SlideShare a Scribd company logo
Absolute Value
                      Functions
                                     Graphs
                                           and

                              Compound Functions
                                     By: Jeffrey Bivin
                                  Lake Zurich High School

                                    jeff.bivin@lz95.org

Last Updated: November 15, 2006
 Jeff Bivin -- LZHS
Absolute Value Functions
             Select the desired MENU option below
                                   Graphs
                               1. Translations
                              2. Quick Graphs
                           3. Graphing Inequalities

                     Writing as Compound Functions
                         4. Using the vertex and slopes
                               5. From Definition


Jeff Bivin -- LZHS
Absolute Value
                       Functions
                        Translations




Jeff Bivin -- LZHS
y =|x|




Jeff Bivin -- LZHS
y = |x+1| + 2




Jeff Bivin -- LZHS
y = |2x+5| - 4




Jeff Bivin -- LZHS
y = 2 |x - 3| + 1




Jeff Bivin -- LZHS
y = 3 |2x - 3| - 4




Jeff Bivin -- LZHS
Absolute Value
                       Functions
                        Quick Graphs




Jeff Bivin -- LZHS
y =|x|




Jeff Bivin -- LZHS
y = |x+1| + 2




Jeff Bivin -- LZHS
y = |2x+5| - 4




Jeff Bivin -- LZHS
y = 2 |x - 3| + 1




Jeff Bivin -- LZHS
y = 3 |2x - 3| - 4




Jeff Bivin -- LZHS
Absolute Value
                       Functions
                     Graphing Inequalities




Jeff Bivin -- LZHS
y ≤ |2x+5| - 4




Jeff Bivin -- LZHS
y > -2 |x - 3| + 1




Jeff Bivin -- LZHS
y ≥ |x+1| + 2




Jeff Bivin -- LZHS
y < -2 |3x + 4| + 1




Jeff Bivin -- LZHS
y ≥ 3|-2x + 8| - 1




Jeff Bivin -- LZHS
Absolute Value
                       Functions
                          Writing as
                     Compound Functions
                            using
                      Vertex and slopes
Jeff Bivin -- LZHS
x+2=0
                                 y=|x+2|
                                          x = −2               Slopes of sides
     x = −2                      x < −2        x ≥ −2
                                                                  m=±1
    Vertex (-2, 0)               m = −1               m =1

                     left side                                 right side
                                          ( − 2, 0)
   y − 0 = −1( x − ( − 2 ) )                             y − 0 = 1( x − (−2) )
       y = −1( x + 2 )                                      y = 1( x + 2 )
       y = −x − 2                                            y=x+2

                           x + 2 ,             [ − 2,+∞)
                         y=
Jeff Bivin -- LZHS
                           − x − 2 ,           ( − ∞, − 2)
y = 3| x - 4 |
   x−4=0                                   x=4                  Slopes of sides
      x=4                         x<4            x≥4
                                                                   m=±3
    Vertex (4, 0)                 m = −3             m=3

                     left side                                  right side
                                           ( 4, 0)
   y − 0 = − 3( x − 4 )                                    y − 0 = 3( x − 4 )
       y = − 3 x + 12                                          y = 3 x − 12



                           3 x −12 ,                [ 4, + ∞)
                         y=
Jeff Bivin -- LZHS
                           − 3 x + 12 ,             ( − ∞, 4)
y = -2| x + 1 |
   x +1= 0                                ( −1, 0)            Slopes of sides
      x = −1                                                     m=±2
                                    m=2              m = −2
    Vertex ( −1, 0 )
                                 x < −1                x ≥ −1
                     left side             x = −1             right side

  y − 0 = 2( x − (−1) )                                y − 0 = − 2( x − (−1) )
      y = 2( x + 1)                                        y = − 2( x + 1)
      y = 2x + 2                                           y = − 2x − 2

                             − 2 x − 2 ,             [ −1, + ∞)
                           y=
Jeff Bivin -- LZHS
                              2x + 2 ,                 ( − ∞, −1)
y = 2| x - 5 | +3
   x −5=0                                 x =5                 Slopes of sides
       x =5                      x<5            x≥5
                                                                  m=±2
    Vertex (5, 3)                m = −2             m=2

                     left side                                 right side
                                          ( 5, 3)
   y − 3 = − 2( x − 5)                                    y − 3 = 2( x − 5)
   y − 3 = − 2 x + 10                                     y − 3 = 2 x − 10
       y = − 2 x + 13                                         y = 2x − 7

                             − 2 x + 13 , ( − ∞, 5]
                           y=
Jeff Bivin -- LZHS
                             2 x − 7 , ( 5, + ∞)
y = -4| 2x - 5 | + 7
 2x − 5 = 0                                  ( 5 , 7)
                                               2                     Slopes of sides
     2x = 5                                                             m=±8
      x=5 2
                                     m =8               m = −8

