n 1) (A, B) =n 1 84 20
  • 21. Local Dissimilarity Map With the Hausdorff distance : fast computation CDLA,B (p) = |A(p) B(p)| max (d(p, A), d(p, B)) Distance transform (or function) based TDA (p) = d(p, A) (distance to the nearest foreground pixel : very fast with a chamfer distance) ⇒ linear expression (binary images) : CDLA,B = A.TDB + B.TDA [Baudrier PhD - Pattern Recognition 2008] 21
  • 22. Local Dissimilarity Map : Toy Examples CDLa,b Figure 7.3 – Comportement de la CDL avec des motifs simp comparer. d est la CDL entre a et b, e est la CDL entre b et c e CDL de le niveau b,c gris est foncé, plus grande est la valeur locale de la FigureFigure 7.3 – Comportement de la CDL avec des simples ; a,b,c sont lessont les images à 7.3 – Comportement de la CDL avec des motifs motifs simples ; a,b,c images à comparer. d est la d est la CDL et b, e est b, e est la CDL entreet fet cCDL la CDL entre Plus c. Plus comparer. CDL entre a entre a et la CDL entre b et c b la et f entre a et c. a et le niveau de gris est foncé, plus grande est la valeur locale de la mesure.mesure. le niveau de gris est foncé, plus grande est la valeur locale de la Cet algorithme est coûteux en temps de calcul car itératif. En Figure 7.3 – Comportement de la CDL avec des motifs simples ; a,b,c sont le est en O(m4 ) pour deux images composées deet f⇥ m pixels. No comparer. d est la CDL entre a et b, e est la CDL entre b et c m la CDL entre A quantified and localized information le niveau de gris est distance de grandeEn elaet, la complexité de mesure. la foncé, plus Hausdor est utilisée dans de mesure locale de dis locale la la calcul Cet algorithme est coûteuxcoûteux en temps de calcul car itératif.valeur et, la complexité de calcul en temps de calcul car itératif. est 7.3 – Comportement de algorithme est des motifs simples ; a,b,c sont les imagese à Cet la CDL avec très rapide. En . d est laest en entreen et b, 4 ) est la deux images composées de m ⇥ m pixels.c. Plus avons montré que lorsque 4 ) pour deux images composées de m ⇥ m pixels. Nous avons montré que lorsque CDL O(m a O(m e pour CDL entre b et c et f la CDL entre a et Nous est de gris est distancedistance deest estvaleur locale Théorème mesure locale dedes dissimilaritéscalcul peut être la foncé,la de grande Hausdor est dansde la mesure. plus Hausdor la utilisée utilisée dans la locale La dissimilarité, le calcul peut être entre deux la mesure 7.8. de carte dissimilarité, le locales 22
  • 23. Local Dissimilarity Map : Toy Examples ➡ structural informations 23
  • 24. 3.7. G´n´ralisation aux images en niveaux de gris e e 85 Local Dissimilarity Map : Toy Examples ➡How to save time during holidays ? 24
  • 25. Local Similarities, What for ? 25
  • 26. Ancients Printings É. Baudrier et al. al. / Pattern Recognition 41 (2008) 1461 – 1478 É. Baudrier et / Pattern Recognition 41 (2008) 1461 – 1478 et 1471 1471 É. É. Baudrier al. al.Pattern Recognition 41 41 (2008) 1461 – 1478 Baudrier et / / Pattern Recognition (2008) 1461 – 1478 14711471 É. Baudrier et al. al. / Pattern Recognition 41 (2008) 1461 – 1478 É. Baudrier et / Pattern Recognition 41 (2008) 1461 – 1478 1471 1471 É. É. Baudrier al. al.Pattern Recognition 41 41 (2008) 1461 – 1478 Baudrier et et / / Pattern Recognition (2008) 1461 – 1478 14711471 20 20 1616 20 20 20 20 1616 16 1416 18 18 20 20 18 1416 16 14 14 14 18 18 1816 14 12 14 16 18 18 16 16 14 12 12 16 16 14 14 16 16 14 1412 12 12 12 10 12 12 10 14 14 14 14 10 10 10 12 12 12 10 10 10 8 8 12 12 10 10 12 12 10810 8 88 8 10 10 10 10 8 668 8 8 8 6 66 6 8 8 6 6 8 8 64 6 6 44 4 6 6 6 26 6 6 44 4 4 4 4 4 224 4 4 2 2 4 4 2 2 22
  • 27. Ancients Printings É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 1471 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 1471 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 16 20 16 20 16 18 20 1614 18 20 14 16 18 16 14 12 18 14 12 14 16 14 12 16 12 1010 12 14 12 14 10 10 12 10 12 88 10 810 10 8 88 66 68 86 É. Baudrier et al. 46 /4Pattern Recognition 41 (2008) 1461 – 1478 66 44 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 6 1471 24 42 44 22 É. Baudrier et al. 0 Pattern Recognition 41 (2008) 1461 – 1478 02/ 22 00 É. Baudrier et al. / Pattern Recognition 41 (2008) 1461 – 1478 2 1471 20 0 16 0 16 00 20 16 20 18 16 18 18 14 20 18 14 1616 18 1614 16 16 18 18 12 18 14 16 12 16 1416 16 1412 14 14 16 12 14 16 16 14 10 14 12 10 14 1214 12 14 12 10 12 14 14 12 12 10 10 10 8 8 12 10 12 10 12 12 10 10 88 88 12 10 6 10 6 8 10 8810 88 666 810 10 6 44 6 88 66 66 4 44 4 68 8 22 4 66 44 44 2 2 46 6 2 02 20 00 2 4 24 2 24 4 2 00 00 0 2 2 02 2 0 0 1818 0 0 0 16 16 0 18 18 Fig. 8. Medieval impressions and their LDMaps. Here are four medieval impressions. Imp. 1, Imp. 2 and Imp. 3 illustrate the same scene with a di 1616 and their LDMaps. Here are four medieval impressions. Imp. 1, Imp. 2 and Imp. 3 illustrate the same scene with a Fig. 8. Medieval impressions16 16 16 16 kind 8. Medieval impressions Imp. their LDMaps. Here aare four medieval 14 Comparaison d’illustrations 12 14 14 Figure 20 – 14 Imp. their LDMaps. Here aare four 16 anciennes.Imp. 1, Imp. 22 and Imp. 3illustrate the same16 scene with a Fig. of grass and helmets in and 3. Imp. 4 illustrates distinct scene. impressions. Imp. 1, images a, b3et c représentent la a di 7.9 14 and 3. Imp. 4 illustrates distinct medieval impressions. Les Imp. and Imp. illustrate the same with m scene kind 8. Medieval impressions Fig. of grass and helmets in 14in Imp. 3. Imp. 4 illustrates a distinct 16 scene. 20 16 kindFigure 18CDL Imp.