SlideShare a Scribd company logo
A stepwise approach to reference
levels
Louis Verchot, Arild Angelsen, Martin Herold, Arief Wijaya
A stepwise approach to FREL/FRLs
Criteria for comparing country circumstances
and strategies
Deforestation/degradation drivers for each continent
AMERICA
-2%

-4%

AFRICA

ASIA

-2%

-1%

-7%

-11%

Deforestation

-10%
-39%

-13%

-41%

-7%

-36%
-57%
-37%

-35%

4%
4%

8%

17%

Degradation

6%

26%

7%

20%

9%

67%

70%
62%

Deforestation driver

Forest degradation
driver

THINKING beyond the canopy
RLs using regression models
– Simple, easy to understand and test new variables

– But, data demanding
– Predicting deforestation in a period: Pt – Pt+1, based on
deforestation in the previous period Pt-1 – Pt and a set of
other factors (observed at time t).

– Using structure (coefficients) from the estimated
regression equation to predict deforestation in period Pt+1 –
Pt+2, based on observed values at time t+1
2000

2004 2005

Historical deforestation

2009

2010

Estimated/Predicted deforestation

Regression model

Predictive model, based on
structure from regression model

5
Step 1 case for 4 countries using FAO FRA data
Indonesia

3,500

Forest C stock (Mt)

Forest C stock (Mt)

Cameroon
3,000
2,500
2,000
1,500
1,000
500
0

18,000
16,000
14,000
12,000
10,000
8,000
6,000
4,000
2,000
0

1985 1990 1995 2000 2005 2010 2015 2020 2025

1985 1990 1995 2000 2005 2010 2015 2020 2025

Year

Year

Forest C stock (Mt)

Forest C stock (Mt)

Brazil

Vietnam

1,500
1,200
900
600
300

70,000
60,000
50,000
40,000

30,000
20,000
10,000
0

0
1985

80,000

1990

1995

2000

2005
Year

2010

2015

2020

2025

1985 1990 1995 2000 2005 2010 2015 2020 2025
Year
Step 2:
Brazil
Predict
deforestation
rates for legal
Amazon
2005- 2009

Category

Deforestation rate (2000-2004)
Trend variable
Deforestation dummy
Forest stock
Forest stock squared
Log per capita GDP
Agric GDP (%GDP)
Population density
Road denisty
R2
N

Regression coefficient

0.395
-0.136
-0.373
2.18
-1.8
-0.034
0.28
0.081
0.039

-0.145
-0.773
4.756
-3.826
-0.13
0.28
-0.81
0.076

0.831
3595

0.789
3595
Step 2:
Vietnam
Predict
deforestation
rates
2005- 2009

Category

Deforestation rate (2000-2004)
Trend variable
Deforestation dummy
Forest stock
Forest stock squared
Population density
Road denisty
R2
N

Regression coefficient

1.464
-0.006
-0.011
0.067
-0.189
-1.177
0.004

0.003
-0.031
0.260
-0.463
1.036
-0.001

0.515
301

0.052
301
Preliminary conclusions


Historical def. is key to predict future deforestation
– Coefficients below one
misleading



simple extrapolation can be

Some evidence of forest transition (FT) hypothesis
– Robustness of FT depends on the measure of forest stock
FT supported when forest stock is measured relative to total
land area, otherwise mixed results emerge





Other national circumstances have contradictory
effects
Contradictory relationships may be linked to data
quality and interrelations of econ. & institutions
differ
THINKING beyond the canopy
In-depth case study: Indonesia
definitions matter


FAO forest definition – minimum 10% crown
cover, minimum 0.5 ha and minimum height 5 m



Indonesia national forest definition – vegetation
cover dominated by intertwined tree crowns with
canopy cover of more than 60%



Indonesia – vegetation cover dominated by
trees, with canopy cover between 25 and 60% is
defined as bush



Natural forest definition – no plantations
THINKING beyond the canopy
Forest definitions affect estimates of deforestation