    Vertex           (   5
                         2   , 7)   x<   5
                                         2
                                                           x≥    5
                                                                 2
                     left side               x=    5                 right side
                                                   2

     y − 7 = 8( x − 5 )
                    2                                      y − 7 = − 8( x − 5 )
                                                                            2
     y − 7 = 8 x − 20                                      y − 7 = − 8 x + 20
         y = 8 x − 13                                          y = − 8 x + 27

                                 − 8 x + 27 ,             ( 5 , + ∞)
                                                             2
                               y=
Jeff Bivin -- LZHS
                                  8 x −13 ,               ( − ∞, 2 ]
                                                                   5
Absolute Value
                       Functions
                         Writing as
                     Compound Functions
                       From Definition

Jeff Bivin -- LZHS
x = −2

                        y=|x+2|

                           If x > -2       If x < -2
          x+2=0
                          y = ( x + 2)   y = − ( x + 2)
            x = −2
                          y=x+2          y = −x − 2


                       x + 2 ,   x ≥ −2
                     y=
                       − x − 2 , x < − 2

Jeff Bivin -- LZHS
x=4

                           y = 3| x - 4 |

                               If x > 4         If x < 4
          x−4=0
                            y = 3( x − 4 )   y = − 3( x − 4 )
                     x=4
                            y = 3 x − 12     y = − 3 x + 12


                         3 x − 12 ,   x≥4
                       y=
                         − 3 x + 12 , x < 4
Jeff Bivin -- LZHS
y = -2| x + 1 |
                                                        x = −2
         x +1= 0                  If x > -1       If x < -1
                     x = −1    y = − 2( x + 1)   y = 2( x + 1)
                               y = − 2x − 2      y = 2x + 2


                          − 2 x − 2 , x ≥ −1
                        y=
                          2 x + 2 ,   x< 4
Jeff Bivin -- LZHS
y = -3| 2x + 3 | + 1
                                                           x=   −3
                                                                2

                        If x >    −3               If x <   −3
                                                            2
2x + 3 = 0                        2

 2x = − 3            y = − 3( 2 x + 3) +1   y   = − (−3)( 2 x + 3) +1
  x = −3             y = − 6x − 9 + 1       y   = 3( 2 x + 3) +1
       2
                     y = − 6x − 8           y   = 6 x + 9 +1
                                            y   = 6 x + 10

                       − 6 x − 8 , x ≥               −3
                                                      2
                     y=
                        6 x + 10 , x <
                                                      −3
                                                      2
Jeff Bivin -- LZHS

More Related Content

PPT
Chapter 1 straight line
ZIP
Integrated 2 Section 2-6
DOC
09 Trial Penang S1
PDF
Core2.beamer
PDF
Int Math 2 Section 2-6 1011
PDF
Emat 213 midterm 2 fall 2005
DOCX
Matrices
PDF
Em02 im
Chapter 1 straight line
Integrated 2 Section 2-6
09 Trial Penang S1
Core2.beamer
Int Math 2 Section 2-6 1011
Emat 213 midterm 2 fall 2005
Matrices
Em02 im

What's hot (17)

DOC
3rd period review withanswers
DOC
Simultaneous eqn2
PDF
Graphing lines
PDF
Lesson18 Double Integrals Over Rectangles Slides
PPT
prashant tiwari ppt on maths
PDF
Calculus First Test 2011/10/20
DOCX
Bahan ajar kalkulus integral
PDF
Chapter 1 functions
DOC
3rd Period Review Withanswers
PDF
7.1 7.3 reteach (review)
PPT
X2 T06 02 Cylindrical Shells
PDF
Integrated exercise a_(book_2_B)_Ans
PPTX
Factorising grade a (nisar's method)
PPT
Complex varible
DOC
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
PDF
A family of implicit higher order methods for the numerical integration of se...
PDF
Chapter 9 differential equation
3rd period review withanswers
Simultaneous eqn2
Graphing lines
Lesson18 Double Integrals Over Rectangles Slides
prashant tiwari ppt on maths
Calculus First Test 2011/10/20
Bahan ajar kalkulus integral
Chapter 1 functions
3rd Period Review Withanswers
7.1 7.3 reteach (review)
X2 T06 02 Cylindrical Shells
Integrated exercise a_(book_2_B)_Ans
Factorising grade a (nisar's method)
Complex varible
C:\Documents And Settings\Smapl\My Documents\Sttj 2010\P&amp; P Berkesan 2010...
A family of implicit higher order methods for the numerical integration of se...
Chapter 9 differential equation
Ad

Similar to Absolute value function (20)