(f) CDL d’illustrations anciennes. Les images a, b et cde scènes dissimila of grass and 7.9 –12 Comparaison ; (g) CDLscene. (h) CDL . La comparaison représentent la m 14 14 kind of grass and helmets 20 12 12 20 18 14 scène. (e)18 10 helmets12 ; 3. Imp. 4 illustrates a distinct14 in 12 scene. ; 10 14 18 14 12 12 a,b 10 a,c a,d 10 16 c,d 12 10 10 scène. (e)methods are (f) CDLa,c ; (g)réparties; sur CDLc,d .the measure result is h).image comparaison produit 14 16 CDLa,b ; importantes ones12a,d (h) whether La comparaison de scènes dissimila 8 10 8 8 16 comparisondes valeurscompared with the CDLobtained 8 toute l’image (en g et an La (case of the LD 16 10 12 14 14 12 10 comparison methods86are compared with the ones 10obtained 6 whether LSDMap) or aresultvalue (case of(case ofof the L comparisonThe five classification methods réparties sur toute l’image (en result is h).image comparaison 14 ones obtained6 methods are compared with the are the follo- 8 10 whether the measure realet is an image 10 HD and LD 12 the the measure an (case the its 88 produit 10 valeurs importantes manually. des 12 and 10 faible measure g 12 scènes methods66 produit with the ones 8obtained 4 and the LSDMap) or a real value ou très8the HD and i 12 manually. The10 five 64classification des valeurs importanteswhetherLSDMap) or a resultvalue(case of 8(case of is itsL comparison similaires classificationmethods are the follo-4 La the en the In the first case,(en is an (case of method the the nombrereal e) image the HD and the classification localisées 6 are compared methods are the follo- 8 10 6 wing ones: The five manually. 4 and ations). a 44 scènes similaires produit methods are the follo-2 2 ations). Inin Sectioncase, In theclassificationmethod is is manually. The wing ones: wing ones: 6 8 five42classification des valeurs importantes enthe LSDMap) or a real valueou très6localisées 8 2 4 6 6 and 88 faible nombre (en e) (case of the HD and 6 described the first case, the classification 4 an empirica ations). 66 first 6.2. the second case, method a 2 6 20 4 2 wing ones: 44 based on the LDMap, • our method 02 4 4 0 0 describedforthe first case,In the second case, an empirica ations). Inin each class C In and C Section 6.2. the classification method is described Section 6.2. sim the second is computed from 44 tribution case, an empiri 0 0 2 In and Cdissim 2 0 2 dissim 0 • ourthe so-calledbased on the LDMap, • our method Local the LDMap, method22 based on Simple Difference Map (LSDMap) us- 0 22 2 describedfor eachthe modes of the dissim isis computed fr in each class Csim and C empirical distribution Section 6.2. sim the second case, an empiri tribution set. different C Medieval impressions and their LDMaps. Here are four medieval on the LDMap, Imp. 2 and Imp. 30illustrate the same 0 learning a As class tribution 0 computed fro • and are four illustrateLocal SimpleImp. theasimple difference locallythe same0 scene set. eachthe modes of the empiricalcomputed f ourImp. the medievalthe Simple with 1, Imp.Map (LSDMap) us- • the the • so-called edieval impressions and their LDMaps.2Here ing so-called based impressions. Imp. 1, different (LSDMap) us- impressions. method00 Localmap, but Difference 2Map Imp. 316 distance same sceneDifference and 0illustrate scene with tribution with As the easy of the dissim 16 distribution learning for a different Csim and C empirical distributi class is 16 ure andimpressions. Imp. Imp.Imp.d’illustrations anciennes.(F, G)imagesdifferencelocally learning ladefined, anmodesand efficient classification me f medieval impressions. Imp. 1, Imp. 2 and Imp.33 illustrate the same scene with a different b 16 c représentent grass 7.9 – Comparaisonillustrates 4 20 medieval helmets Imp. 3. 3. 1, 4 illustrates a a distinctscene. in Imp. scene. with 20Local Simple Difference Map a, quite well 20 Les simple ∩ W − Get W |,us- learning set.mêmeanmodesand efficient classification m • ing instead ofcthe HD: but with la = |F difference locally 20 ons anciennes. Les images a, bdistance map, H SD W the même (LSDMap) ass and helmets in t scene. scene. Imp. the ing the distance map, but with the simple so-called distinct the et 18 représentent 18 18 14 14 ∩ quite well defined, an easy method. empirical distributi quite maximum likelihood and the the 18 18 18 As the easy of efficient 14 is 18 well defined, 14 classification 16 e. (e) CDLa,b ; (f) CDLa,c ;insteadglobal the map,SD W (F, G)La=comparaisonW |, scènes16 well defined, an easymethod. (g) CDL16 HD: H but with . G) |F difference W de • instead of ; (h) CDL (F, simple W − G 12 |, 18 16 ingthe of theHD,HD: H SD Wc,dthe = |F ∩∩ W − G 12locally the distance16 a,d 16 ∩ ∩ 16 16dissimilaires quite maximum likelihood and efficient 14 16 is 14 maximum likelihood method. is the the 16 16 12 classification 12 La,d ; methods are c,d . La comparaison14HD, H SD W (F, G) =measure result1014 an image (case of the LDMap (h) CDL compared withinsteadglobal HD: 14de scènes dissimilaires 16 arisondes valeurs importantes theones the sur whether the |F ∩ W g 14 W |, La comparaison likelihood method. 14 14 duitmethods are comparedmeasuretherépartiesimage touteof the LDMap − Get12h). imageis 12 maximum de son • of 14 • the global HD, PHD,14 obtained 12 12 l’image 27 result10 an (en ∩is 14 14 the 12 of the LDMap 10 12 10 12 rties sur toute l’image (enresult isobtained comparaison de obtained whether the with the g et 10 La (case ones h). an whether the measure 12is 8 (case 12 12 6.3.2. Results 10 8
