SlideShare a Scribd company logo
 Characteristics of Sinusoidal
 Phasors
 Phasor Relationships for R, L and C
 Impedance
 Parallel and Series Resonance
 Examples for Sinusoidal Circuits Analysis
Single Phase AC
Sinusoidal Steady State Analysis
• Any steady state voltage or current in a linear circuit with a
sinusoidal source is a sinusoid
– All steady state voltages and currents have the same frequency as
the source
• In order to find a steady state voltage or current, all we need to know
is its magnitude and its phase relative to the source (we already know
its frequency)
• We do not have to find this differential equation from the circuit, nor
do we have to solve it
• Instead, we use the concepts of phasors and complex impedances
• Phasors and complex impedances convert problems involving
differential equations into circuit analysis problems
Characteristics of Sinusoids
Outline:
1. Time Period: T
2. Frequency: f (Hertz)
3. Angular Frequency:  (rad/sec)
4. Phase angle: Φ
5. Amplitude: Vm Im
Characteristics of Sinusoids :
  tVv mt sin iI1
I1
I1 I1 I1 I1
R1
R1
R
5
5
+
_
IS 
E
I1
U1
+
-
U
I

iI1 I1 I1 I1
R1
R1
R
5
5
-
+
IS 
E
I1
U1
+
-
U
I

v ,i
tt1 t20
Both the polarity and magnitude of voltage are changing.
Radian frequency(Angular frequency):  = 2f = 2/T (rad/s)
Time Period: T — Time necessary to go through one cycle. (s)
Frequency: f — Cycles per second. (Hz)
f = 1/T
Amplitude: Vm Im
i = Imsint, v =Vmsint
v ,i
t 20
Vm , Im
Characteristics of Sinusoids :
Effective Roof Mean Square (RMS) Value of a Periodic
Waveform — is equal to the value of the direct current which is
flowing through an R-ohm resistor. It delivers the same average
power to the resistor as the periodic current does.
RIRdti
T
T
2
0
21

Effective Value of a Periodic Waveform 
T
eff dti
T
I
0
21
22
1
2
2cos1
sin
1 2
0
2
0
22 m
m
T
m
T
meff
IT
I
T
dt
t
T
I
tdtI
T
I 

 


2
1
0
2 m
T
eff
V
dtv
T
V  
Characteristics of Sinusoids :
Phase (angle)
   tIi m sin
  sin0 mIi 
Phase angle
-8
-6
-4
-2
0
2
4
6
8
0 0.01 0.02 0.03 0.04 0.05
<0
0
Characteristics of Sinusoids :
)sin( 1  tVv m
)sin( 2  tIi m
Phase difference
2121 )(   ttiv
021   — v(t) leads i(t) by (1 - 2), or i(t) lags v(t) by (1 - 2)
2
21

 
v, i
t
v
i
  21
Out of phase
t
v, i
v
i
v, i
t
v
i
021  
In phase
021   — v(t) lags i(t) by (2 - 1), or i(t) leads v(t) by (2 - 1)
Characteristics of Sinusoids :
Review
The sinusoidal waves whose phases are compared must:
1. Be written as sine waves or cosine waves.
2. With positive amplitudes.
3. Have the same frequency.
360°—— does not change anything.
90° —— change between sin & cos.
180°—— change between + & -
2
sin cos cos
3 2
cos sin
2

   

 
   
       
   
 
   
 
Characteristics of Sinusoids :
Phase difference
 
30314sin22201  tv
   
9030314sin222030314cos22202  ttv
 
120314sin2220  t

1501203021  
 
30314cos22202  tv
 
30314cos22202  tv  
18030314cos2220  t
  
210314360cos2220  t
 
90150314sin2220  t
 
60314sin2220  t

30603021  
Find ?
 
30314cos22202  tvIf
Characteristics of Sinusoids :
Phase difference
v, i
t
v
i
-/3 /3
• ••








3
sin

tVm







3
sin

tIm
Characteristics of Sinusoids :
Outline:
1. Complex Numbers
2. Rotating Vector
3. Phasors
A sinusoidal voltage/current at a given frequency, is characterized by only
two parameters : amplitude and phase
A phasor is a Complex Number which represents magnitude and phase of a sinusoid
Phasors
e.g. voltage response
A sinusoidal v/i
Complex transform
Phasor transform
By knowing angular
frequency ω rads/s.
Time domain
Frequency domain
  eR v t
Complex form:
   cosmv t V t  
Phasor form:
   j t
mv t V e
 

Angular frequency ω is
known in the circuit.
 || mVV
 || mVV
Phasors
Rotating Vector
   tIti m sin)(
i
Im
t1
i
t
Im

t
x
y
 
   
     
 max
cos sin
sin
j t
m m m
j t
m m
I e I t jI t
i t I t I I e
 
 
   
 


   
  
A complex coordinates number:
Real value:
i(t1)
Imag
Phasors
Rotating Vector
Vm
x
y
0

)sin(   tVv m
Phasors
Complex Numbers
jbaA  — Rectangular Coordinates
  sincos jAA 
j
eAA  — Polar Coordinates
j
eAAjbaA 
conversion: 22
baA 
a
b
arctg
jbaeA j

cosAa 
sinAb 

a
b
Real axis
Imaginary axis
jjje j

090sin90cos90 
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Addition: A = a + jb, B = c + jd, A + B = (a + c) + j(b + d)
Real Axis
Imaginary Axis
AB
A + B
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Subtraction : A = a + jb, B = c + jd, A - B = (a - c) + j(b - d)
Real
Axis
Imaginary
Axis
AB
A - B
Phasors
Complex Numbers
Arithmetic With Complex Numbers
Multiplication : A = Am  A, B = Bm  B
A  B = (Am  Bm)  (A + B)
Division: A = Am  A , B = Bm  B
A / B = (Am / Bm)  (A - B)
Phasors
Phasors
A phasor is a complex number that represents the magnitude and phase of
a sinusoid:
  tim cos  mI
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between currents
and voltages.
Phasors
)sin()cos()(

 
tAjtAeAAe tjtj
)cos(||}Re{ 
 tAAe tj
Complex Exponentials
j
eAA 
 A real-valued sinusoid is the real part of a complex exponential.
 Complex exponentials make solving for AC steady state an
algebraic problem.
Phasors
Phasor Relationships for R, L and C
Outline:
I-V Relationship for R, L and C,
Power conversion
Phasor Relationships for R, L and C
 v~i relationship for a resistor
_
v
i
R