PPTX
7.2 abs value function
PPT
6 4 Absolute Value And Graphing
PPT
2.8 b absolute value functions
PPTX
Jacob's and Vlad's D.E.V. Project - 2012
PPT
Parabola
PPT
Chapter 3
DOC
Y=mx+c card sort
PDF
1010n3a
PDF
Horizontal Shifts of Quadratic Functions
PPTX
Sketching the Graph of the given Quadratic Equation-Mathematics 9.pptx
PPT
2.8 absolute value functions
PDF
Absolute Value
PPT
Graphing rational functions
PPT
2.8 a absolute value functions
PDF
solucionario de purcell 3
PDF
solucionario de purcell 3
PPT
Absolute value functions
PPT
Absolute value equations
PPTX
Von(pa savepoh...)
7.2 abs value function
6 4 Absolute Value And Graphing
2.8 b absolute value functions
Jacob's and Vlad's D.E.V. Project - 2012
Parabola
Chapter 3
Y=mx+c card sort
1010n3a
Horizontal Shifts of Quadratic Functions
Sketching the Graph of the given Quadratic Equation-Mathematics 9.pptx
2.8 absolute value functions
Absolute Value
Graphing rational functions
2.8 a absolute value functions
solucionario de purcell 3
solucionario de purcell 3
Absolute value functions
Absolute value equations
Von(pa savepoh...)
Ad

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
Complications of Minimal Access Surgery at WLH
PPTX
Institutional Correction lecture only . . .
PDF
Classroom Observation Tools for Teachers
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
Microbial disease of the cardiovascular and lymphatic systems
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PPTX
Final Presentation General Medicine 03-08-2024.pptx
PDF
2.FourierTransform-ShortQuestionswithAnswers.pdf
PPTX
Lesson notes of climatology university.
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
Pharma ospi slides which help in ospi learning
PPTX
PPH.pptx obstetrics and gynecology in nursing
PDF
TR - Agricultural Crops Production NC III.pdf
PDF
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Insiders guide to clinical Medicine.pdf
VCE English Exam - Section C Student Revision Booklet
Complications of Minimal Access Surgery at WLH
Institutional Correction lecture only . . .
Classroom Observation Tools for Teachers
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
Microbial disease of the cardiovascular and lymphatic systems
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Final Presentation General Medicine 03-08-2024.pptx
2.FourierTransform-ShortQuestionswithAnswers.pdf
Lesson notes of climatology university.
Microbial diseases, their pathogenesis and prophylaxis
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
Pharma ospi slides which help in ospi learning
PPH.pptx obstetrics and gynecology in nursing
TR - Agricultural Crops Production NC III.pdf
grade 11-chemistry_fetena_net_5883.pdf teacher guide for all student
human mycosis Human fungal infections are called human mycosis..pptx
STATICS OF THE RIGID BODIES Hibbelers.pdf
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Insiders guide to clinical Medicine.pdf