  • 28. Ancients Printings • LDM classification • similar • dissimilar ➡ SVM Bonne classification (en %) CDL DPP DH PHD MHD pour Csim 98 90 60 83 77 pour Cdissim 97 92 75 81 83 Table 7.1 – Performances en classification d’images similaires issues de la base d’impressions anciennes. CDL = carte des dissimilarités locales, DPP : di érence pixel à pixel, DH : distance de Hausdor , PHD : distance de Hausdor partielle, MHD : distance de Hausdor modifiée (voir 7.2.1.4). [Baudrier PhD] 28
  • 29. Tumor Evolution t1 t2 t3 (a) (b) (c) ? ? Fig. 2. Segmented MRI. 7.12 – Un exemple de la segmentation d’une tumeur. Seule une coupe d’u représentée, à trois dates di érentes. values in (f) do not reflect et al. 2007] in this case. As [Nicolier the similarity a short conclusion, the LDMap is a useful tool for non- 29
  • 30. (S1) Coupes de la segmentation 1 A. Segmentation Method R ESULTS III. using SVM with RBF kernel. (j) Tumor Evolution A. MRI images are acquired on a 1.5T GE (General Segmentation Method Electric Co.) machine using an axial1.5T IR (Inversion on a 3D Slices 18 to 23 (a-f) of the Local Distance Volu MRI images are acquired Fig. 5. GE (General Recuperation) machine using an axialan axial FSE (Fast Electric Co.) T1-weighted sequence, 3D IR (Inversion Spin Echo) T2-weighted, ansequence, anPD-weighted 3) and 2 (fig 4). The distances are absolute volumes 1 (fig se- Recuperation) T1-weighted axial FSE axial FSE (Fast quence and T2-weighted, an axial FSE examination, we distance histogram (logarithmic scale in g Spin Echo) an axial FLAIR. eq. one PD-weighted se- For (3). (j) is the (a) (b) (c) have 24and an axial FLAIR.signals with a voxel size quence slices of the four colormap of images (a-f). For one examination, we of 0.47 ⇥slices ⇥ 5.5 mm3. signals with a and all size 0.47 of the four All the slices voxel the (a) (b) (c) have 24 examinations are⇥ 5.5 mm3. All SPM software. all the of 0.47 ⇥ 0.47 registrated using the slices and examinations are registrated using SPM software. using We use the first examination for training SVM RBF kernelthe first examination for training SVM using We use [10]. The training set was obtained from one (a) slice(b) using mouse to(c) (c) RBF by choose ten pixels into the tumour kernel [10]. The training set was obtained from one (d) (e) (f) (a) and (b) outside. We perform theten pixels into the tumour sliceten using mouse to choose first segmentation of this by (c) (c) volume by usingWe perform the first segmentation of this Fig. 4. Segmentation of the de (e) volume (slices from(f) to 23, a-f) and (b) outside. the SVM model obtained. So, we build using SVM with RBF kernel. second segmentation 18 (d) Coupes (S2) la 2 (c) t1 (a) ten (c)hundred points into the tumour automatically about one model obtained. So, we build Fig. 4. Segmentation of the second volume (slices from 18 to 23, a-f) volume by using the SVM his case. As and outside from all one hundred slices. into retraining a using SVM with RBF kernel. automatically about the tumoral points We the tumour second SVM fromuse it fortumoral slices. Wesegmentation (a) (b) ol for non- his case. As and outside and all the perform a second retraining a for improve the first it for perform this last SVM model, As a true distance is used to compute the LDV, the ). It is non- for thus ol case. As (d) second SVM and use result. With a second segmentation (e) (f) his we perform the segmentationWith given scalar are true physical distance in mm. The given ). It is non- thus (d) for improve the first result. of others examinations. At Fig. 3. Segmentation of the first volume (slices from (f) to 23, a-f) this last SVM model, (e) 18 As a true distance is used to compute the LDV, the ol for using SVM with RBF kernel. eachperform the segmentation of others examinations. At given scalar are true physical there are mm. more low we segmentation of examination, we use this 2 steps distances histogram indicates distance inmuch The given ). It is thus (d) Coupesprocess for improve of examination, we use this 2 steps distances than (b) distances. This a coherent fact as non- Fig. 3. Segmentation of thede (e) segmentation(f) to 23, Fig 2 contains an example (S1) each la segmentation the 1 first volume (slices from 18 result. a-f) (a) distances histogram indicates there are much more low high (c) using SVM with RBF kernel. zero LDV values aredistances. in theaintersection of as non- Fig. 3. Segmentation of thede la obtained segmentation. All the nine slices of two the for (slices from result. a-f) process segmentation18 distances high obtained This coherent fact the two (S1) Coupesof first volumeimprove the 1 to 23, Fig 2 contains an example volumes. than intersection is locally filled with increasing segmented volumes are given All the and slices of two zero LDVThe are obtained in the intersection of the two using SVM with RBF kernel. the obtained segmentation. in figs 3 nine 4. of values (d) (e) E (General values, starting from zero locally filledmaximum local segmented volumesDetails are given in figs 3 and 4. volumes. The intersection is up to the with increasing E (Inversion B. Implementation distance starting from volumes. to the maximum 7. Us Fig. (General l FSE (Fast Fig. 6. a new mageJ is 15.56mm. This represent the higher straight distance values, between the zero the The maximum tumor hasvo A three-dimensional view of up LDV between re local distance E (Inversion (General B. The computation DetailsLDV is done with Implementation of the distance between the volumes. The maximum has progresse distance leighted se- FSE (Fast R (Inversion 2. plugin computation2GHz opteron, donecomparison mageJ between the two volumes. the higher straight directed dista The [6]. With a of the LDV is the with a new of the is 15.56mm. This represent (d) (e) (f) distance t weighted we 2 ination, se- l voxel (Fast FSE (a) (b) ⇥ 512 ⇥ 9 volumes is done in 39 seconds. plugin [6]. (c) The proposed Local Distance Volume can be used to two 512 With a 2GHz opteron, the comparison of the between the two volumes. and 4). (b) is (j) ination, size we (a) (VDM) - coupes duprecisely the variations between two volumes. S track more volume des dissimilarités can be used to locales entre weighted these- and all size two (b) ⇥ (c) C. Results 512 ⇥ 9 volumes is done in 39 seconds. 