SlideShare a Scribd company logo
83rd GAMM Annual Scientific Conference
                                                  Darmstadt, 28 March 2012




                  ADI for Tensor Structured Equations
                                 Thomas Mach and Jens Saak

                   Max Planck Institute for Dynamics of Complex Technical Systems
                       Computational Methods in Systems and Control Theory




                                                                                               MAX PLANCK INSTITUTE
                                                                                             FOR DYNAMICS OF COMPLEX
                                                                                                TECHNICAL SYSTEMS
                                                                                                    MAGDEBURG




Max Planck Institute Magdeburg                                 Thomas Mach, Jens Saak, Tensor-ADI         1/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                  Conclusions



   Classic ADI                                                        [Peaceman/Rachford ’55]


       Developed to solve linear systems related to Poisson problems

                          −∆u = f                         in Ω ⊂ Rd , d = 1, 2
                                 u=0                      on ∂Ω.

       uniform grid size h, centered differences, d = 1,

                                                 ⇒ ∆1,h u = h2 f
                                                                                
                                              2 −1
                                            −1 2 −1                    
                                                                       
                                 ∆1,h      =
                                               ..   ..            ..   .
                                                                        
                                                  .    .             . 
                                                    −1             2 −1
                                                                   −1 2

Max Planck Institute Magdeburg                                           Thomas Mach, Jens Saak, Tensor-ADI   2/24
ADI                     ADI for Tensors                Numerical Results and Shifts                   Conclusions



   Classic ADI                                                       [Peaceman/Rachford ’55]


       Developed to solve linear systems related to Poisson problems

                          −∆u = f                        in Ω ⊂ Rd , d = 1, 2
                                  u=0                    on ∂Ω.

       uniform grid size h, 5-point difference star, d = 2,

                                                ⇒ ∆2,h u = h2 f
                                                                                                       
                  K        −I                                    4             −1
                −I        K       −I                         −1              4      −1               
                                                                                                     
       ∆2,h    =
                          ..      ..      ..         and K = 
                                                                             ..      ..     ..        .
                                                                                                        
                             .       .     .                                   .       .     .       
                                  −I      K      −I                                 −1      4     −1
                                           −I     K                                           −1      4


Max Planck Institute Magdeburg                                           Thomas Mach, Jens Saak, Tensor-ADI   2/24
ADI                     ADI for Tensors           Numerical Results and Shifts                  Conclusions



   Classic ADI                                                  [Peaceman/Rachford ’55]


       Observation
                                  ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ).
                                             =:H               =:V




Max Planck Institute Magdeburg                                     Thomas Mach, Jens Saak, Tensor-ADI   3/24
ADI                     ADI for Tensors           Numerical Results and Shifts                  Conclusions



   Classic ADI                                                  [Peaceman/Rachford ’55]


       Observation
                                  ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ).
                                             =:H               =:V


                              ˜
       Solve ∆2,h u = h2 f =: f exploiting structure in H and V .




Max Planck Institute Magdeburg                                     Thomas Mach, Jens Saak, Tensor-ADI   3/24
ADI                     ADI for Tensors               Numerical Results and Shifts                  Conclusions



   Classic ADI                                                      [Peaceman/Rachford ’55]


       Observation
                                    ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ).
                                                =:H                =:V


                              ˜
       Solve ∆2,h u = h2 f =: f exploiting structure in H and V .

       For certain shift parameters perform
                                                                      ˜
                                 (H + pi I ) ui+ 1 = (pi I − V ) ui + f ,
                                                2
                                                                       ˜
                                 (V + pi I ) ui+1 = (pi I − H) ui+ 1 + f ,
                                                                           2


       until ui is good enough.


Max Planck Institute Magdeburg                                         Thomas Mach, Jens Saak, Tensor-ADI   3/24
ADI                     ADI for Tensors            Numerical Results and Shifts                  Conclusions



   ADI and Lyapunov Equations                                                      [Wachspress ’88]


       Lyapunov Equation
                                           FX + XF T = −GG T




Max Planck Institute Magdeburg                                      Thomas Mach, Jens Saak, Tensor-ADI   4/24
ADI                     ADI for Tensors            Numerical Results and Shifts                  Conclusions



   ADI and Lyapunov Equations                                                      [Wachspress ’88]


       Lyapunov Equation
                                           FX + XF T = −GG T

       Vectorized Lyapunov Equation
                            (I ⊗ F ) + (F ⊗ I ) vec(X ) = −vec(GG T )
                                 =:HF       =:VF


                                     Same structure ⇒ apply ADI




Max Planck Institute Magdeburg                                      Thomas Mach, Jens Saak, Tensor-ADI   4/24
ADI                     ADI for Tensors               Numerical Results and Shifts                   Conclusions



   ADI and Lyapunov Equations                                                         [Wachspress ’88]


       Lyapunov Equation
                                           FX + XF T = −GG T

       Vectorized Lyapunov Equation
                            (I ⊗ F ) + (F ⊗ I ) vec(X ) = −vec(GG T )
                                 =:HF           =:VF