 +
S 


tIt
R
V
R
v
i m
m
 sinsin 
tVv m sin
Relationship between RMS:
R
V
I 
Wave and Phasor diagrams:
v、i
t
v
i 
I 
V
R
V
I



Resistor
Suppose
 Time domain Frequency domainResistor
With a resistor θ﹦ϕ, v(t) and i(t) are in phase .
)cos()(
)cos()(




wtIti
wtVtv
m
m
IRV
RIV
eRIeV
eRIeV
mm
j
m
j
m
wtj
m
wtj
m



 


 )()(
Phasor Relationships for R, L and C
 PowerResistor
_
v
i
R
+

 P  0
tItVvip mm  sinsin  tVI mm 2
sin
 t
VI mm
2cos1
2
 tIVIV 2cos
v, i
t
v
i
P=IV 
T
pdt
T
P
0
1
  
T
VIdttVI
T 0
2cos1
1

R
V
RIIVP
2
2

• Average Power
• Transient Power
Note: I and V are RMS values.
Phasor Relationships for R, L and C
Resistor
, R=10,Find i and Ptv 314sin311
 V
V
V m
220
2
311
2

 A
R
V
I 22
10
220

ti 314sin222  WIVP 484022220 
Phasor Relationships for R, L and C
 v~i relationshipInductor
dt
di
Lvv AB 
  tLI
dt
tId
L
dt
di
Lv m
m


cos
sin

 
90sin  tLIm 
 
90sin  tVm 
 

t
vdt
L
i
1
 

t
vdt
L
vdt
L 0
0 11

t
vdt
L
i
0
0
1
tIi m sinSuppose
Phasor Relationships for R, L and C
 v~i relationshipInductor
 
90sin  tLIm 
dt
di
Lv   
90sin  tVm 
LIV mm 
Relationship between RMS: LIV 
L
V
I

 fLLXL  2  
For DC,f = 0,XL = 0.
fXL 
v(t) leads i(t) by 90º, or i(t) lags v(t) by 90º
Phasor Relationships for R, L and C
 v ~ i relationshipInductor
v, i
t
v
i
eL
V
I
LXIjV 
Wave and Phasor diagrams:
Phasor Relationships for R, L and C
 PowerInductor
vip    tItV mm  sin90sin 
 ttIV mm  sincos 
t
IV mm
2sin
2
 tVI 2sin
P
t
v, i
t
v
i
++
--22
max
2
1
LILIW m 
2
00 2
1
LiLidividtW
it
 Energy stored:
  
T T
tdtVI
T
pdt
T
P
0 0
02sin
11
Average Power
Reactive Power
L
L
X
V
XIIVQ
2
2
 (Var)
Phasor Relationships for R, L and C
Inductor
L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.
  
14.310105022 3
fLX L
 
   Atti
A
X
V
I
L
L

90sin25.22
5.22
14.3
2/100
50



  
31401010105022 33
fLX L
 
   mAtti
mA
X
V
I
L
L
k

90sin25.22
5.22
14.3
2/100
50



Phasor Relationships for R, L and C
 v ~ i relationshipCapacitor
_
v
i
+


C
dt
dv
C
dt
dq
i 
tVv m sinSuppose:
 
90sincos  tCVtCVi mm   
90sin  tIm 
   

t tt
idt
c
vidt
c
idt
c
idt
c
v
0
0
0
0
1111
i(t) leads v(t) by 90º, or v(t) lags i(t) by 90º
Relationship between RMS:
CX
V
C
V
CVI 


1
 
fCC
XC
 2
11

For DC,f = 0, XC  
f
XC
1

mm CVI 
Phasor Relationships for R, L and C
_
v
i
+


C
tj
m
tj
m
eCVj
dt
edV
C
dt
tdv
Cti 


)(
)(
v(t) = Vm ejt
Represent v(t) and i(t) as phasors:
CjX
V
VCωjI ==


• The derivative in the relationship between v(t) and i(t) becomes a
multiplication by in the relationship between and .
• The time-domain differential equation has become the algebraic equation in the
frequency-domain.
• Phasors allow us to express current-voltage relationships for inductors and
capacitors much like we express the current-voltage relationship for a resistor.
 v ~ i relationshipCapacitor
V I
wC
j

Phasor Relationships for R, L and C
 v ~ i relationshipCapacitor
v, i
t
v
i
I
V
CXIjV  
Wave and Phasor diagrams:
Phasor Relationships for R, L and C
PowerCapacitor
Average Power: P = 0
Reactive Power
C
C
X
V
XIIVQ
2
2
 (Var)
 
90sinsin  tItVvip mm  tVIt
IV mm
 2sin2sin
2

P
t
v, i
t
v
i
++
--
Energy stored:
  
t vv
CvCvdvdt
dt
dv
CvvidtW
0 0
2
0 2
1
22
max
2
1
CVCVW m 
Phasor Relationships for R, L and C
Capacitor
Suppose C=20F,AC source v=100sint,Find XC and I for f = 50Hz,
50kHz。
 159
2
11
Hz50
fCC
Xf c

A44.0
2

c
m
c X
V
X
V
I
  159.0
2
11
KHz50
fCC
Xf c

A440
2

c
m
c X
V
X
V
I
Phasor Relationships for R, L and C
Review (v – i Relationship)
Time domain Frequency domain
iRv  IRV  
I
Cj
V  