512 The proposed Local Distance Volume voxel we ination, Fig. 5. Slices 18 to 23 (a-f) of the The Hausdorff Distance in a window (eq. (3)) is defined as track more precisely the variations between two2 volumes. ds C.The LDV is computed between Figure 1 and – Exemple de volume des dissimilarités (j) is the distance histogram (l volumes 7.13 2. The the maximum of two directed distance. In(3)) is Les deux locales. are. and all size (a) (b) (c) volumes 1 (fig 3) and (fig 4). The voxel the SVM using Results The Hausdorff Distance in a window (eq. the present case eq. (3). defined as are. and all one results LDVpresented in betweenS2)the z-resolution is L’histogramme indique la useful information.(a-f). (A, B) are is computed fig 5. As sont 1 and 2. The the maximum of two directed distance.of imagespresent case(e comparées. the directed distances carry répartition des distances clearly seen (by high negative distances). colormap hW d from the Local Dissimilary Volume The volumes In the SVM using are. tumour slightly greather than the xfigy 5. As the (with a ratio of carry the information on voxels sont expriméesW (A, B) results are presented in resolutions z-resolution is the directedniveaux de gris, present in vol. 1h ennot in Les distances, traduites par des distances carry useful information. and mm. (j) the d from one SVMof this using (d) 11.7), the obtained distance depends only(with a ratiothe vol. 2. SymmetricallyonW (B, A) carry in vol. 1 and not on (e) (f) information h voxels Volume the information in slightly greather than the x y resolutions lightly on of carry the (a-f) of the Local Distance present between ationtumour the Fig. 5. Slices 18 to 23 z-axis information. distance dependsobtained distance is voxels present indistances andabsolute accordinginformation B) Only when the only lightly vol. 2. (fig 4). The vol. hWare not carry the to hW (A, on 2 (B, A) in vol. 1. So o, from this d we build one (d) Coupesgreathersegmentation the z-information has beenon the(fig 3) and 2 Symmetricallytumor has regressed and h (B, A) Fig. 4. Segmentation of the11.7), the obtained from(f) to 23, a-f) (S2) de la 2 volumes 1 the of ationtumour the tumour using SVM with RBF kernel. (e) than 11.7mm, 18 second volume (slices Fig. 4. Segmentation of the de (e) volume (slices froma18 to 23, a-f) IV. CONCLUSION z-axis information. Only when the obtained distance (j) is the distance histogram the 2 and notinin vol. 1. the hW (A, B) taken indicates where (logarithmic scale gray) and So W eq. (3). is voxels present in vol. ation build o, weof this (d) Coupesinto account. Fig 6 is (f) z-information has been taken images (a-f). where the tumor has regressedillustrated(B, fig. (S2) second segmentation 2 la than 11.7mm, the greather colormap of three-dimensional representation where the tumor has progressed. This is and hW in A) indicates retraining a the tumour using SVM with RBF kernel. o, we build of the LDV. Fig is 18 to 23, a-f) Fig. 4. Segmentation of theinto account. (slices6from a three-dimensional representation second volume (a) (b) (c) 97 7 and fig. 8. The has progressed. This central occlusion is where the tumor augmentation of the is illustrated in fig. egmentation retraining a VM tumour the model, using SVM with RBF kernel. the LDV. of As a true distance is used to compute the LDV, the A distance measure between volumes has 30 7 and fig. 8. The augmentation of the central occlusion is
  • 31. Binary Pattern Localization x y P I(x,y) I(x,y) P CDLP,I(x,y) I 31
  • 32. Binary Pattern Localization Local dissimilarities aggregation : XX MDGI,P = CDLI,P (k, l) k l with CDLI,P = I.TDP + P.TDI ) DI,P = TD2 P +I TD2 I P sum of two oriented measures Chamfer score [Borgefors, 1988]: how much I looks like à P? 32
  • 33. Binary Pattern Localization : Example Fig. 2.Chamfer score MDG In (c), image response by Borgefors chamfer matcher. – In (d), image obtained with symmetric LDM-matcher. – A good match with the reference pattern is reported by low values (with dark gray levels). ce pattern, the ideal location in (a) 33
  • 34. Binary Pattern Localization : Example I [Morain-Nicolier et al. 2009] 34
  • 35. ('%+* "#$ Brain Internal Structures Segmentation ! (',-*(','* ! ! ! ! ! ! ! /01!! ! !! "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$! "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$! "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$! "#$! !"%$! !"&$ ! '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08! "#$! "#$! !"%$! !"%$! !"&$ !"&$ ! ! '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08! '()*+,!-./!"0$!12!3*405!#+0(5!066,0+05%,!"#$!%7+7508!"%$!09(08!"&$!:0)(;;08! 35
  • 36. Brain Internal Structures Segmentation caudate putamen putamen thalamus "#$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"%$!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"&$! 36
  • 37. Brain Internal Structures Segmentation ! "#. ! ! ! ! ! ! ! ! Deformation ? ! ! ! Atlas %/'! "#$! Test Volume %+' ! ! %&'! !"($! "#. !! )*+ %/'! !%+' 37 !"#$! !!!