                                     Same structure ⇒ apply ADI

                        (F + pi I ) Xi+ 1 = −GG T − Xi F T − pi I
                                            2

                        (F + pi I ) Xi+1 = −GG T − Xi+ 1 F T − pi I
                                                     T
                                                                    2



Max Planck Institute Magdeburg                                          Thomas Mach, Jens Saak, Tensor-ADI   4/24
ADI                       ADI for Tensors                   Numerical Results and Shifts                      Conclusions



   Generalizing Matrix Equations

                                                  ∆2,h vec(X ) = vec(B)
                        I ⊗ ∆1,h +           ∆1,h ⊗ I                                       vec(X ) = vec(B)

                    =H                       =V                                              =u        =f




           ∆µa      a
                             Xa      c

                                                        +                                   =         Ba       c
                                              c     ∆µc
                             Xa      c




Max Planck Institute Magdeburg                                               Thomas Mach, Jens Saak, Tensor-ADI       5/24
ADI                     ADI for Tensors                       Numerical Results and Shifts                      Conclusions



   Generalizing Matrix Equations

                                                ∆4,h vec(X ) = vec(B)
              I ⊗ I ⊗ I ⊗ ∆1,h + I ⊗ I ⊗ ∆1,h ⊗ I + I ⊗ ∆1,h ⊗ I ⊗ I + ∆1,h ⊗ I ⊗ I ⊗ I       vec(X ) = vec(B)

                    =H                     =V              =R                     =Q            =u       =f




           ∆µa      a
                           Xabcd                +                    Xabcd
                                                     ∆µb   b
                                                     +                                        =         Babcd
                                            c       ∆µc
                           Xabcd                           +         Xabcd
                                                                                    d     ∆µd




Max Planck Institute Magdeburg                                                 Thomas Mach, Jens Saak, Tensor-ADI       5/24
ADI                     ADI for Tensors                     Numerical Results and Shifts                   Conclusions



   Generalizing ADI

                                           I ⊗ ∆1,h + ∆1,h ⊗ I   vec(X ) = vec(B)

                                             =H         =V        =u        =f




                         (H + I ⊗ pi,1 I )Xi+ 1 = (pi,1 I − V )Xi + B
                                              2
                         (V + pi,2 I ⊗ I )Xi+ 1 = (pi,2 I − H)Xi+ 1 + B
                                                       2                              2




Max Planck Institute Magdeburg                                                Thomas Mach, Jens Saak, Tensor-ADI   6/24
ADI                      ADI for Tensors                     Numerical Results and Shifts                      Conclusions



   Generalizing ADI

                                            I ⊗ ∆1,h + ∆1,h ⊗ I    vec(X ) = vec(B)

                                                 =H      =V         =u        =f




                          (H + I ⊗ pi,1 I )Xi+ 1 = (pi,1 I − V )Xi + B
                                               2
                          (V + pi,2 I ⊗ I )Xi+ 1 = (pi,2 I − H)Xi+ 1 + B
                                                        2                               2



              I ⊗ I ⊗ I ⊗ ∆1,h + I ⊗ I ⊗ ∆1,h ⊗ I + I ⊗ ∆1,h ⊗ I ⊗ I + ∆1,h ⊗ I ⊗ I ⊗ I      vec(X ) = vec(B)

                     =H                     =V                =R                   =Q          =u       =f




            (H + I ⊗ I ⊗ I ⊗ pi,1 I )Xi+ 1               = (pi,1 I − V − R              − Q)Xi          +B
                                         4
            (V + I ⊗ I ⊗ pi,2 I ⊗ I )Xi+ 1               = (pi,2 I − H − R              − Q)Xi+ 1       +B
                                         2                                                      4
            (R + I ⊗ pi,3 I ⊗ I ⊗ I )Xi+ 3               = (pi,3 I − H − V              − Q)Xi+ 1       +B
                                         4                                                      2
            (Q + pi,4 I ⊗ I ⊗ I ⊗ I )Xi+1                = (pi,4 I − H − V              − R)Xi+ 3       +B
                                                                                                    4

Max Planck Institute Magdeburg                                                  Thomas Mach, Jens Saak, Tensor-ADI     6/24
ADI                     ADI for Tensors               Numerical Results and Shifts                  Conclusions



   Goal

                                               Solve AX = B



                                 A = I ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ A1 +
                                           I ⊗ I ⊗ · · · ⊗ I ⊗ A2 ⊗ I          +
                                                      ...                      +
                                           Ad ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I



       B is given in tensor train decomposition
       ⇒ X is sought in tensor train decomposition.


Max Planck Institute Magdeburg                                         Thomas Mach, Jens Saak, Tensor-ADI   7/24
ADI                     ADI for Tensors                     Numerical Results and Shifts                  Conclusions



   Tensor Trains                                                   [Oseledets, Tyrtyshnikov ’09]



                                        r1 ,...,rd−1
        T (i1 , i2 , . . . , id ) =                    G1 (i1 , α1 )G2 (α1 , i2 , α2 )
                                      α1 ,...,αd−1 =1

                                                        · · · Gj (αj−1 , ij , αj ) · · ·
                                                       Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ).