1
ILjV   
dt
di
LvL 
dt
dv
CiC 
C
XC

1

LXL ,
,
, v and i are in phase.
, v leads i by 90°.
, v lags i by 90°.
R
C
L
Phasor Relationships for R, L and C
Summary:
 R: RX R  0
L: ffLLXL   2
2

  iv
C:
ffcc
XC
1
2
11

 2

  iv
 IXV 
 Frequency characteristics of an Ideal Inductor and Capacitor:
A capacitor is an open circuit to DC currents;
A Inductor is a short circuit to DC currents.
Phasor Relationships for R, L and C
Impedance (Z)
Outline:
Complex currents and voltages.
Impedance
Phasor Diagrams
• AC steady-state analysis using phasors allows us to express the
relationship between current and voltage using a formula that looks
likes Ohm’s law:
ZIV 
Complex voltage, Complex current, Complex Impedance
vm
j
m VeVV v


im
j
m IeII i



 
ZeZe
I
V
I
V
Z jj
m
m iv )(


‘Z’ is called impedance
measured in ohms ()
Impedance (Z)
Complex Impedance

 
ZeZe
I
V
I
V
Z jj
m
m iv )(


 Complex impedance describes the relationship between the voltage
across an element (expressed as a phasor) and the current through the
element (expressed as a phasor).
 Impedance is a complex number and is not a phasor (why?).
 Impedance depends on frequency.
Impedance (Z)
Complex Impedance
ZR = R  = 0; or ZR = R  0
Resistor——The impedance is R
c
j
c jX
C
j
e
C
Z 





21
)
2
(

  iv
or 
90
1

C
ZC

Capacitor——The impedance is 1/jωC
L
j
L jXLjLeZ  

2
)
2
(

  iv
or 
90 LZL 
Inductor——The impedance is jωL
Impedance (Z)
Complex Impedance
Impedance in series/parallel can be combined as resistors.
_
U
U
Z1
+

Z2 Zn


I



n
k
kn ZZZZZ
1
21 ...
_
US
In
I1
I1
I1 I1 I1 I1
 


R1
R1
Zn
5
5
5 5
+
+
_
US
IS 
U1
+
-
U

I

Z2Z1




n
k kn ZZZZZ 121
11
...
111
21
1
2
21
2
1
ZZ
Z
II
ZZ
Z
II



 
Current divider:

 n
k
k
i
i
Z
Z
VV
1

Voltage divider:
Impedance (Z)
Complex Impedance
_
+


V
 I


1IZ1
Z2 Z

 
2121
2
2121
2
1
2
1
1
2
2
1
11
ZZZZZZ
ZV
I
ZZZZZZ
ZZV
ZZ
Z
V
I
ZZ
Z
II





















Impedance (Z)
Complex Impedance
Phasors and complex impedance allow us to use Ohm’s law with
complex numbers to compute current from voltage and voltage
from current
20kW
+
-
1mF10V  0 VC
+
-
w = 377
Find VC
• How do we find VC?
• First compute impedances for resistor and capacitor:
ZR = 20kW = 20kW  0
ZC = 1/j (377 *1mF) = 2.65kW  -90
Impedance (Z)
Complex Impedance
20kW
+
-
1mF10V  0 VC
+
-
w = 377
Find VC
20kW  0
+
-
2.65kW  -
90
10V  0 VC
+
-
Now use the voltage divider to find VC:




46.82V31.1
54.717.20
9065.2
010VCV
)
0209065.2
9065.2
(010 





kk
k
VVC
Impedance (Z)
Impedance allows us to use the same solution techniques
for AC steady state as we use for DC steady state.
• All the analysis techniques we have learned for the linear circuits are
applicable to compute phasors
– KCL & KVL
– node analysis / loop analysis
– Superposition
– Thevenin equivalents / Norton equivalents
– source exchange
• The only difference is that now complex numbers are used.
Complex Impedance
Impedance (Z)
Kirchhoff’s Laws
KCL and KVL hold as well in phasor domain.
KVL: 0
1

n
k
kv vk- Transient voltage of the #k branch
0
1

n
k
kV
KCL: 0
1


n
k
ki
0
1


n
k
kI
ik- Transient current of the #k branch
Impedance (Z)
Admittance
• I = YV, Y is called admittance, the reciprocal of
impedance, measured in Siemens (S)
• Resistor:
– The admittance is 1/R
• Inductor:
– The admittance is 1/jL
• Capacitor:
– The admittance is jC
Impedance (Z)
Phasor Diagrams
• A phasor diagram is just a graph of several phasors on the complex
plane (using real and imaginary axes).
• A phasor diagram helps to visualize the relationships between currents
and voltages.
2mA  40
–
1mF VC
+
–
1kW VR
+
+
–
V
I = 2mA  40, VR = 2V  40
VC = 5.31V  -50, V = 5.67V  -29.37
Real Axis
Imaginary Axis
VR
VC
V
Impedance (Z)
Parallel and Series Resonance
Outline:
RLC Circuit,
Series Resonance
Parallel Resonance
v
vR
vL
vC
CLR vvvv 
CLR VVVV  Phasor

I
V
LV
CV
RV
IZ
XRI
XXRI
IXIXIR
VVVV
CL
CL
CLR





22
22
22
22
)(
)()(
)(
)CL XXX (
22
XRZ 
22
)
1
(
c
LR

 
(2nd Order RLC Circuit )Series RLC Circuit
Parallel and Series Resonance :
22
XRZ 
22
)
1
(
c
LR

 IZVVVV CLR  22
)(
Z
X = XL-XC
R


V
RV
CLX VVV   R
XX
V
VV
CL
R
CL





1
1
tan
-
tan
Phase difference:
XL>XC   >0,v leads i by  — Inductance Circuit
XL<XC   <0,v lags i by  — Capacitance Circuit
XL=XC   =0,v and i in phase — Resistors Circuit
Series RLC Circuit
Parallel and Series Resonance :
CLR VVVV   CL XIjXIjRI  
ZIjXRIXXjRI CL
  )()]((
)( CL XXjR
I
V
Z 