THINKING beyond the canopy
THINKING beyond the canopy
Assessment of national REL/RL for Indonesia
Cumulative Emission from
LUCF 2000 -2009
(in Gg CO2e)*

Source

Methods

3,140,033

FRA country report
(EF = 138 ton C/ha)

7,443,064

IPCC Guidelines 2006

3,468,150

Carbon Book keeping model
(RS + Field)

MOF (official)

1,760,000

Approach 1 + NFI
(Tier 1 or 2)

MOF + Saatchi (CIFOR)

1,811,396

Approach 1 + Global EF
(Tier 1 or 2)

FAOStat
MoE - Second National
Communication to UNFCCC
Winrock International
(Harris, 2012)

* does not include

peat emissions and peat fire
Comparison of national deforestation estimates
Validation of deforestation maps of Indonesia

Source: Wijaya, et.al, (In prep)
Validation of deforestation maps
1000

Annual Deforestation (x 1000 ha)

900
800
700
600
500
400
300

200
100
0

Indonesia MOFOR

Indonesia Hansen

Indonesia JRC

Indonesia Mean
Previous deforestation rates are good
predictors of future rates
Using deforestation rates in 2003 to 2006 to predict deforestation in 2006 to 2009

National

Bali

Java

Kalimantan

Maluku
& Papua

Log his
def.

0.942

0.781

1.270

1.059

1.187

0.563

1.032

R2

0.574

0.517

0.187

0.869

0.848

0.589

0.524

372

32

114

43

25

47

111

Num. of
obs

Sulawesi Sumatera
Including socioeconomic factors
improves the regressions
National
0.289
10.121

Bali
0.507
-2.019

Java
0.532
27.345

Kalimantan
0.277
23.192

Maluku &
Papua
0.662
1.166

-8.829

2.342

-43.279

-19.797

6.328

-8.653

-19.510

1.432

0.456

-0.255

-0.038

0.381

-1.136

1.688

0.033

0.015

-0.027

0.032

0.002

0.004

0.069

Log Pop. den.

-0.357

0.291

0.145

0.089

-0.738

-0.404

-0.853

Road density

-2.816

-4.355

0.000

0.494

5.134

6.912

1.089

R-square
Num. of obs

0.777
371

0.665
32

0.549
114

0.980
43

0.965
25

0.707
47

0.858
110

Log his def.
Forest stock
Forest stock sq
Log District
GDP per
capita
Agric. GDP

Sulawesi
0.299
14.658

Sumatera
0.116
18.523
A stepwise approach to reference levels
Observations so far…


Forest definition matters

 Selection of minimum mapping unit is important to
determine the smallest units of deforested areas



Different satellite image classification methods
may result in different estimate



There are several useful approaches to
integrating drivers of deforestation and forest
degradation into assessments of RELs
Thank you

More Related Content

PDF
Monitoring, reporting and verification in NAMAs using SAMPLES
PPT
Nitrous Oxide Emissions Reduction (NERP)
PPT
CRP6: Forests, Trees and Agroforestry: livelihoods, landscapes and governance
PPT
Measurement Reporting Verification system in Papua New Guinea
PPTX
Collaborative Landscape Conservation Planning and Delivery in the Northeast, ...
PPTX
The new agrarian change?
PPTX
People and forests trajectory
PPTX
Towards the Improvement of National Forest Monitoring Approaches
Monitoring, reporting and verification in NAMAs using SAMPLES
Nitrous Oxide Emissions Reduction (NERP)
CRP6: Forests, Trees and Agroforestry: livelihoods, landscapes and governance
Measurement Reporting Verification system in Papua New Guinea
Collaborative Landscape Conservation Planning and Delivery in the Northeast, ...
The new agrarian change?
People and forests trajectory
Towards the Improvement of National Forest Monitoring Approaches

Viewers also liked (20)