         G1 (i1 , α1 )           α1        G2 (α1 , i2 , α2 )          α2         ···       Gd (αd−1 , id )




Max Planck Institute Magdeburg                                               Thomas Mach, Jens Saak, Tensor-ADI   8/24
ADI                     ADI for Tensors                      Numerical Results and Shifts                    Conclusions



   Tensor Trains                                                   [Oseledets, Tyrtyshnikov ’09]


       Tensor trains are
               computable, and
                                                                                                          d
               require only O(dnr 2 ) storage, with TT-rank r and T ∈ Rn .

       Canonical representation

                         T (i1 , i2 , . . . , id ) =          G1 (i1 , α) · · · Gd (id , α)
                                                          α


       Tucker decomposition

          T (i1 , i2 , . . . , id ) =                C (α1 , . . . , αd )G1 (i1 , α1 ) · · · Gd (id , αd )
                                        α1 ,...,αd


Max Planck Institute Magdeburg                                                Thomas Mach, Jens Saak, Tensor-ADI     9/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                  Conclusions



   Tensor Trains                                              [Oseledets, Tyrtyshnikov ’09]


                                           (I ⊗ · · · ⊗ I ⊗ A1 )       T




Max Planck Institute Magdeburg                                           Thomas Mach, Jens Saak, Tensor-ADI   10/24
ADI                     ADI for Tensors                  Numerical Results and Shifts                  Conclusions



   Tensor Trains                                               [Oseledets, Tyrtyshnikov ’09]


                                           (I ⊗ · · · ⊗ I ⊗ A1 )        T



             A1 (β, i1 )

                   i1

            G1 (i1 , α1 )         α1          G2 (α1 , i2 , α2 )        α2         ···      Gd (αd−1 , id )




Max Planck Institute Magdeburg                                            Thomas Mach, Jens Saak, Tensor-ADI   10/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Tensor Trains                                                 [Oseledets, Tyrtyshnikov ’09]


                                           (I ⊗ · · · ⊗ I ⊗ A1 )         T



             A1 (β, i1 )

                   i1

            G1 (i1 , α1 )         α1          G2 (α1 , i2 , α2 )         α2         ···      Gd (αd−1 , id )



       T (i1 , i2 , . . . , id ) ×1 A1        =                  A1       β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 )
                                                  α1 ,...,αd−1

                                                     · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )
Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   10/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Tensor Trains                                                 [Oseledets, Tyrtyshnikov ’09]


                                           (I ⊗ · · · ⊗ I ⊗ A1 )         T

                                   ˜
                                 = G1 (β, α1 ) = A1 G1
             A1 (β, i1 )

                   i1

            G1 (i1 , α1 )          α1         G2 (α1 , i2 , α2 )         α2         ···      Gd (αd−1 , id )



       T (i1 , i2 , . . . , id ) ×1 A1        =                  A1       β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 )
                                                  α1 ,...,αd−1

                                                     · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )
Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   10/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Tensor Trains                                                 [Oseledets, Tyrtyshnikov ’09]


                                           (I ⊗ · · · ⊗ I ⊗ A1 ) −1 T

                                   ˜
                                 = G1 (β, α1 ) = A1 G1
             A1 (β, i1 )

                   i1

            G1 (i1 , α1 )          α1         G2 (α1 , i2 , α2 )         α2         ···      Gd (αd−1 , id )



       T (i1 , i2 , . . . , id ) ×1 A1 −1 =                      A1 −1    β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 )
                                                  α1 ,...,αd−1

                                                     · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )
Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   10/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                   Conclusions



   Algorithm

       Input: {A1 , . . . , Ad }, tensor train B, accuracy
       Output: tensor train X , with AX = B
       forall j ∈ {1, . . . , d} do
             (0)
           Xj := zeros(n, 1, 1)
       end
       while r (i) > do
          Choose shift pi
          forall k ∈ {1, . . . , d} do
                                                         d
                                                                              ×j Aj ×k (Ak + pi I )−1
                         k                    k−1                      k−1
                   X (i+ d ) := B +pi X (i+    d )   −         X (i+    d )

                                                         j=1
                                                         j=k
          end
       end


Max Planck Institute Magdeburg                                            Thomas Mach, Jens Saak, Tensor-ADI   11/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                   Conclusions



   Algorithm
                                 r (i) := B
       Input: {A1 , . . . , Ad }, tensor train B, accuracy
                                 forall j ∈ {1, . . . , d} do
       Output: tensor train X , with AX(i) B     =
                                       r (i) := r − Xi ×j Aj
       forall j ∈ {1, . . . , d} do
             (0)                 end
           Xj := zeros(n, 1, 1)
       end
       while r (i) > do
          Choose shift pi
          forall k ∈ {1, . . . , d} do
                                                         d
                                                                              ×j Aj ×k (Ak + pi I )−1
                         k                    k−1                      k−1
                   X (i+ d ) := B +pi X (i+    d )   −         X (i+    d )

                                                         j=1
                                                         j=k
          end
       end


Max Planck Institute Magdeburg                                            Thomas Mach, Jens Saak, Tensor-ADI   11/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                   Conclusions