  • 38. Brain Internal Structures Segmentation Optimal transformation : regularization T ⇤ = argminT 2 {Esim (B, A T ) + Ereg (T )} similarity measure Classic solution : 1 2 Esim (B, A T ) = kB A Tk 2 Displacement field : (A T B)(p) u(p) = 2 rB(p) (A T B)2 (p) + krB(p)k 38
  • 39. representation of the corresponding structure in the deformed deformed shape map shapeaccording to the following p representation of the corresponding structure in the unified unified MðpÞ map MðpÞ according to the 8 atlas after the transformation T. Under the constraint of the shape the shape > Fs ðpÞ atlas after the transformation T. Under the constraint of 8 < i > Fsif Fsi ðpÞ Z0 Fsi ðpÞ Z0 < i ðpÞ if similarity term, the optimal transform would leadwould lead to the final maxðF ðpÞÞ maxðF ðpÞ o0if and ðpÞ o0F ðpÞÞj similarity term, the optimal transform to the final Brain Internal Structures Segmentation MðpÞ ¼ MðpÞs¼ i if Fssi ðpÞÞ i Fsi jmaxð and si segmented structure shape as closer as as closer asatlas.in the atlas. Therefore > segmented structure shape that in the that Therefore :0 > : 0 if F ðpÞ o0if and ðpÞ o0F ðpÞÞj si Fsi jmaxð and si the above overall costoverall cost function can be modified as the above function can be modified as where e is the threshold, ethreshold, e ¼ Fsi ðpÞÞg. Ther E ¼ Esim ðB; A3TÞ¼ Esim ðB; A3TÞ þ Ereg ðB; A3TÞ þ Eshape ðFS ðAÞ; Fshape ðFSþ Ereg ðTÞ E þ Ereg ðTÞ ¼ Eintensity ðTÞ ¼ Eintensity ðB; A3TÞ þ ESSD where e is the ¼ mini fmaxp ð mini fmaxp ðF SSD SSD SSD S ðA3TÞÞ ðAÞ; FS ðA3TÞÞ þ Ereg ðTÞ in Eqs. (7),in Eqs. (7), (8)should be should be rep (8) and (10) and (10) replaced by M ð8Þ ð8Þ implementation procedure. procedure. implementation By extending the originalthe original Demons registration[25], By extending Demons registration algorithm algorithm [25], Shape constraint introduction : an optimal an optimal solution can be obtained by the alternating strategy. solution can be obtained by the alternating strategy. The displacement vectors related to the intensity and the shape at The displacement vectors related to the intensity and the shape at 3.2. Topology correction strategy 3.2. Topology correction strategy the point p theinterest regions are regions are of point p of interest As is mentioned, mentioned, topology preservatio As is topology preservation of a defor ðA3TðpÞÀBðpÞÞðA3TðpÞÀBðpÞÞ is important in registration-segmentation method is important in registration-segmentati uintensity ðpÞ ¼ À uintensity ðpÞ ¼ À 2 rBðpÞ rBðpÞ ð9Þ ð9Þ 8 ðA3TðpÞÀBðpÞÞ 22 ðA3TðpÞÀBðpÞÞ þ JrBðpÞJ þ JrBðpÞJ 2 brain case.brain case. bijectivity bijectivity and Although Although and smoothing adopted in optimizing the cost function like Eq. (4) l adopted in optimizing the cost function o >0 < ushape ðpÞ ¼ À shape ðpÞ ¼ À u ðFS ðA3TðpÞÞÀFSSðA3TðpÞÞÀFS ðAðpÞÞÞ ð F ðAðpÞÞÞ 2 2 2 p⇥C helpful for preventing topology change, it ischange, it rFS ðAðpÞÞ 2 rFS ðAðpÞÞ helpful for preventing topology hard to b ðFS ðA3TðpÞÞÀFSSðA3TðpÞÞÀFrFS ðAðpÞÞJ rFS ðAðpÞÞJ ðF ðAðpÞÞÞ þJ S ðAðpÞÞÞ þJ theory. The topology preservation problem of t theory. The topology preservation pro S (p) = d(p, C) p⇥S ð10Þ algorithm has been investigated in recent years [3 ð10Þ algorithm has been investigated in rece cases without topology preservation using this metho cases without topology preservation usin > : The combined displacement vector is vector is The combined displacement found in some published reliable experiments [3 found in some published reliable exp d(p, C) uðpÞ ¼ ð1ÀbuðpÞ ¼ ð1ÀbÞuintensityðpÞ þ bushape ðpÞ Þuintensity ðpÞ þ bushape p ⇥ ¬S ð11Þ experiments. By optimizing optimizing the cost fu ð11Þ experiments. By the cost function over diffeomorphism, a diffeomorphic Demons algorith diffeomorphism, a diffeomorphic Demo posed [36,37]. In this paper, a different simple topolog posed [36,37]. In this paper, a different sim method is proposedis proposed based onfield vector method based on the vector the analys Let T ¼ ðX; Y; ZÞ T ¼ ðX; Y; ZÞ deformation field, whe Let denote the denote the deformatio the new point p of point p ðx; y; zÞ afte the new position of position ðx; y; zÞ after deformati 1 β1 β 0.5 0.5 − + − + x x0 x 0 x 0 x0 x 0 x 0 Fig. 1. An example of the shape representationrepresentation (a) (b) its shape (b) its shape Fig. 1. An example of the shape (a) the putamen the putamen S distance representationrepresentation map. distance map. S Fig. 2. The function parameter b. Fig. 2. The function of the balance of the balance 39
  • 40. Brain Internal Structures Segmentation Shape cost function : forme 1 2 Esim (A, A T ) = k A A Tk 2 Displacement field : u(p) = (1 )uintensite (p) + uforme (p) with (A T B)(p) uintensite (p) = 2 rB(p) (A T B)2 (p) + krB(p)k ( A T A )(p) uforme (p) = 2 (p) 2r A (p) ( A T A) + kr A (p)k 40