 ZjXRZ
22
)( CL XXRZ 
R
XX CL 
 1
tan
iv  
v
vR
vL
vC
Series RLC Circuit
Parallel and Series Resonance :
Series Resonance (2nd Order RLC Circuit )
CLR VVVV   CL XIjXIjRI  
R
XX
arctg
V
VV
arctg CL
R
CL 



CLCL VVL
C
XXWhen  

1
,
VVR  0and —— Series Resonance
Resonance condition
I
LV
CV
VVR
 
LC
for
LC 

2
11
00 
f0 f
X
Cf
XC
2
1

fLXL 2
Resonant frequency
Parallel and Series Resonance :
Series Resonance
R
V
Z
V
IRXXRZ CL 
0
0
22
0 )(•
Zmin;when V = constant, I = Imax= I0
RXX CL  RIXIXI CL 000  VVV CL 
• Quality factor Q,
R
X
R
X
V
V
V
V
Q CLCL

CLCL VVL
C
XX  )
1
( 

Resonance condition:
When,
Parallel and Series Resonance :
Parallel RLC Circuit
V

I
 LI
 CI
  
)(
1
/
11
222222
LR
L
Cj
LR
R
Cj
LjRLjR
LjR
Cj
LjRCjLjR
Y
























Parallel Resonance
Parallel Resonance frequency
L
CR
LC
2
0 1
1

LXR In generally )
2
1
( 0
LC
f


LC
1
0 
0)( 222



LR
L
C


When 2220
LR
R
Y

,
In phase withV I
V
L
RC
C
L
R
R
V
L
LC
R
R
V
LR
R
VVYII 






222
22
0
200
1
Zmax Imin:
Parallel and Series Resonance :
Parallel RLC Circuit
V

I
 LI
 CI
V
L
C
j
L
V
j
LjR
VIL


 


00
1

V
L
C
jVCjIC
  0
0|||||| 0  III CL
 Z  .
RCR
L
Q
0
0 1


0IjQIL
  0IjQIC
 
•Quality factor Q,
0000 Y
Y
Y
Y
I
I
I
I
Q CLLC

Parallel and Series Resonance :
Parallel RLC Circuit
Review
For sinusoidal circuit, Series : 21 vvv  21 VVV 
21 iii  21 III 
?
Two Simple Methods:
Phasor Diagrams and Complex Numbers
Parallel :
Parallel and Series Resonance :

More Related Content

PDF
Transient response of RC , RL circuits with step input
PPT
Single phase AC circuit.ppt
PPT
Unit 2 resonance circuit
PPT
Magnetic circuit
PPT
Electric and magnetic circuits
PDF
Full transformer
PPTX
Solid breakdown (2) (1)
PDF
Chapter 2: Direct Current (DC) Circuits
Transient response of RC , RL circuits with step input
Single phase AC circuit.ppt
Unit 2 resonance circuit
Magnetic circuit
Electric and magnetic circuits
Full transformer
Solid breakdown (2) (1)
Chapter 2: Direct Current (DC) Circuits

What's hot (20)

PPT
Ac fundamentals
PPT
Understanding transformer vector group
PDF
Uniform plane wave equation
PPTX
Chapter1 breakdown in gases
PPT
A.C. bridges
PPTX
AC bridges ( Weins bridge, Desauty bridge, Maxwell's inductance bridge)
PPTX
Transformer : Equivalent Circuit
PPT
Dot convention in coupled circuits
PPTX
Network Analysis and Synthesis
PPTX
Star & Delta Connection
PDF
TRANSFORMER VECTOR GROUP.pdf
PPT
A.c circuits
PPT
Electromagnetic Theory (EMT)
PPT
Magnetic circuits
PPTX
BREAKDOWN IN GASES
PPT
Alternating current voltages
PPTX
AC in RC Circuits
PDF
Inductance and capacitance
PPTX
electromagnetic induction ( part 1 )
PDF
chapter-2 Breakdown in Gases (part-1)
Ac fundamentals
Understanding transformer vector group
Uniform plane wave equation
Chapter1 breakdown in gases
A.C. bridges
AC bridges ( Weins bridge, Desauty bridge, Maxwell's inductance bridge)
Transformer : Equivalent Circuit
Dot convention in coupled circuits
Network Analysis and Synthesis
Star & Delta Connection
TRANSFORMER VECTOR GROUP.pdf
A.c circuits
Electromagnetic Theory (EMT)
Magnetic circuits
BREAKDOWN IN GASES
Alternating current voltages
AC in RC Circuits
Inductance and capacitance
electromagnetic induction ( part 1 )
chapter-2 Breakdown in Gases (part-1)
Ad

Viewers also liked (11)

PPTX
Gate 2017 eesyllabus
PPTX
PPT
Series parallel ac networks
PPT
Elect principles 2 ac circuits (rl)
PPT
Series parallel ac rlc networks
PPT
Simple model of DC Power Supply(LTspice)
PPT
Network Theorems.ppt
PPT
AC electricity
PPT
AC and DC circuits Presentation
PPT
Circuit Theorem
PPT
chapter 1 linear dc power supply
Gate 2017 eesyllabus
Series parallel ac networks
Elect principles 2 ac circuits (rl)
Series parallel ac rlc networks
Simple model of DC Power Supply(LTspice)
Network Theorems.ppt
AC electricity
AC and DC circuits Presentation
Circuit Theorem
chapter 1 linear dc power supply
Ad

Similar to Ac single phase (20)