   Algorithm

       Input: {A1 , . . . , Ad }, tensor train B, accuracy
       Output: tensor train X , with AX = B
       forall j ∈ {1, . . . , d} do
             (0)
           Xj := zeros(n, 1, 1)
       end                           (I ⊗ I ⊗ · · · ⊗ I ⊗ Aj ⊗ I ⊗ · · · ⊗ I ) Xi+ k−1
                                                                                    d
       while r (i) > do
           Choose shift pi
           forall k ∈ {1, . . . , d} do
                                                         d
                                                                              ×j Aj ×k (Ak + pi I )−1
                         k                    k−1                      k−1
                   X (i+ d ) := B +pi X (i+    d )   −         X (i+    d )

                                                         j=1
                                                         j=k
          end
       end


Max Planck Institute Magdeburg                                            Thomas Mach, Jens Saak, Tensor-ADI   11/24
ADI                     ADI for Tensors            Numerical Results and Shifts                  Conclusions



   Eigenvalues

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       St´phanos’ theorem:
         e

                       ⇒ λi (A) = λi1 (A1 ) + λi2 (A2 ) + · · · + λid (Ad ),
                                           d−1
       with i = i1 + i2 n1 + · · · + id          nj .
                                           j=1




Max Planck Institute Magdeburg                                      Thomas Mach, Jens Saak, Tensor-ADI   12/24
ADI                     ADI for Tensors              Numerical Results and Shifts                  Conclusions



   Eigenvalues

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       St´phanos’ theorem:
         e

                       ⇒ λi (A) = λi1 (A1 ) + λi2 (A2 ) + · · · + λid (Ad ),
                                             d−1
       with i = i1 + i2 n1 + · · · + id            nj .
                                             j=1




                                                      d
                                 AX = B      ⇔             X ×j Aj = B
                                                     j=1

       A is regular              ⇔    λi (A) = 0 ∀i            ⇐ Ai Hurwitz ∀i


Max Planck Institute Magdeburg                                        Thomas Mach, Jens Saak, Tensor-ADI   12/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                      Conclusions



   Lemma

       Lemma                                                                              [Grasedyck ’04]
       The tensor equation
                                                d
                                                j=1 X   ×j Aj = B

       with Ak Hurwitz ∀k has the solution
                                    ∞
                      X =−         0 B       ×1 exp(A1 t) ×2 · · · ×d exp(Ad t)dt

                 Z (t) = B ×1 exp(A1 t) ×2 · · · ×d exp(Ad t)
                             d                                                                ∞
                 ˙
                 Z (t) =          Z (t) ×j Aj               Z (∞) − Z (0) =                       ˙
                                                                                                  Z (t)dt,
                            j=1                                                           0

                             d         ∞
               0−B =                       Z (t)dt ×j Aj
                            j=1    0


Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI      13/24
ADI                     ADI for Tensors                      Numerical Results and Shifts                           Conclusions



   Theorem
       Theorem
       {A1 , . . . , Ad } ⇒ A, Λ(A) ⊂ [−λmax , −λmin ] ⊕ ı [−µ, µ] ⊂ C− .
       Let k ∈ N and use the quadrature points and weights:
                                        √
        hst := √k , tj := log e jhst + 1 + e 2jhst , wj := √ hst−2jh .
                     π
                                                                                                         1+e    st


       Then the solution X can be approximated by
                                               r1 ,...,rd−1
             ˜
             X (i1 , i2 , . . . , id ) = −                       H1 (i1 , α1 ) · · · Hd (αd−1 , id ),
                                             α1 ,...,αd−1 =1

                                                                         2tj
                                                     2wj                       Ap
       with Hp (αp−1 , ip , αp ) := k
                                    j=−k             λmin        βp e
                                                                        λmin
                                                                                     ip ,βp
                                                                                              Gp (αp−1 , βp , αp )
       with the approximation error
                                      2µλ−1 +1   √
                                                                (λI − 2A/λmin )−1
                                         min
            ˜
         X −X           ≤    Cst               −π k
                            πλmin e                                                                      dΓ λ B      2.
                    2                    π
                                                         Γ                                           2
       extending [Grasedyck ’04] (X and B of low Kronecker rank) to low TT-rank
Max Planck Institute Magdeburg                                                      Thomas Mach, Jens Saak, Tensor-ADI     14/24
ADI                                      ADI for Tensors               Numerical Results and Shifts                    Conclusions



   Approximation Accuracy
         Storage in 104 ·Double




                                                                 constant truncation error                   10−2




                                                                                                                            i
                                  8                              tightened truncation error




                                                                                                                      Truncation Error
                                  6                                                                          10−8
                                  4
                                                                                                             10−14
                                  2

                                                                                                             10−20
                                      0       5             10       15        20            25         30
                                                                 Iteration



Max Planck Institute Magdeburg                                                          Thomas Mach, Jens Saak, Tensor-ADI               15/24
ADI                     ADI for Tensors                 Numerical Results and Shifts                  Conclusions