PPTX
Role of agroforestry and trees outside forests in integrated land use
PDF
Supporting the preparation of Intended Nationally Determined Contributions th...
PPTX
From the Amazon to the World: A Story of Brazil nuts
PDF
NAMAs for Sustainable Refrigeration, Air-conditioning and Foam Production
PPTX
Government Policy and Budget Allocation to Tackle Deforestation and Forest Fire
PPTX
Big Facts for Big Decisions
PPTX
Layered Impact Funds as Investment Vehicles – Florian Meister, Finance In Motion
PPTX
Evidence-Based Forestry: Approaches and Results in the Asia-Pacific Region
PPTX
Tropical important plant areas: directing botanical research and conservation...
PPTX
Multi-functionality in a conservation landscape: the case of Bac Kan Province...
PPT
Innovative approaches to financing for inclusive green returns: Indonesia's case
PPTX
Multiple financial streams and benefits harnessed and bundled
PPTX
The changing architecture of forest governance and investment in sustainable ...
PDF
Benefits, burdens and solutions to Indonesian Peatland Fires
PPTX
Agrarian change in tropical forests: A change for the better?
PDF
Policy framework for complementary integrated Management of Timber and Non-ti...
PPTX
Initiative 20x20: Restoring 20 million ha in Latin America – Craig Hanson, WRI
PPTX
Forests in a Sustainable World
PDF
Federation of Swedish family. Forest Owners Associations
PDF
NAMA Development in Chile
Role of agroforestry and trees outside forests in integrated land use
Supporting the preparation of Intended Nationally Determined Contributions th...
From the Amazon to the World: A Story of Brazil nuts
NAMAs for Sustainable Refrigeration, Air-conditioning and Foam Production
Government Policy and Budget Allocation to Tackle Deforestation and Forest Fire
Big Facts for Big Decisions
Layered Impact Funds as Investment Vehicles – Florian Meister, Finance In Motion
Evidence-Based Forestry: Approaches and Results in the Asia-Pacific Region
Tropical important plant areas: directing botanical research and conservation...
Multi-functionality in a conservation landscape: the case of Bac Kan Province...
Innovative approaches to financing for inclusive green returns: Indonesia's case
Multiple financial streams and benefits harnessed and bundled
The changing architecture of forest governance and investment in sustainable ...
Benefits, burdens and solutions to Indonesian Peatland Fires
Agrarian change in tropical forests: A change for the better?
Policy framework for complementary integrated Management of Timber and Non-ti...
Initiative 20x20: Restoring 20 million ha in Latin America – Craig Hanson, WRI
Forests in a Sustainable World
Federation of Swedish family. Forest Owners Associations
NAMA Development in Chile
Ad

Similar to A stepwise approach to reference levels (20)

PPTX
Deforestation drivers, carbon emission estimate and setting forest reference ...
PPTX
Developing FRELs/FRLs and Potential Implications of Economic Incentives
PPTX
Identification and quantification forest degradation drivers in tropical dry ...
PPTX
Indonesia’s deforestation: Setting reference emission levels and understandin...
PDF
Identification of carbon stock changes at a national level using a combinatio...
PPTX
Is no net loss possible? Evaluating policy instruments for reducing deforest...
PDF
Presentation on REDD application for Pakistan Saadullah Ayaz
PPTX
Kajian Ilmiah REDD+ MRV : Konteks Global dan Relevansinya dengan Kegiatan Dem...
PPT
Carbon Benefits Kds V3 07
PPTX
GFW Partner Meeting 2017 - Parallel Discussions 1: Forests and Biodiversity
PPTX
Land use analysis in GMS
PPTX
Tracking change in land use and vegetation condition
PDF
The political economy of REDD+ in the DRC
PDF
Report of the High Level Committee on Forest and Environment Related Laws, Ch...
PDF
GFW Partner Meeting 2017 -Parallel DIscussions 3: The Next Frontier of Fores...
PPTX
Reducing Emission from Deforestation and Forest Degradation (REDD+)
PPTX
Iufro uncertainty mexicov5_cw
PPTX
Recent Study on National Deforestation Estimate
PDF
Ethiopia NATIONAL REDD+ Strategy.pdf
Deforestation drivers, carbon emission estimate and setting forest reference ...
Developing FRELs/FRLs and Potential Implications of Economic Incentives
Identification and quantification forest degradation drivers in tropical dry ...
Indonesia’s deforestation: Setting reference emission levels and understandin...
Identification of carbon stock changes at a national level using a combinatio...
Is no net loss possible? Evaluating policy instruments for reducing deforest...
Presentation on REDD application for Pakistan Saadullah Ayaz
Kajian Ilmiah REDD+ MRV : Konteks Global dan Relevansinya dengan Kegiatan Dem...
Carbon Benefits Kds V3 07
GFW Partner Meeting 2017 - Parallel Discussions 1: Forests and Biodiversity
Land use analysis in GMS
Tracking change in land use and vegetation condition
The political economy of REDD+ in the DRC
Report of the High Level Committee on Forest and Environment Related Laws, Ch...
GFW Partner Meeting 2017 -Parallel DIscussions 3: The Next Frontier of Fores...
Reducing Emission from Deforestation and Forest Degradation (REDD+)
Iufro uncertainty mexicov5_cw
Recent Study on National Deforestation Estimate
Ethiopia NATIONAL REDD+ Strategy.pdf
Ad