  • 41. & Brain Internal Structures Segmentation !"#$%$&'($!)'*!& !"#$%$&'($!)'*!& /.&18&6;/&12<=<87>&<86/8:<6?&97:/.&818+2<=<.&7>=12<6;3&:54/2<341:/.&9?&<6:&9158.72?@&%6&A78& ./0123/.&45673/8&97:/.&18&6;/&12<=<87>&<86/8:<6?&97:/.&818+2<=<.&7>=12<6;3&:54/2<341:/.&9?&<6:&9158.72?@&%6&A78& 376A;&9/6B//8&6;/&>/06&76>7:&45673/8&78.&<6:&./0123/.&C/2:<18&<:&816&C/2?&=11.@&D8./2&6;/& 9/&://8&6;76&6;/&:;74/&376A;&9/6B//8&6;/&>/06&76>7:&45673/8&78.&<6:&./0123/.&C/2:<18&<:&816&C/2?&=11.@&D8./2&6;/& ;&6;/&<86/8:<6?&78.&6;/&:;74/F&6;/&2/0/2/8A/&:;74/&78.&6;/&672=/6&:;74/&B<>>&376A;&7:&35A;&7:& E1<86&A18:627<8:&10&916;&6;/&<86/8:<6?&78.&6;/&:;74/F&6;/&2/0/2/8A/&:;74/&78.&6;/&672=/6&:;74/&B<>>&376A;&7:&35A;&7:& <8=&6;/&42141:/.&3/6;1.&B<6;&6;/&<86/=276/.&:;74/&3/62<AF&7&9/66/2&:/=3/8676<18&<:&1967<8/.F& 41::<9>/@&!;/2/012/F&5:<8=&6;/&42141:/.&3/6;1.&B<6;&6;/&<86/=276/.&:;74/&3/62<AF&7&9/66/2&:/=3/8676<18&<:&1967<8/.F& =52/&H@&IJ0K@& B;<A;&<:&:;1B/.&<8&G<=52/&H@&IJ0K@& & Volume segmentation putamen shape& Figure 8.4 – Exemple de segmentation obtenue avec la con G<=52/H@& I& $/=3/8676<18& 2/:5>6:L& A13472<:18& 9/6B//8& M/318:& 818+2<=<.& 2/=<: rence (atlas) où les structures d’intérêt sont surlignées ; (b) re 2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/ gauche de l’atlas ; (c) image à segmenter ; (d) segmentation :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&4 d’intensité ; (e) représentation de forme du putamen déform 6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652 obtenue en incluant la contrainte de forme. 6;/&42141:/.&3/6;1.@& & & & & & *1347276<C/& :65.</:& 9/6B//8& 6;/& 12<=<87>& M/318:& 3/6;1.& 78.& 6; 8& 2/:5>6:L&Figure 8.4 AtlasM/318:& 818+2<=<.& 2/=<:6276<18& 78.& 818+2<=<.& 2/=<:6276<18& 78.& 6;/& 42141:/.& 3/6;1.@& réfé- ExempleA13472<:18& 9/6B//8& obtenue segmentation M/318:& 6;/& 42141:/.& 3/6;1.@& réfé- G<=52/H@& de$/=3/8676<18& 2/:5>6:L& A13472<:18& la contrainte de formela (a) image J7K& 6;/& – Exemple de avec 9/6B//8& obtenue avec : contrainte de forme : (a) image J7K& 6;/& I& segmentation & putamen shape ù les structures d’intérêtles structures d’intérêt sont surlignées ;forme du putamen de forme du putamen rence (atlas) où sont surlignées ; (b) représentation de (b) représentation segmentation 41:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&45673/8&<8&6;/&76>7:& & 2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&45673/8&<8&6;/&76>7:& :/=3/86<8=&927<8&<86/287>&:625A652/:&0213&7>>&C1>53/:@&)/:5>6&18&7&6?4<A7 gauche de l’atlas ; (c) image à segmenter ; (d) segmentation obtenue avec la seule contrainte las ; (c) image à segmenter ; (d) segmentation obtenue avec la ExempleA13472<:18& Figure 8.4 – seule contrainte :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2<=<.&2/=<:6276<18&J/K& la contrainte de forme : ( G<=52/H@& I& $/=3/8676<18& 2/:5>6:L& de segmentation obtenue avec 52/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2<=<.&2/=<:6276<18&J/K& 9/6B//8& M/318:& 818+2<=<.& 2/=<:6276<18& 78.& 6;/& 42141:/ ) représentation de (e) représentation de forme rencede (d) ; où les structures d’intérêt sont surlignées ; (b) représentation de form d’intensité ; forme du putamen déformé du putamen déformé issu de (d) ; (f) segmentation issu (atlas) (f) segmentation 6;2//&4>78/:&:54/241:/.&B<6;&6;/&:/=3/86/.&:59A126<A7>&:625A652/:&78.&6;/&0 2/0/2/8A/&<37=/&:54/2<341:/.&9?&6;/&76>7:&10&:59A126<A7>&:625A652/:&J9K&6;/&:;74/&2/42/:/8676<18&10&6;/&>/06&4 6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=3/8676<18&97:/.&18& 10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=3/8676<18&97:/.&18& cluant laobtenue en incluant la contrainte de forme. contrainte de forme. gauche de l’atlas ; (c) image à segmenter ; (d) segmentation obtenue avec la se 6;/&42141:/.&3/6;1.@& 114 :54/241:/.&9?&6;/&:625A652/N:&9158.72?&JAK&6;/&672=/6&<37=/&J.K&:/=3/8676<18&9?&452/&<86/8:<6?&97:/.&818+2 d’intensité ; (e) représentation de forme du putamen déformé issu de (d) ; (f) 41 & obtenue en incluant la contrainte de forme. +&,-&+& 6;/&:;74/&2/42/:/8676<18&10&6;/&./0123/.&>/06&45673/8&:54/241:/.&9?&6;/&:625A652/N:&9158.72?&J0K&6;/&:/=
  • 42. Brain Internal Structures Segmentation Shape constraint contribution (15 segmentations) : Structure Caudate g. Caudate d. Putamen g. Putamen d. Thalam g. Thalam d. Méthode avec sans avec sans avec sans avec sans avec sans avec sans max 0,812 0,729 0,813 0,691 0,831 0,752 0,829 0,759 0,857 0,806 0,850 0,788 min 0,539 0,537 0,567 0,571 0,694 0,633 0,743 0,666 0,735 0,680 0,747 0,665 moy. 0,739 0,699 0,717 0,658 0,767 0,725 0,783 0,739 0,809 0,740 0,801 0,730 écart-type 0,072 0,049 0,062 0,031 0,037 0,029 0,031 0,027 0,031 0,032 0,030 0,032 able 8.2 – Comparaison quantitative des segmentations obtenues avec et sans contrainte de forme (ligne « Méthode ») po usieurs structures. Les valeurs minimale, maximale et moyenne de l’indice sont données. En gras sont indiquées les meille sultats. 2 ⇥ VP = 2 ⇥ VP + FN + FP [Lin PhD - Pattern Recognition 2010] 42
  • 44. Gray-Level Local Dissimilarity Distance transforms CDLA,B (p) = |A B| max (TDA , TDB ) Distance transform generalizations : 1 dGW D (a, b) = (I(a) + I(b)) ⇥ ||a b|| CDL 2 q SSIM 2 dW DOCS (a, b) = (I(a) + I(b)) + ||a b||2 Foreground / background distinction needed [Morain-Nicolier et al. 2009] 44
  • 45. Gray-Level Local Dissimilarity Distance transforms CDLA,B (p) = |A B| max (TDA , TDB ) Hypograph [Molchanov, 2003] : (other solutions are available) It = {(p, t) ⇤ R2 R : I(p) ⇥ t} b X 1 TDI = TDIi i b a i=a No foreground / background [Work in Progress - Morain-Nicolier / Bouchot] 45