PPT
lecture11.ppt
PPTX
Ee201 -revision_contigency_plan
PPT
Sinusoidal Steady State Analysis
PDF
AC Theory
PPTX
UNIT_2faiz intropfuvfaiz intropfuv_BEE.pptx
PPT
W12_AC Fundamental for Electrical Circuit Analysis
PPT
Fundamentals of Electric Circuits SSA.pdf
PPTX
Ac_steady_state_analyis.pptx
PPTX
Ac_steady_state_analyis.pptx
PDF
Chapter 3: AC Sources and AC Characteristic
PPT
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
PDF
SECTION 1 Sinusoidal Steady-State Analysis.pdf
PPTX
Review of ac fundamentals
PPT
Topic 2b ac_circuits_analysis
PPTX
sinusoids and phasors in AC circuits.pptx
PPTX
Chapter 1 - Polyphase Circuit Analysis.pptx
PPT
Ac circuit analysis on electrical circuits
PDF
2. Power Computations and Analysis Techniques_verstud.pdf
PPTX
BEEE_unit2 for jntuk and jntuh 1st year students.pptx
PDF
Ch-2 AC.pdf
lecture11.ppt
Ee201 -revision_contigency_plan
Sinusoidal Steady State Analysis
AC Theory
UNIT_2faiz intropfuvfaiz intropfuv_BEE.pptx
W12_AC Fundamental for Electrical Circuit Analysis
Fundamentals of Electric Circuits SSA.pdf
Ac_steady_state_analyis.pptx
Ac_steady_state_analyis.pptx
Chapter 3: AC Sources and AC Characteristic
EE301 Lesson 15 Phasors Complex Numbers and Impedance (2).ppt
SECTION 1 Sinusoidal Steady-State Analysis.pdf
Review of ac fundamentals
Topic 2b ac_circuits_analysis
sinusoids and phasors in AC circuits.pptx
Chapter 1 - Polyphase Circuit Analysis.pptx
Ac circuit analysis on electrical circuits
2. Power Computations and Analysis Techniques_verstud.pdf
BEEE_unit2 for jntuk and jntuh 1st year students.pptx
Ch-2 AC.pdf

More from Mohammed Waris Senan (20)

PDF
Basics of rotating machines
PDF
Introduction to Integral calculus
PDF
Introduction to Differential calculus
PPTX
Control system unit(1)
PPTX
Magnetic materials & B-H Curve
PPTX
Measurement of 3 phase power by two watt-meter method
PPTX
Electrical machine slide share
PPTX
Electromechanical energy conversion
PPTX
Dc machines (Generator & Motor)
PPTX
Single and three phase Transformers
PPTX
Network synthesis
PPT
Two port networks
PPTX
Transient analysis
PPTX
Laplace transform
PPTX
Active network
PPTX
Time domain analysis
PPTX
PPTX
Synchronous machines
PPTX
Induction machines
Basics of rotating machines
Introduction to Integral calculus
Introduction to Differential calculus
Control system unit(1)
Magnetic materials & B-H Curve
Measurement of 3 phase power by two watt-meter method
Electrical machine slide share
Electromechanical energy conversion
Dc machines (Generator & Motor)
Single and three phase Transformers
Network synthesis
Two port networks
Transient analysis
Laplace transform
Active network
Time domain analysis
Synchronous machines
Induction machines

Recently uploaded (20)

PDF
VCE English Exam - Section C Student Revision Booklet
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PPTX
human mycosis Human fungal infections are called human mycosis..pptx
PDF
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
PPTX
Cell Structure & Organelles in detailed.
PPTX
Microbial diseases, their pathogenesis and prophylaxis
PDF
Pre independence Education in Inndia.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
Institutional Correction lecture only . . .
PDF
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
PDF
102 student loan defaulters named and shamed – Is someone you know on the list?
PPTX
PPH.pptx obstetrics and gynecology in nursing
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Anesthesia in Laparoscopic Surgery in India
PPTX
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
PDF
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table
VCE English Exam - Section C Student Revision Booklet
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPT- ENG7_QUARTER1_LESSON1_WEEK1. IMAGERY -DESCRIPTIONS pptx.pptx
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
human mycosis Human fungal infections are called human mycosis..pptx
The Lost Whites of Pakistan by Jahanzaib Mughal.pdf
Cell Structure & Organelles in detailed.
Microbial diseases, their pathogenesis and prophylaxis
Pre independence Education in Inndia.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
Institutional Correction lecture only . . .
BÀI TẬP BỔ TRỢ 4 KỸ NĂNG TIẾNG ANH 9 GLOBAL SUCCESS - CẢ NĂM - BÁM SÁT FORM Đ...
102 student loan defaulters named and shamed – Is someone you know on the list?
PPH.pptx obstetrics and gynecology in nursing
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Anesthesia in Laparoscopic Surgery in India
Introduction_to_Human_Anatomy_and_Physiology_for_B.Pharm.pptx
TR - Agricultural Crops Production NC III.pdf
BOWEL ELIMINATION FACTORS AFFECTING AND TYPES
Origin of periodic table-Mendeleev’s Periodic-Modern Periodic table