   Example: Laplace – Ai = ∆1, 11
                               1




                                           Ai = ∆1, 1
                                                   11

                                           B = 0 0 ...            0 1




       Shifts:
       pi := e1 (∗1 ) + . . . + ed (∗d )                — random chosen eigenvalue




Max Planck Institute Magdeburg                                           Thomas Mach, Jens Saak, Tensor-ADI   16/24
ADI                     ADI for Tensors             Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = ∆1, 11
                                 1




                     d                     t in s    residual                 mean(#it)
                    2            3.887 e−01         7.015 e−10                      112.8
                    5            5.398 e+00         7.467 e−10                       45.8
                    8            6.007 e+00         6.936 e−10                       12.8
                   10            3.662 e+00         7.685 e−10                        6.8
                   25            3.142 e+01         2.437 e−10                        5.0
                   50            2.268 e+02         2.049 e−10                        5.0
                   75            7.192 e+02         4.036 e−10                        5.0
                  100            1.700 e+03         1.864 e−10                        5.0
                  150            5.538 e+03         1.801 e−10                        5.0
                  200            1.280 e+04         1.472 e−10                        5.0
                  250            2.499 e+04         1.816 e−10                        5.0
                  300            4.298 e+04         2.535 e−10                        5.0
                  500            1.952 e+05         2.039 e−10                        5.0
Max Planck Institute Magdeburg                                       Thomas Mach, Jens Saak, Tensor-ADI   17/24
ADI                     ADI for Tensors               Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = ∆1, 11
                                 1




                                              sparse                                  dense
         d      TADI                         MESS       Penzl’s sh.                              lyap
        2       0.310       0.0006             0.024           0.003           0.0003        0.0005
        4       3.130       0.1695             0.011           0.049            6.331          0.012
        6       8.147           —              0.076           0.094               —            7.17
        8       5.458           —              5.863           1.097               —        13 698.2
       10       5.306           —          3 445.523         249.464               —              —




Max Planck Institute Magdeburg                                         Thomas Mach, Jens Saak, Tensor-ADI   18/24
ADI                                     ADI for Tensors           Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = ∆1, 11
                                 1




                                       105

                                       104
              Computation Time in s




                                       103

                                       102
                                                                                         Tensor ADI
                                       101                                               sparse 
                                                                                         MESS
                                       100
                                                                                         Penzl’s shifts
                                      10−1                                               dense 
                                                                                         lyap
                                      10−2
                                             10            100           300
                                                                 Dimension d
Max Planck Institute Magdeburg                                                     Thomas Mach, Jens Saak, Tensor-ADI   19/24
ADI                                     ADI for Tensors          Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = ∆1, 11
                                 1




                                       105

                                       104
              Computation Time in s




                                       103

                                       102
                                                                                        Tensor ADI
                                       101                                              sparse 
                                                                                        MESS
                                       100
                                                                                        Penzl’s shifts
                                      10−1                                              dense 
                                                                                        lyap
                                      10−2
                                                           10                          100          300
                                                                Dimension d
Max Planck Institute Magdeburg                                                    Thomas Mach, Jens Saak, Tensor-ADI   19/24
ADI                      ADI for Tensors                   Numerical Results and Shifts                    Conclusions



   Single Shift and Convergence

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       We assume Λ(Ak ) ⊂ R− .

       Error Propagation, Single Shift
                                                  p−       λk + λl                                 λk
                                                                                                       
                                            d                                   d
                                                       k                                       k
           G1   2   ≤      max                                           =           1 −                .
                         λk ∈Λ(Ak ),                   p + λl                                p + λl
                          k=1,...,d         l=0                                l=0


       If G1        2   < 1, then the ADI iteration converges.
                p < 0 and p > −∞




Max Planck Institute Magdeburg                                               Thomas Mach, Jens Saak, Tensor-ADI   20/24
ADI                       ADI for Tensors                   Numerical Results and Shifts                    Conclusions



   Single Shift and Convergence

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       We assume Λ(Ak ) ⊂ R− .

       Error Propagation, Single Shift
                                                   p−       λk + λl                                 λk
                                                                                                        
                                             d                                   d
                                                        k                                       k
           G1    2   ≤      max                                           =           1 −                .
                          λk ∈Λ(Ak ),                   p + λl                                p + λl
                           k=1,...,d         l=0                                l=0


       If G1         2   < 1, then the ADI iteration converges.
                p < 0 and p > −∞
                                         d
                p < λi (A) =             k=1 λk (Ak )       ∀i



Max Planck Institute Magdeburg                                                Thomas Mach, Jens Saak, Tensor-ADI   20/24
ADI                       ADI for Tensors                   Numerical Results and Shifts                    Conclusions



   Single Shift and Convergence

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       We assume Λ(Ak ) ⊂ R− .