Absolute value function

  • 1. Absolute Value Functions Graphs and Compound Functions By: Jeffrey Bivin Lake Zurich High School jeff.bivin@lz95.org Last Updated: November 15, 2006 Jeff Bivin -- LZHS
  • 2. Absolute Value Functions Select the desired MENU option below Graphs 1. Translations 2. Quick Graphs 3. Graphing Inequalities Writing as Compound Functions 4. Using the vertex and slopes 5. From Definition Jeff Bivin -- LZHS
  • 3. Absolute Value Functions Translations Jeff Bivin -- LZHS
  • 5. y = |x+1| + 2 Jeff Bivin -- LZHS
  • 6. y = |2x+5| - 4 Jeff Bivin -- LZHS
  • 7. y = 2 |x - 3| + 1 Jeff Bivin -- LZHS
  • 8. y = 3 |2x - 3| - 4 Jeff Bivin -- LZHS
  • 9. Absolute Value Functions Quick Graphs Jeff Bivin -- LZHS
  • 10. y =|x| Jeff Bivin -- LZHS
  • 11. y = |x+1| + 2 Jeff Bivin -- LZHS
  • 12. y = |2x+5| - 4 Jeff Bivin -- LZHS
  • 13. y = 2 |x - 3| + 1 Jeff Bivin -- LZHS
  • 14. y = 3 |2x - 3| - 4 Jeff Bivin -- LZHS
  • 15. Absolute Value Functions Graphing Inequalities Jeff Bivin -- LZHS
  • 16. y ≤ |2x+5| - 4 Jeff Bivin -- LZHS
  • 17. y > -2 |x - 3| + 1 Jeff Bivin -- LZHS
  • 18. y ≥ |x+1| + 2 Jeff Bivin -- LZHS
  • 19. y < -2 |3x + 4| + 1 Jeff Bivin -- LZHS
  • 20. y ≥ 3|-2x + 8| - 1 Jeff Bivin -- LZHS
  • 21. Absolute Value Functions Writing as Compound Functions using Vertex and slopes Jeff Bivin -- LZHS
  • 22. x+2=0 y=|x+2| x = −2 Slopes of sides x = −2 x < −2 x ≥ −2 m=±1 Vertex (-2, 0) m = −1 m =1 left side right side ( − 2, 0) y − 0 = −1( x − ( − 2 ) ) y − 0 = 1( x − (−2) ) y = −1( x + 2 ) y = 1( x + 2 ) y = −x − 2 y=x+2 x + 2 , [ − 2,+∞) y= Jeff Bivin -- LZHS − x − 2 , ( − ∞, − 2)
  • 23. y = 3| x - 4 | x−4=0 x=4 Slopes of sides x=4 x<4 x≥4 m=±3 Vertex (4, 0) m = −3 m=3 left side right side ( 4, 0) y − 0 = − 3( x − 4 ) y − 0 = 3( x − 4 ) y = − 3 x + 12 y = 3 x − 12 3 x −12 , [ 4, + ∞) y= Jeff Bivin -- LZHS − 3 x + 12 , ( − ∞, 4)
  • 24. y = -2| x + 1 | x +1= 0 ( −1, 0) Slopes of sides x = −1 m=±2 m=2 m = −2 Vertex ( −1, 0 ) x < −1 x ≥ −1 left side x = −1 right side y − 0 = 2( x − (−1) ) y − 0 = − 2( x − (−1) ) y = 2( x + 1) y = − 2( x + 1) y = 2x + 2 y = − 2x − 2 − 2 x − 2 , [ −1, + ∞) y= Jeff Bivin -- LZHS  2x + 2 , ( − ∞, −1)
  • 25. y = 2| x - 5 | +3 x −5=0 x =5 Slopes of sides x =5 x<5 x≥5 m=±2 Vertex (5, 3) m = −2 m=2 left side right side ( 5, 3) y − 3 = − 2( x − 5) y − 3 = 2( x − 5) y − 3 = − 2 x + 10 y − 3 = 2 x − 10 y = − 2 x + 13 y = 2x − 7 − 2 x + 13 , ( − ∞, 5] y= Jeff Bivin -- LZHS 2 x − 7 , ( 5, + ∞)
  • 26. y = -4| 2x - 5 | + 7 2x − 5 = 0 ( 5 , 7) 2 Slopes of sides 2x = 5 m=±8 x=5 2 m =8 m = −8 Vertex ( 5 2 , 7) x< 5 2 x≥ 5 2 left side x= 5 right side 2 y − 7 = 8( x − 5 ) 2 y − 7 = − 8( x − 5 ) 2 y − 7 = 8 x − 20 y − 7 = − 8 x + 20 y = 8 x − 13 y = − 8 x + 27 − 8 x + 27 , ( 5 , + ∞) 2 y= Jeff Bivin -- LZHS  8 x −13 , ( − ∞, 2 ] 5
  • 27. Absolute Value Functions Writing as Compound Functions From Definition Jeff Bivin -- LZHS
  • 28. x = −2 y=|x+2| If x > -2 If x < -2 x+2=0 y = ( x + 2) y = − ( x + 2) x = −2 y=x+2 y = −x − 2 x + 2 , x ≥ −2 y= − x − 2 , x < − 2 Jeff Bivin -- LZHS
  • 29. x=4 y = 3| x - 4 | If x > 4 If x < 4 x−4=0 y = 3( x − 4 ) y = − 3( x − 4 ) x=4 y = 3 x − 12 y = − 3 x + 12 3 x − 12 , x≥4 y= − 3 x + 12 , x < 4 Jeff Bivin -- LZHS
  • 30. y = -2| x + 1 | x = −2 x +1= 0 If x > -1 If x < -1 x = −1 y = − 2( x + 1) y = 2( x + 1) y = − 2x − 2 y = 2x + 2 − 2 x − 2 , x ≥ −1 y= 2 x + 2 , x< 4 Jeff Bivin -- LZHS
  • 31. y = -3| 2x + 3 | + 1 x= −3 2 If x > −3 If x < −3 2 2x + 3 = 0 2 2x = − 3 y = − 3( 2 x + 3) +1 y = − (−3)( 2 x + 3) +1 x = −3 y = − 6x − 9 + 1 y = 3( 2 x + 3) +1 2 y = − 6x − 8 y = 6 x + 9 +1 y = 6 x + 10 − 6 x − 8 , x ≥ −3 2 y=  6 x + 10 , x < −3 2 Jeff Bivin -- LZHS