Ac single phase

  • 1.  Characteristics of Sinusoidal  Phasors  Phasor Relationships for R, L and C  Impedance  Parallel and Series Resonance  Examples for Sinusoidal Circuits Analysis Single Phase AC
  • 2. Sinusoidal Steady State Analysis • Any steady state voltage or current in a linear circuit with a sinusoidal source is a sinusoid – All steady state voltages and currents have the same frequency as the source • In order to find a steady state voltage or current, all we need to know is its magnitude and its phase relative to the source (we already know its frequency) • We do not have to find this differential equation from the circuit, nor do we have to solve it • Instead, we use the concepts of phasors and complex impedances • Phasors and complex impedances convert problems involving differential equations into circuit analysis problems
  • 3. Characteristics of Sinusoids Outline: 1. Time Period: T 2. Frequency: f (Hertz) 3. Angular Frequency:  (rad/sec) 4. Phase angle: Φ 5. Amplitude: Vm Im
  • 4. Characteristics of Sinusoids :   tVv mt sin iI1 I1 I1 I1 I1 I1 R1 R1 R 5 5 + _ IS  E I1 U1 + - U I  iI1 I1 I1 I1 R1 R1 R 5 5 - + IS  E I1 U1 + - U I  v ,i tt1 t20 Both the polarity and magnitude of voltage are changing.
  • 5. Radian frequency(Angular frequency):  = 2f = 2/T (rad/s) Time Period: T — Time necessary to go through one cycle. (s) Frequency: f — Cycles per second. (Hz) f = 1/T Amplitude: Vm Im i = Imsint, v =Vmsint v ,i t 20 Vm , Im Characteristics of Sinusoids :
  • 6. Effective Roof Mean Square (RMS) Value of a Periodic Waveform — is equal to the value of the direct current which is flowing through an R-ohm resistor. It delivers the same average power to the resistor as the periodic current does. RIRdti T T 2 0 21  Effective Value of a Periodic Waveform  T eff dti T I 0 21 22 1 2 2cos1 sin 1 2 0 2 0 22 m m T m T meff IT I T dt t T I tdtI T I       2 1 0 2 m T eff V dtv T V   Characteristics of Sinusoids :
  • 7. Phase (angle)    tIi m sin   sin0 mIi  Phase angle -8 -6 -4 -2 0 2 4 6 8 0 0.01 0.02 0.03 0.04 0.05 <0 0 Characteristics of Sinusoids :
  • 8. )sin( 1  tVv m )sin( 2  tIi m Phase difference 2121 )(   ttiv 021   — v(t) leads i(t) by (1 - 2), or i(t) lags v(t) by (1 - 2) 2 21    v, i t v i   21 Out of phase t v, i v i v, i t v i 021   In phase 021   — v(t) lags i(t) by (2 - 1), or i(t) leads v(t) by (2 - 1) Characteristics of Sinusoids :
  • 9. Review The sinusoidal waves whose phases are compared must: 1. Be written as sine waves or cosine waves. 2. With positive amplitudes. 3. Have the same frequency. 360°—— does not change anything. 90° —— change between sin & cos. 180°—— change between + & - 2 sin cos cos 3 2 cos sin 2                                 Characteristics of Sinusoids :
  • 10. Phase difference   30314sin22201  tv     9030314sin222030314cos22202  ttv   120314sin2220  t  1501203021     30314cos22202  tv   30314cos22202  tv   18030314cos2220  t    210314360cos2220  t   90150314sin2220  t   60314sin2220  t  30603021   Find ?   30314cos22202  tvIf Characteristics of Sinusoids :
  • 11. Phase difference v, i t v i -/3 /3 • ••         3 sin  tVm        3 sin  tIm Characteristics of Sinusoids :
  • 12. Outline: 1. Complex Numbers 2. Rotating Vector 3. Phasors A sinusoidal voltage/current at a given frequency, is characterized by only two parameters : amplitude and phase A phasor is a Complex Number which represents magnitude and phase of a sinusoid Phasors
  • 13. e.g. voltage response A sinusoidal v/i Complex transform Phasor transform By knowing angular frequency ω rads/s. Time domain Frequency domain   eR v t Complex form:    cosmv t V t   Phasor form:    j t mv t V e    Angular frequency ω is known in the circuit.  || mVV  || mVV Phasors
  • 14. Rotating Vector    tIti m sin)( i Im t1 i t Im  t x y              max cos sin sin j t m m m j t m m I e I t jI t i t I t I I e                    A complex coordinates number: Real value: i(t1) Imag Phasors
  • 16. Complex Numbers jbaA  — Rectangular Coordinates   sincos jAA  j eAA  — Polar Coordinates j eAAjbaA  conversion: 22 baA  a b arctg jbaeA j  cosAa  sinAb   a b Real axis Imaginary axis jjje j  090sin90cos90  Phasors
  • 17. Complex Numbers Arithmetic With Complex Numbers Addition: A = a + jb, B = c + jd, A + B = (a + c) + j(b + d) Real Axis Imaginary Axis AB A + B Phasors
  • 18. Complex Numbers Arithmetic With Complex Numbers Subtraction : A = a + jb, B = c + jd, A - B = (a - c) + j(b - d) Real Axis Imaginary Axis AB A - B Phasors
  • 19. Complex Numbers Arithmetic With Complex Numbers Multiplication : A = Am  A, B = Bm  B A  B = (Am  Bm)  (A + B) Division: A = Am  A , B = Bm  B A / B = (Am / Bm)  (A - B) Phasors
  • 20. Phasors A phasor is a complex number that represents the magnitude and phase of a sinusoid:   tim cos  mI Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. Phasors