       Error Propagation, Single Shift
                                                   p−       λk + λl                                 λk
                                                                                                        
                                             d                                   d
                                                        k                                       k
           G1    2   ≤      max                                           =           1 −                .
                          λk ∈Λ(Ak ),                   p + λl                                p + λl
                           k=1,...,d         l=0                                l=0


       If G1         2   < 1, then the ADI iteration converges.
                p < 0 and p > −∞
                                         d
                p < λi (A) =             k=1 λk (Ak )       ∀i
                                                                       d−2
                Lyapunov case (Ak = A0 ∀k): p <                         2 λmin (A0 )


Max Planck Institute Magdeburg                                                Thomas Mach, Jens Saak, Tensor-ADI   20/24
ADI                       ADI for Tensors                   Numerical Results and Shifts                    Conclusions



   Single Shift and Convergence

       A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I
       We assume Λ(Ak ) ⊂ R− .

       Error Propagation, Single Shift
                                                   p−       λk + λl                                 λk
                                                                                                        
                                             d                                   d
                                                        k                                       k
           G1    2   ≤      max                                           =           1 −                .
                          λk ∈Λ(Ak ),                   p + λl                                p + λl
                           k=1,...,d         l=0                                l=0


       If G1         2   < 1, then the ADI iteration converges.
                p < 0 and p > −∞
                                         d
                p < λi (A) =             k=1 λk (Ak )       ∀i
                                                                       2−2
                Lyapunov case (Ak = A0 ∀k): p <                         2 λmin (A0 )        =0


Max Planck Institute Magdeburg                                                Thomas Mach, Jens Saak, Tensor-ADI   20/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Shifts

       Min-Max-Problem
                                                                      d
                                                                           pi,k −         j=k   λj
                         min                   max
                  {p1,1 ,...,p   ,d }⊂C    λk ∈Λ(Ak ) ∀k                        pi,k + λk
                                                               i=0 k=0




Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   21/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Shifts

       Min-Max-Problem
                                                                      d
                                                                           pi,k −         j=k   λj
                         min                   max
                  {p1,1 ,...,p   ,d }⊂C    λk ∈Λ(Ak ) ∀k                        pi,k + λk
                                                               i=0 k=0


       Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz)
                                                                     d
                                                                          pi,k −          j=k   λj
                          min                  max
                   {p1,1 ,...,p   ,d }⊂C   λk ∈Λ(A0 ) ∀k                       pi,k + λk
                                                              i=0 k=0




Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   21/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Shifts

       Min-Max-Problem
                                                                      d
                                                                           pi,k −         j=k   λj
                         min                   max
                  {p1,1 ,...,p   ,d }⊂C    λk ∈Λ(Ak ) ∀k                        pi,k + λk
                                                               i=0 k=0


       Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz)
                                                                     d
                                                                          pi −            j=k   λj
                        min                    max
                   {p1 ,...,p }⊂C          λk ∈Λ(A0 ) ∀k                       pi + λk
                                                              i=0 k=0




Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   21/24
ADI                     ADI for Tensors                   Numerical Results and Shifts                  Conclusions



   Shifts

       Min-Max-Problem
                                                                      d
                                                                           pi,k −         j=k   λj
                         min                   max
                  {p1,1 ,...,p   ,d }⊂C    λk ∈Λ(Ak ) ∀k                        pi,k + λk
                                                               i=0 k=0


       Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz)
                                                                     d
                                                                          pi −            j=k   λj
                        min                    max
                   {p1 ,...,p }⊂C          λk ∈Λ(A0 ) ∀k                       pi + λk
                                                              i=0 k=0


               λk = λ0 ∀k
               Penzl’s idea: {p1 , . . . , p } ⊂ (d − 1)Λ(A0 )


Max Planck Institute Magdeburg                                             Thomas Mach, Jens Saak, Tensor-ADI   21/24
ADI                     ADI for Tensors              Numerical Results and Shifts                  Conclusions



   Random Example

                seed := 1;
                    R := rand(10);
                    R := R + R ;
                    R := R − λmin + 0.1;
                  A0 = −R;
             Λ(A0 ) = {−0.1000, −0.2250, −1.1024, −1.7496, −2.0355,
                             −2.4402, −3.1330, −3.3961, −3.9347, −11.9713}

       ⇒ The random shifts do not lead to convergence.

                                           p0 = λ10 (A0 )(d − 1)
                                           p1 = λ9 (A0 )(d − 1)
                                           p2 = λ8 (A0 )(d − 1)
Max Planck Institute Magdeburg                                        Thomas Mach, Jens Saak, Tensor-ADI   22/24
ADI                     ADI for Tensors            Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = −R

                     d                     t in s           residual                  #it
                    2                2.7673         9.1353 e−09                    219.0
                    5                7.8942         9.6503 e−09                     98.0
                    8               18.9964         9.8650 e−09                     84.0
                   10               18.4739         7.5746 e−09                     58.0
                   15               27.5661         5.0619 e−09                     40.0
                   20               32.2409         4.9971 e−09                     32.0
                   25               40.2462         5.1732 e−09                     29.0
                   50               76.3225         7.4093 e−09                     14.0
                   75              159.6627         3.2629 e−09                     10.0
                  100              436.6120         9.1137 e−09                     11.0




Max Planck Institute Magdeburg                                      Thomas Mach, Jens Saak, Tensor-ADI   23/24
ADI                     ADI for Tensors            Numerical Results and Shifts                  Conclusions