More from CIFOR-ICRAF (20)

PDF
Synthèse des Activités de Promotion du Bois Légal auprès des Entreprises BTP ...
PDF
Compte rendu de l’atelier de rédaction de la Proposition d’Édit Fixant les mo...
PDF
Impact de la campagne médiatique sur l’intérêt des acheteurs pour le bois et ...
PDF
Activités du PROFEAAC pour la Légalité Forestière à Yanonge
PDF
Concevoir et évaluer des pistes de simplification de la procédure de création...
PDF
Appui aux 14 Exploitants artisanaux en RDC
PDF
Elaboration de mesures locales de régénération et de reboisement des espèces ...
PDF
S’inspirer des dynamiques agraires pour adapter la restauration des forêts pa...
PDF
Une revue systématique des initiatives de restauration forestière par les pop...
PDF
Mise en œuvre du cadre logique du projet
PDF
Suivi des marchés urbains de bois à Kisangani en 2024
PDF
Cadre du projet et panorama des activités en 2024 et 2025
PDF
Principaux résultats et leçons apprises du comité de pilotage du projet PROFE...
PDF
Composante 5: Quelles sont les motivations des acheteurs camerounais pour l'a...
PDF
Composante 5: Suivi des marchés urbains du bois à Yaoundé et Douala en 2024
PDF
Composante 4: Présentation des principaux résultats de la composante 4 du pro...
PDF
Composante 3: Contribution et adaptation de l'exploitation artisanale du bois...
PDF
Composante 3: Soutien à l'exploitation artisanale légale et renforcement des ...
PDF
Composante 2: Réhabilitation forestière dans le Sud du Cameroun
PDF
Composante 1: Estimation et suivi de l'impact de l'exploitation artisanale
Synthèse des Activités de Promotion du Bois Légal auprès des Entreprises BTP ...
Compte rendu de l’atelier de rédaction de la Proposition d’Édit Fixant les mo...
Impact de la campagne médiatique sur l’intérêt des acheteurs pour le bois et ...
Activités du PROFEAAC pour la Légalité Forestière à Yanonge
Concevoir et évaluer des pistes de simplification de la procédure de création...
Appui aux 14 Exploitants artisanaux en RDC
Elaboration de mesures locales de régénération et de reboisement des espèces ...
S’inspirer des dynamiques agraires pour adapter la restauration des forêts pa...
Une revue systématique des initiatives de restauration forestière par les pop...
Mise en œuvre du cadre logique du projet
Suivi des marchés urbains de bois à Kisangani en 2024
Cadre du projet et panorama des activités en 2024 et 2025
Principaux résultats et leçons apprises du comité de pilotage du projet PROFE...
Composante 5: Quelles sont les motivations des acheteurs camerounais pour l'a...
Composante 5: Suivi des marchés urbains du bois à Yaoundé et Douala en 2024
Composante 4: Présentation des principaux résultats de la composante 4 du pro...
Composante 3: Contribution et adaptation de l'exploitation artisanale du bois...
Composante 3: Soutien à l'exploitation artisanale légale et renforcement des ...
Composante 2: Réhabilitation forestière dans le Sud du Cameroun
Composante 1: Estimation et suivi de l'impact de l'exploitation artisanale