  • 46. 2. Outils d’analyse de séquences d’images fonctionnelles Gray-Level Loc. Dissim. : application La radiothérapie et le suivi des patients pendant et après traitement sont l’unes des applications bénéficiant des séquences d’images fonctionnelles. Typiquement, pour un examen, nous pouvons avoir plusieurs centaines d’images. Les outils d’analyse sont alors nécessaires pour extraire efficacement l’information pertinente des images sous forme 18FDG PET Images synthétique et faciliter son stockage. Volume d’images t1 t2 t3 y … z x t t4 t5 t6 Figure 6. Quantité énorme de données pour un seul examen t1 t2 t3 t7 t8 t9 t10 t11 t4 t5 t6 Figure. Séquence d’images dynamiques TEP 46
  • 47. Gray-Level Loc. Dissim. : application 18FDG PET Images 8000 7000 6000 5000 Tumeur 4000 Aorte 3000 2000 1000 0 1 2 3 4 5 6 7 8 9 10 11 47
  • 48. Gray-Level Local Dissim. : application Figure. Résultat de la segmentation LDM between mean Figure. Résultat de la carte de la dissimilarité Segmentation images [Ketata PhD - in progress] 48
  • 49. fenêtre ; (9.11) : lorsque la fenêtre croît, le mesure locale croît. mesure locale ne repose pas sur les propriétés de Gray-Leveldéfinir une dépendent de la partir d’une mesure quelconque sous ré Local Dissimilarity Dans le Cependant le principe de la De nombreux critères di érents sont envisageables et mesure locale à mesure choisie. possible de cas de la distance de Hausdor , le critère est :propriétés [Baudrier, la fenêtre est maximale et vérifie certaines si la mesure dans 2005]. que la valeur maximale K n’est pas atteinte, alors la fenêtre est agrandie. Ce critère convient bien pour une distance max-min. Il peut Carte des dissimilarités locales généralisée moins Other internal 9.1.2.1 être assoupli pour des mesures qui atteignent facilement la valeur maximale. Un exemple 9.2.critère possible est le suivant. et B et W (A, B) une mesure de Théorème de Soient deux images binaires A measures dans une fenêtre W , qui vérifie les propriétés suivantes : locale, Corollaire 9.3. Soit un paramètre ⌥ [0, 1], si la mesure dans la fenêtre est supérieure à M , où M est la valeur maximale possible dans la fenêtre et que(A, B) = 0 maximale K n’est W W la valeur ⇧⌃ A W =B pas atteinte, alors la fenêtre est agrandie. K > 0, W (A, B) K, W1 ⇤ W2 ⌃ W1 (A, B) W2 (A, B), Algorithme Pour chaque pixel p, faire 1. n ⌅ k (initialisation de lail est alorsla fenêtre) définir un critère pour fixer la mesure locale des dissimila taille de possible de 2. tant que W (p,n) (A, B) ⇥ M , faire Compatible with pixel to L’interprétation des propriétés est la suivante : n⌅n+1 (9.9) pixel diffs (e.g. PSNR) : si la valeur de la mesure locale est nulle, alors les extraits des deux 3. CDLA,B (p) = W (p,n 1) (A, B) identiques ; (9.10) : les valeurs de la mesure locale sont majorées par une valeur indépe fenêtre ; (9.11) : lorsque la fenêtre croît, le mesure locale croît. 128 De nombreux critères di érents sont envisageables et dépendent de la mesure ch cas de la distance de Hausdor , le critère est : si la mesure dans la fenêtre est que la valeur maximale K n’est pas atteinte, alors la fenêtre est agrandie. Ce cri 49
  • 50. Gray-Level Local Dissimilarity other internal • Segmentations representations • Sparse representation ✓ ◆ DH(A, B) = max max d(p, A), max d(p, B) p2A p2B • SIFT Image = set of pixels • internal distance Image = set of graphical needed = distance elements between two elements (x, y, small image/ 50
  • 51. Non-Metric Similarities a work in progress ... 51
  • 53. Binary Pattern Localization x y P I(x,y) I(x,y) P CDLP,I(x,y) I 53
  • 54. Binary Pattern Localization Local dissimilarites aggregation : XX MDGI,P = CDLI,P (k, l) k l with CDLI,P = I.TDP + P.TDI ) DI,P = TD2 P +I TD2 I P sum of two oriented measures Chamfer score [Borgefors, 1988]: how much I looks like à P? 54
  • 55. Non-Metric Similarity Some classical similarity = distance ? similarities : • Minkowski Identity • Jeffrey divergence d(x, y) = 0 , x = y • χ2 Symmetry • Levenstein distance d(x, y) = d(y, x) • Earth Mover Distance Triangular inequality • Hausdorff distance d(x, z)  d(x, y) + d(y, z) • ... 55
  • 56. Non-Metric Similarity : Psychological Aspects • Recognition task : Identity d(x, y) = 0 , x = y P(A|A) < P(A|B) Symmetry ⇒ d(A,A) > d(A,B) ! d(x, y) = d(y, x) • auto-similarity Triangular inequality d(x, z)  d(x, y) + d(y, z) = prototypality ≈ complexity, number of attributes, ... 56
  • 57. Non-Metric Similarity : Psychological Aspects Identity d(x, y) = 0 , x = y Symmetry d(x, y) = d(y, x) Triangular inequality Prototypality ≈ «Good d(x, z)  d(x, y) + d(y, z) shape» [Tversky 1977] ⇒ symmetric, regular, stable, harmonious, homogeneous, ... [Gestalt] 57
  • 58. Non-Metric Similarity : Psychological Aspects Identity d(x, y) = 0 , x = y Symmetry d(x, y) = d(y, x) Triangular inequality d(x, z)  d(x, y) + d(y, z) B. Pitt looks like my brother (B. Pitt is more prototypical) My brother looks like B. Pitt 58
  • 59. Non-Metric Similarity : Psychological Aspects Identity d(x, y) = 0 , x = y Symmetry d(x, y) = d(y, x) Triangular inequality [Veltkamp et Hagedoorn, 2000] Figure 9.8 – Un exemple de violation de la transitivité de la d(x, z)  d(x, y) + d(y, z) 9.2.4.3 • Transitity not verified Non-vérification de l’inégalité triangulaire • Suspicions on triangular Trouver des exemples inequality [Ashbyl’inégalité triangulaire de violation de et Perrin, 1988] ➡ inégalité à tester, si D est [Ashby et Perrin, 1988]. Cette 4 inequalities [Tversky] : une mesur «corner inequality» verse d’une ressemblance) est 59