   Numerical Results – Ai = −R

                     d                     t in s         tdmrg in s                  #it
                    2                2.7673                  0.0148                219.0
                    5                7.8942                  2.5576                 98.0
                    8               18.9964                  5.4536                 84.0
                   10               18.4739                  5.5852                 58.0
                   15               27.5661                  6.3068                 40.0
                   20               32.2409                  7.4044                 32.0
                   25               40.2462                  8.3371                 29.0
                   50               76.3225                 11.8840                 14.0
                   75              159.6627                 18.0581                 10.0
                  100              436.6120                 28.8515                 11.0




Max Planck Institute Magdeburg                                      Thomas Mach, Jens Saak, Tensor-ADI   23/24
ADI                     ADI for Tensors    Numerical Results and Shifts                  Conclusions



   Conclusions and Outlook

       We have seen
               a generalization of the ADI method,
               capable of solving tensor Lyapunov and Sylvester equations,
               producing solutions of low TT-rank.




Max Planck Institute Magdeburg                              Thomas Mach, Jens Saak, Tensor-ADI   24/24
ADI                     ADI for Tensors     Numerical Results and Shifts                  Conclusions



   Conclusions and Outlook

       We have seen
               a generalization of the ADI method,
               capable of solving tensor Lyapunov and Sylvester equations,
               producing solutions of low TT-rank.

       Open questions:
               more sophisticated shift strategies and
               why is the dmrg solver so much faster?




Max Planck Institute Magdeburg                               Thomas Mach, Jens Saak, Tensor-ADI   24/24
ADI                     ADI for Tensors     Numerical Results and Shifts                  Conclusions



   Conclusions and Outlook

       We have seen
               a generalization of the ADI method,
               capable of solving tensor Lyapunov and Sylvester equations,
               producing solutions of low TT-rank.

       Open questions:
               more sophisticated shift strategies and
               why is the dmrg solver so much faster?



                         Thank you for your attention.

Max Planck Institute Magdeburg                               Thomas Mach, Jens Saak, Tensor-ADI   24/24

More Related Content

PDF
ADI for Tensor Structured Equations
PDF
On the proof theory for Description Logics
PDF
09 trial johor_s2
PDF
IRJET- Analytic Evaluation of the Head Injury Criterion (HIC) within the Fram...
PDF
Financial mgt
PDF
A Study on the Root Systems and Dynkin diagrams associated with QHA2(1)
PDF
2011 quick reference guide
PDF
954 sp math(t)b
ADI for Tensor Structured Equations
On the proof theory for Description Logics
09 trial johor_s2
IRJET- Analytic Evaluation of the Head Injury Criterion (HIC) within the Fram...
Financial mgt
A Study on the Root Systems and Dynkin diagrams associated with QHA2(1)
2011 quick reference guide
954 sp math(t)b

What's hot (8)

PDF
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
PDF
F4 Final Sbp 2006 Math Skema P 1 & P 2
PDF
F4 Final Sbp 2007 Maths Skema P 1 & P2
PDF
Trial Sbp 2007 Answer Mm 1 & 2
PDF
Mathematical models for a chemical reactor
PDF
Maths Answer Ppsmi2006 F4 P2
PDF
New data structures and algorithms for \\post-processing large data sets and ...
Efficient Solution of Two-Stage Stochastic Linear Programs Using Interior Poi...
F4 Final Sbp 2006 Math Skema P 1 & P 2
F4 Final Sbp 2007 Maths Skema P 1 & P2
Trial Sbp 2007 Answer Mm 1 & 2
Mathematical models for a chemical reactor
Maths Answer Ppsmi2006 F4 P2
New data structures and algorithms for \\post-processing large data sets and ...
Ad

Viewers also liked (8)

PDF
2HG detection in IDH1 Gliomas
PDF
NMR Research Poster_Ramos REU2015
PPTX
Solid State NMR
PPTX
PPTX
NMR Spectroscopy
PPT
C 13 NMR Spectroscopy
PPT
Nuclear Magnetic Resonance Spectroscopy
PPT
Nmr spectroscopy
2HG detection in IDH1 Gliomas
NMR Research Poster_Ramos REU2015
Solid State NMR
NMR Spectroscopy
C 13 NMR Spectroscopy
Nuclear Magnetic Resonance Spectroscopy
Nmr spectroscopy
Ad

Similar to ADI for Tensor Structured Equations (11)

PDF
PDF
Tensor Train data format for uncertainty quantification
PDF
How to Generate Personalized Tasks and Sample Solutions for Anonymous Peer Re...
PDF
hydro chapter_4_b_pipe_network_by louy Al hami
PDF
NIPS2010: optimization algorithms in machine learning
PPTX
UNIT-II.pptx
PDF
Expert Lecture on GPS at UIET, CSJM, Kanpur
PDF
Fundamentals of Engineering Probability Visualization Techniques & MatLab Cas...
PDF
Localized methods for diffusions in large graphs
PDF
9 pd es
PDF
Thesis_Presentation
Tensor Train data format for uncertainty quantification
How to Generate Personalized Tasks and Sample Solutions for Anonymous Peer Re...
hydro chapter_4_b_pipe_network_by louy Al hami
NIPS2010: optimization algorithms in machine learning
UNIT-II.pptx
Expert Lecture on GPS at UIET, CSJM, Kanpur
Fundamentals of Engineering Probability Visualization Techniques & MatLab Cas...
Localized methods for diffusions in large graphs
9 pd es
Thesis_Presentation