Recently uploaded (20)

PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
Empowerment Technology for Senior High School Guide
PDF
Hazard Identification & Risk Assessment .pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Paper A Mock Exam 9_ Attempt review.pdf.
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
Computer Architecture Input Output Memory.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
Chinmaya Tiranga quiz Grand Finale.pdf
PPTX
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
advance database management system book.pdf
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
Indian roads congress 037 - 2012 Flexible pavement
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
Weekly quiz Compilation Jan -July 25.pdf
Empowerment Technology for Senior High School Guide
Hazard Identification & Risk Assessment .pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
What if we spent less time fighting change, and more time building what’s rig...
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Paper A Mock Exam 9_ Attempt review.pdf.
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
Computer Architecture Input Output Memory.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Chinmaya Tiranga quiz Grand Finale.pdf
CHAPTER IV. MAN AND BIOSPHERE AND ITS TOTALITY.pptx
Share_Module_2_Power_conflict_and_negotiation.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
advance database management system book.pdf
LDMMIA Reiki Yoga Finals Review Spring Summer
Indian roads congress 037 - 2012 Flexible pavement
Unit 4 Computer Architecture Multicore Processor.pptx
Introduction to pro and eukaryotes and differences.pptx

A stepwise approach to reference levels

  • 1. A stepwise approach to reference levels Louis Verchot, Arild Angelsen, Martin Herold, Arief Wijaya
  • 2. A stepwise approach to FREL/FRLs
  • 3. Criteria for comparing country circumstances and strategies
  • 4. Deforestation/degradation drivers for each continent AMERICA -2% -4% AFRICA ASIA -2% -1% -7% -11% Deforestation -10% -39% -13% -41% -7% -36% -57% -37% -35% 4% 4% 8% 17% Degradation 6% 26% 7% 20% 9% 67% 70% 62% Deforestation driver Forest degradation driver THINKING beyond the canopy
  • 5. RLs using regression models – Simple, easy to understand and test new variables – But, data demanding – Predicting deforestation in a period: Pt – Pt+1, based on deforestation in the previous period Pt-1 – Pt and a set of other factors (observed at time t). – Using structure (coefficients) from the estimated regression equation to predict deforestation in period Pt+1 – Pt+2, based on observed values at time t+1 2000 2004 2005 Historical deforestation 2009 2010 Estimated/Predicted deforestation Regression model Predictive model, based on structure from regression model 5
  • 6. Step 1 case for 4 countries using FAO FRA data Indonesia 3,500 Forest C stock (Mt) Forest C stock (Mt) Cameroon 3,000 2,500 2,000 1,500 1,000 500 0 18,000 16,000 14,000 12,000 10,000 8,000 6,000 4,000 2,000 0 1985 1990 1995 2000 2005 2010 2015 2020 2025 1985 1990 1995 2000 2005 2010 2015 2020 2025 Year Year Forest C stock (Mt) Forest C stock (Mt) Brazil Vietnam 1,500 1,200 900 600 300 70,000 60,000 50,000 40,000 30,000 20,000 10,000 0 0 1985 80,000 1990 1995 2000 2005 Year 2010 2015 2020 2025 1985 1990 1995 2000 2005 2010 2015 2020 2025 Year
  • 7. Step 2: Brazil Predict deforestation rates for legal Amazon 2005- 2009 Category Deforestation rate (2000-2004) Trend variable Deforestation dummy Forest stock Forest stock squared Log per capita GDP Agric GDP (%GDP) Population density Road denisty R2 N Regression coefficient 0.395 -0.136 -0.373 2.18 -1.8 -0.034 0.28 0.081 0.039 -0.145 -0.773 4.756 -3.826 -0.13 0.28 -0.81 0.076 0.831 3595 0.789 3595