  • 61. Non-Metric Similarity : How ? Psychology inspired measures S(A, B) = f (A B) f (A B) ⇥f (B A) [Tversky] D(A, B) = F [d(A, B) + r(A) + c(B)] [Nosofsky] A connection with Local Dissimilarities : A B A.TD(B) B.TD(A) CRL(A, B) = AB max(TD¬A , TD¬B ) A.TDB ⇥B.TDA 61
  • 62. Non-Metric Similarities, What for ? 62
  • 63. perform those with a higher weight on the target compound tives. For example, these actives may come from HTS screen- in terms of the ability to retrieve active analogues. This can ing or serendipity, and we want to quickly identify and test serve as evidence of the presence of asymmetry in chemical their analogues to confirm the series and hopefully find some NM Similarity : A Practical Motivation similarity measures. The observed asymmetry can be interpret- preliminary SARs. Then, highly symmetric similarity measures ed by the directionality or inequality that is inherent in a should be the choice for this purpose, based on the results of chemical similarity search: the probe compounds used in prac- this study. Another goal we often seek is to identify remotely tice are always active, whereas the target compounds can be similar analogues. For example, when we follow the lead struc- either active or inactive so that their unique structural descrip- tures reported by our competitors, we may wish to identify tors may not be as important as those of the probe com- some new structures that are similar to these lead structures Let’s do some chimistry : pounds regarding their contribution to biological activity. so that they will have better chances of being active as well, Figures 2 and 3 also clearly indicate that the degree of asym- yet not so similar that they fall under protection of the com- metry is positively correlated to the degree of similarity itself, petitors’ patents. In this case, we now know highly asymmetric «similar structure» ≈ «similar» properties in general. In other words, the red region becomes ever more similarity measures should be adopted. inclined to the right side with an increasing number of nearest Asymmetry can be easily introduced into many other popu- neighbors. Therefore, to retrieve more remotely similar active lar similarity measures, such as that recently proposed by compounds, a more asymmetric similarity measure should be Flinger et al.[15] We expect to see more studies on this concept used, that is, more weight should be put on the probe com- and more applications of the related techniques in computer- pound. On the other hand, to retrieve more highly similar assisted drug discovery in the future. active compounds, approximately equal weights should be put Table 2. Optimal a values.[a] MACCS TGD PDR-FP BEN 0.6 0.5 – CAT 0.6 0.7 – HH2 0.8 0.6 – NNI 0.2 0.1 – TNF 0.6 0.8 – [a] a values producing minimal overlap between intraclass and class-NCI Tversky similarity value distributions are shown as determined by graphi- cal analysis of Figure 4. PDR-FP calculations are independent of a values because of its constant bit density. Therefore the overlap is also constant (see Figure 4 c). Figure 2. Hit-rate maps for the NCI anti-AIDS database using a) atom pairs, b) Daylight fingerprints, and c) MACCS keys as structural descriptors. Average hit rate is represented in the color scale shown. [Wang et al., 2007] ChemMedChem 2007, 2, 180 – 182 [Chen et al., 2007] 2007 Wiley-VCH Verlag GmbH Co. KGaA, Weinheim www.chemmedchem.org 181 tives including moderately active compounds (see Table 3). These numbers were very similar but not identical to those re- S(A, B) = f (A B) ported by Chen and Brown, which we attribute to the use of f (A B) ⇥f (B A) slightly different (updated) versions of NCI. We then calculated fingerprint bit densities for active and inactive NCI compounds (Table 3). For MACCS and TGD, on average five more bits were set on in active than in inactive compounds, which rationalizes the preference for a values greater than 0.5 and explains the slight asymmetry observed in the hit-rate maps of Chen and 63
  • 64. Local and Non-Metric Similarities some conclusions 64
  • 65. Local Similarity Where is the information ? • A good solution with Local Dissimilarity Map • Global - local or Local - global ? • Open problem • What is the local intrinsic scale of information in an image ? 65
  • 66. Non-Metric Similarity • Many problems are intrinsically asymmetric ! • Stereovision : point correspondence (occlusions) • Database request (CBIR) • Pattern matching : 66
  • 67. Non-Metric Similarity • Solutions • Psychological high level models (simple rule : do not take into account only common information or missing information, but mix them - with orientation) • De-symmetrizing some measures (e.g. scalar product, pixel to pixel diff) • Using naturally asymmetric measures (e.g. conditional probability, ...) 67
  • 68. Non-Metric Similarity • Open problems • How to classify with such measures ? (SVM ? KNN ?) • How to make an efficient search [T. Skopal works] ? 68
  • 69. Local Non-Metric Similarities • High level LDM (pixel - graphical element) ? • Semantic gap ? (working on similarity measures and not on descriptors) 69
  • 70. Local Non-Metric Similarity frederic.nicolier@univ-reims.fr http://pixel-shaker.fr (papers, discussions and reference implementation) 70