  • 21. )sin()cos()(    tAjtAeAAe tjtj )cos(||}Re{   tAAe tj Complex Exponentials j eAA   A real-valued sinusoid is the real part of a complex exponential.  Complex exponentials make solving for AC steady state an algebraic problem. Phasors
  • 22. Phasor Relationships for R, L and C Outline: I-V Relationship for R, L and C, Power conversion
  • 23. Phasor Relationships for R, L and C  v~i relationship for a resistor _ v i R   + S    tIt R V R v i m m  sinsin  tVv m sin Relationship between RMS: R V I  Wave and Phasor diagrams: v、i t v i  I  V R V I    Resistor Suppose
  • 24.  Time domain Frequency domainResistor With a resistor θ﹦ϕ, v(t) and i(t) are in phase . )cos()( )cos()(     wtIti wtVtv m m IRV RIV eRIeV eRIeV mm j m j m wtj m wtj m         )()( Phasor Relationships for R, L and C
  • 25.  PowerResistor _ v i R +   P  0 tItVvip mm  sinsin  tVI mm 2 sin  t VI mm 2cos1 2  tIVIV 2cos v, i t v i P=IV  T pdt T P 0 1    T VIdttVI T 0 2cos1 1  R V RIIVP 2 2  • Average Power • Transient Power Note: I and V are RMS values. Phasor Relationships for R, L and C
  • 26. Resistor , R=10,Find i and Ptv 314sin311  V V V m 220 2 311 2   A R V I 22 10 220  ti 314sin222  WIVP 484022220  Phasor Relationships for R, L and C
  • 27.  v~i relationshipInductor dt di Lvv AB    tLI dt tId L dt di Lv m m   cos sin    90sin  tLIm    90sin  tVm     t vdt L i 1    t vdt L vdt L 0 0 11  t vdt L i 0 0 1 tIi m sinSuppose Phasor Relationships for R, L and C
  • 28.  v~i relationshipInductor   90sin  tLIm  dt di Lv    90sin  tVm  LIV mm  Relationship between RMS: LIV  L V I   fLLXL  2   For DC,f = 0,XL = 0. fXL  v(t) leads i(t) by 90º, or i(t) lags v(t) by 90º Phasor Relationships for R, L and C
  • 29.  v ~ i relationshipInductor v, i t v i eL V I LXIjV  Wave and Phasor diagrams: Phasor Relationships for R, L and C
  • 30.  PowerInductor vip    tItV mm  sin90sin   ttIV mm  sincos  t IV mm 2sin 2  tVI 2sin P t v, i t v i ++ --22 max 2 1 LILIW m  2 00 2 1 LiLidividtW it  Energy stored:    T T tdtVI T pdt T P 0 0 02sin 11 Average Power Reactive Power L L X V XIIVQ 2 2  (Var) Phasor Relationships for R, L and C
  • 31. Inductor L = 10mH,v = 100sint,Find iL when f = 50Hz and 50kHz.    14.310105022 3 fLX L      Atti A X V I L L  90sin25.22 5.22 14.3 2/100 50       31401010105022 33 fLX L      mAtti mA X V I L L k  90sin25.22 5.22 14.3 2/100 50    Phasor Relationships for R, L and C
  • 32.  v ~ i relationshipCapacitor _ v i +   C dt dv C dt dq i  tVv m sinSuppose:   90sincos  tCVtCVi mm    90sin  tIm       t tt idt c vidt c idt c idt c v 0 0 0 0 1111 i(t) leads v(t) by 90º, or v(t) lags i(t) by 90º Relationship between RMS: CX V C V CVI    1   fCC XC  2 11  For DC,f = 0, XC   f XC 1  mm CVI  Phasor Relationships for R, L and C
  • 33. _ v i +   C tj m tj m eCVj dt edV C dt tdv Cti    )( )( v(t) = Vm ejt Represent v(t) and i(t) as phasors: CjX V VCωjI ==   • The derivative in the relationship between v(t) and i(t) becomes a multiplication by in the relationship between and . • The time-domain differential equation has become the algebraic equation in the frequency-domain. • Phasors allow us to express current-voltage relationships for inductors and capacitors much like we express the current-voltage relationship for a resistor.  v ~ i relationshipCapacitor V I wC j  Phasor Relationships for R, L and C
  • 34.  v ~ i relationshipCapacitor v, i t v i I V CXIjV   Wave and Phasor diagrams: Phasor Relationships for R, L and C
  • 35. PowerCapacitor Average Power: P = 0 Reactive Power C C X V XIIVQ 2 2  (Var)   90sinsin  tItVvip mm  tVIt IV mm  2sin2sin 2  P t v, i t v i ++ -- Energy stored:    t vv CvCvdvdt dt dv CvvidtW 0 0 2 0 2 1 22 max 2 1 CVCVW m  Phasor Relationships for R, L and C
  • 36. Capacitor Suppose C=20F,AC source v=100sint,Find XC and I for f = 50Hz, 50kHz。  159 2 11 Hz50 fCC Xf c  A44.0 2  c m c X V X V I   159.0 2 11 KHz50 fCC Xf c  A440 2  c m c X V X V I Phasor Relationships for R, L and C
  • 37. Review (v – i Relationship) Time domain Frequency domain iRv  IRV   I Cj V    1 ILjV    dt di LvL  dt dv CiC  C XC  1  LXL , , , v and i are in phase. , v leads i by 90°. , v lags i by 90°. R C L Phasor Relationships for R, L and C
  • 38. Summary:  R: RX R  0 L: ffLLXL   2 2    iv C: ffcc XC 1 2 11   2    iv  IXV   Frequency characteristics of an Ideal Inductor and Capacitor: A capacitor is an open circuit to DC currents; A Inductor is a short circuit to DC currents. Phasor Relationships for R, L and C
  • 39. Impedance (Z) Outline: Complex currents and voltages. Impedance Phasor Diagrams
  • 40. • AC steady-state analysis using phasors allows us to express the relationship between current and voltage using a formula that looks likes Ohm’s law: ZIV  Complex voltage, Complex current, Complex Impedance vm j m VeVV v   im j m IeII i      ZeZe I V I V Z jj m m iv )(   ‘Z’ is called impedance measured in ohms () Impedance (Z)
  • 41. Complex Impedance    ZeZe I V I V Z jj m m iv )(    Complex impedance describes the relationship between the voltage across an element (expressed as a phasor) and the current through the element (expressed as a phasor).  Impedance is a complex number and is not a phasor (why?).  Impedance depends on frequency. Impedance (Z)