  • 8. Step 2: Vietnam Predict deforestation rates 2005- 2009 Category Deforestation rate (2000-2004) Trend variable Deforestation dummy Forest stock Forest stock squared Population density Road denisty R2 N Regression coefficient 1.464 -0.006 -0.011 0.067 -0.189 -1.177 0.004 0.003 -0.031 0.260 -0.463 1.036 -0.001 0.515 301 0.052 301
  • 9. Preliminary conclusions  Historical def. is key to predict future deforestation – Coefficients below one misleading  simple extrapolation can be Some evidence of forest transition (FT) hypothesis – Robustness of FT depends on the measure of forest stock FT supported when forest stock is measured relative to total land area, otherwise mixed results emerge   Other national circumstances have contradictory effects Contradictory relationships may be linked to data quality and interrelations of econ. & institutions differ THINKING beyond the canopy
  • 10. In-depth case study: Indonesia definitions matter  FAO forest definition – minimum 10% crown cover, minimum 0.5 ha and minimum height 5 m  Indonesia national forest definition – vegetation cover dominated by intertwined tree crowns with canopy cover of more than 60%  Indonesia – vegetation cover dominated by trees, with canopy cover between 25 and 60% is defined as bush  Natural forest definition – no plantations THINKING beyond the canopy
  • 11. Forest definitions affect estimates of deforestation THINKING beyond the canopy
  • 13. Assessment of national REL/RL for Indonesia Cumulative Emission from LUCF 2000 -2009 (in Gg CO2e)* Source Methods 3,140,033 FRA country report (EF = 138 ton C/ha) 7,443,064 IPCC Guidelines 2006 3,468,150 Carbon Book keeping model (RS + Field) MOF (official) 1,760,000 Approach 1 + NFI (Tier 1 or 2) MOF + Saatchi (CIFOR) 1,811,396 Approach 1 + Global EF (Tier 1 or 2) FAOStat MoE - Second National Communication to UNFCCC Winrock International (Harris, 2012) * does not include peat emissions and peat fire
  • 14. Comparison of national deforestation estimates
  • 15. Validation of deforestation maps of Indonesia Source: Wijaya, et.al, (In prep)
  • 16. Validation of deforestation maps 1000 Annual Deforestation (x 1000 ha) 900 800 700 600 500 400 300 200 100 0 Indonesia MOFOR Indonesia Hansen Indonesia JRC Indonesia Mean
  • 17. Previous deforestation rates are good predictors of future rates Using deforestation rates in 2003 to 2006 to predict deforestation in 2006 to 2009 National Bali Java Kalimantan Maluku & Papua Log his def. 0.942 0.781 1.270 1.059 1.187 0.563 1.032 R2 0.574 0.517 0.187 0.869 0.848 0.589 0.524 372 32 114 43 25 47 111 Num. of obs Sulawesi Sumatera
  • 18. Including socioeconomic factors improves the regressions National 0.289 10.121 Bali 0.507 -2.019 Java 0.532 27.345 Kalimantan 0.277 23.192 Maluku & Papua 0.662 1.166 -8.829 2.342 -43.279 -19.797 6.328 -8.653 -19.510 1.432 0.456 -0.255 -0.038 0.381 -1.136 1.688 0.033 0.015 -0.027 0.032 0.002 0.004 0.069 Log Pop. den. -0.357 0.291 0.145 0.089 -0.738 -0.404 -0.853 Road density -2.816 -4.355 0.000 0.494 5.134 6.912 1.089 R-square Num. of obs 0.777 371 0.665 32 0.549 114 0.980 43 0.965 25 0.707 47 0.858 110 Log his def. Forest stock Forest stock sq Log District GDP per capita Agric. GDP Sulawesi 0.299 14.658 Sumatera 0.116 18.523
  • 20. Observations so far…  Forest definition matters  Selection of minimum mapping unit is important to determine the smallest units of deforested areas  Different satellite image classification methods may result in different estimate  There are several useful approaches to integrating drivers of deforestation and forest degradation into assessments of RELs