  • 42. Complex Impedance ZR = R  = 0; or ZR = R  0 Resistor——The impedance is R c j c jX C j e C Z       21 ) 2 (    iv or  90 1  C ZC  Capacitor——The impedance is 1/jωC L j L jXLjLeZ    2 ) 2 (    iv or  90 LZL  Inductor——The impedance is jωL Impedance (Z)
  • 43. Complex Impedance Impedance in series/parallel can be combined as resistors. _ U U Z1 +  Z2 Zn   I    n k kn ZZZZZ 1 21 ... _ US In I1 I1 I1 I1 I1 I1     R1 R1 Zn 5 5 5 5 + + _ US IS  U1 + - U  I  Z2Z1     n k kn ZZZZZ 121 11 ... 111 21 1 2 21 2 1 ZZ Z II ZZ Z II      Current divider:   n k k i i Z Z VV 1  Voltage divider: Impedance (Z)
  • 44. Complex Impedance _ +   V  I   1IZ1 Z2 Z    2121 2 2121 2 1 2 1 1 2 2 1 11 ZZZZZZ ZV I ZZZZZZ ZZV ZZ Z V I ZZ Z II                      Impedance (Z)
  • 45. Complex Impedance Phasors and complex impedance allow us to use Ohm’s law with complex numbers to compute current from voltage and voltage from current 20kW + - 1mF10V  0 VC + - w = 377 Find VC • How do we find VC? • First compute impedances for resistor and capacitor: ZR = 20kW = 20kW  0 ZC = 1/j (377 *1mF) = 2.65kW  -90 Impedance (Z)
  • 46. Complex Impedance 20kW + - 1mF10V  0 VC + - w = 377 Find VC 20kW  0 + - 2.65kW  - 90 10V  0 VC + - Now use the voltage divider to find VC:     46.82V31.1 54.717.20 9065.2 010VCV ) 0209065.2 9065.2 (010       kk k VVC Impedance (Z)
  • 47. Impedance allows us to use the same solution techniques for AC steady state as we use for DC steady state. • All the analysis techniques we have learned for the linear circuits are applicable to compute phasors – KCL & KVL – node analysis / loop analysis – Superposition – Thevenin equivalents / Norton equivalents – source exchange • The only difference is that now complex numbers are used. Complex Impedance Impedance (Z)
  • 48. Kirchhoff’s Laws KCL and KVL hold as well in phasor domain. KVL: 0 1  n k kv vk- Transient voltage of the #k branch 0 1  n k kV KCL: 0 1   n k ki 0 1   n k kI ik- Transient current of the #k branch Impedance (Z)
  • 49. Admittance • I = YV, Y is called admittance, the reciprocal of impedance, measured in Siemens (S) • Resistor: – The admittance is 1/R • Inductor: – The admittance is 1/jL • Capacitor: – The admittance is jC Impedance (Z)
  • 50. Phasor Diagrams • A phasor diagram is just a graph of several phasors on the complex plane (using real and imaginary axes). • A phasor diagram helps to visualize the relationships between currents and voltages. 2mA  40 – 1mF VC + – 1kW VR + + – V I = 2mA  40, VR = 2V  40 VC = 5.31V  -50, V = 5.67V  -29.37 Real Axis Imaginary Axis VR VC V Impedance (Z)
  • 51. Parallel and Series Resonance Outline: RLC Circuit, Series Resonance Parallel Resonance
  • 52. v vR vL vC CLR vvvv  CLR VVVV  Phasor  I V LV CV RV IZ XRI XXRI IXIXIR VVVV CL CL CLR      22 22 22 22 )( )()( )( )CL XXX ( 22 XRZ  22 ) 1 ( c LR    (2nd Order RLC Circuit )Series RLC Circuit Parallel and Series Resonance :
  • 53. 22 XRZ  22 ) 1 ( c LR   IZVVVV CLR  22 )( Z X = XL-XC R   V RV CLX VVV   R XX V VV CL R CL      1 1 tan - tan Phase difference: XL>XC   >0,v leads i by  — Inductance Circuit XL<XC   <0,v lags i by  — Capacitance Circuit XL=XC   =0,v and i in phase — Resistors Circuit Series RLC Circuit Parallel and Series Resonance :
  • 54. CLR VVVV   CL XIjXIjRI   ZIjXRIXXjRI CL   )()](( )( CL XXjR I V Z     ZjXRZ 22 )( CL XXRZ  R XX CL   1 tan iv   v vR vL vC Series RLC Circuit Parallel and Series Resonance :
  • 55. Series Resonance (2nd Order RLC Circuit ) CLR VVVV   CL XIjXIjRI   R XX arctg V VV arctg CL R CL     CLCL VVL C XXWhen    1 , VVR  0and —— Series Resonance Resonance condition I LV CV VVR   LC for LC   2 11 00  f0 f X Cf XC 2 1  fLXL 2 Resonant frequency Parallel and Series Resonance :
  • 56. Series Resonance R V Z V IRXXRZ CL  0 0 22 0 )(• Zmin;when V = constant, I = Imax= I0 RXX CL  RIXIXI CL 000  VVV CL  • Quality factor Q, R X R X V V V V Q CLCL  CLCL VVL C XX  ) 1 (   Resonance condition: When, Parallel and Series Resonance :
  • 57. Parallel RLC Circuit V  I  LI  CI    )( 1 / 11 222222 LR L Cj LR R Cj LjRLjR LjR Cj LjRCjLjR Y                         Parallel Resonance Parallel Resonance frequency L CR LC 2 0 1 1  LXR In generally ) 2 1 ( 0 LC f   LC 1 0  0)( 222    LR L C   When 2220 LR R Y  , In phase withV I V L RC C L R R V L LC R R V LR R VVYII        222 22 0 200 1 Zmax Imin: Parallel and Series Resonance :
  • 58. Parallel RLC Circuit V  I  LI  CI V L C j L V j LjR VIL       00 1  V L C jVCjIC   0 0|||||| 0  III CL  Z  . RCR L Q 0 0 1   0IjQIL   0IjQIC   •Quality factor Q, 0000 Y Y Y Y I I I I Q CLLC  Parallel and Series Resonance :
  • 59. Parallel RLC Circuit Review For sinusoidal circuit, Series : 21 vvv  21 VVV  21 iii  21 III  ? Two Simple Methods: Phasor Diagrams and Complex Numbers Parallel : Parallel and Series Resonance :