More from Thomas Mach (8)

PDF
Fast and backward stable computation of roots of polynomials
PDF
On Deflations in Extended QR Algorithms
PDF
On Deflations in Extended QR Algorithms
PDF
Eigenvalues of Symmetrix Hierarchical Matrices
PDF
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
PDF
Preconditioned Inverse Iteration for Hierarchical Matrices
PDF
Preconditioned Inverse Iteration for Hierarchical Matrices
PDF
Hierarchical Matrices: Concept, Application and Eigenvalues
Fast and backward stable computation of roots of polynomials
On Deflations in Extended QR Algorithms
On Deflations in Extended QR Algorithms
Eigenvalues of Symmetrix Hierarchical Matrices
Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical Matrices
Hierarchical Matrices: Concept, Application and Eigenvalues

Recently uploaded (20)

PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
PDF
Electronic commerce courselecture one. Pdf
PPTX
20250228 LYD VKU AI Blended-Learning.pptx
PPTX
Cloud computing and distributed systems.
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PDF
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
PDF
Chapter 3 Spatial Domain Image Processing.pdf
PDF
Spectral efficient network and resource selection model in 5G networks
PPTX
Programs and apps: productivity, graphics, security and other tools
PPTX
Big Data Technologies - Introduction.pptx
PDF
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
PPTX
Spectroscopy.pptx food analysis technology
PDF
Unlocking AI with Model Context Protocol (MCP)
PDF
Machine learning based COVID-19 study performance prediction
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
DOCX
The AUB Centre for AI in Media Proposal.docx
PDF
Per capita expenditure prediction using model stacking based on satellite ima...
NewMind AI Weekly Chronicles - August'25 Week I
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Electronic commerce courselecture one. Pdf
20250228 LYD VKU AI Blended-Learning.pptx
Cloud computing and distributed systems.
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Peak of Data & AI Encore- AI for Metadata and Smarter Workflows
Chapter 3 Spatial Domain Image Processing.pdf
Spectral efficient network and resource selection model in 5G networks
Programs and apps: productivity, graphics, security and other tools
Big Data Technologies - Introduction.pptx
Architecting across the Boundaries of two Complex Domains - Healthcare & Tech...
Spectroscopy.pptx food analysis technology
Unlocking AI with Model Context Protocol (MCP)
Machine learning based COVID-19 study performance prediction
Agricultural_Statistics_at_a_Glance_2022_0.pdf
The AUB Centre for AI in Media Proposal.docx
Per capita expenditure prediction using model stacking based on satellite ima...

ADI for Tensor Structured Equations

  • 1. 83rd GAMM Annual Scientific Conference Darmstadt, 28 March 2012 ADI for Tensor Structured Equations Thomas Mach and Jens Saak Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 1/24
  • 2. ADI ADI for Tensors Numerical Results and Shifts Conclusions Classic ADI [Peaceman/Rachford ’55] Developed to solve linear systems related to Poisson problems −∆u = f in Ω ⊂ Rd , d = 1, 2 u=0 on ∂Ω. uniform grid size h, centered differences, d = 1, ⇒ ∆1,h u = h2 f   2 −1 −1 2 −1    ∆1,h =  .. .. .. .   . . .   −1 2 −1 −1 2 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 2/24
  • 3. ADI ADI for Tensors Numerical Results and Shifts Conclusions Classic ADI [Peaceman/Rachford ’55] Developed to solve linear systems related to Poisson problems −∆u = f in Ω ⊂ Rd , d = 1, 2 u=0 on ∂Ω. uniform grid size h, 5-point difference star, d = 2, ⇒ ∆2,h u = h2 f     K −I 4 −1 −I K −I  −1 4 −1      ∆2,h =  .. .. ..  and K =    .. .. .. .   . . .   . . .   −I K −I   −1 4 −1 −I K −1 4 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 2/24
  • 4. ADI ADI for Tensors Numerical Results and Shifts Conclusions Classic ADI [Peaceman/Rachford ’55] Observation ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ). =:H =:V Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 3/24
  • 5. ADI ADI for Tensors Numerical Results and Shifts Conclusions Classic ADI [Peaceman/Rachford ’55] Observation ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ). =:H =:V ˜ Solve ∆2,h u = h2 f =: f exploiting structure in H and V . Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 3/24
  • 6. ADI ADI for Tensors Numerical Results and Shifts Conclusions Classic ADI [Peaceman/Rachford ’55] Observation ∆2,h = (∆1,h ⊗ I ) + (I ⊗ ∆1,h ). =:H =:V ˜ Solve ∆2,h u = h2 f =: f exploiting structure in H and V . For certain shift parameters perform ˜ (H + pi I ) ui+ 1 = (pi I − V ) ui + f , 2 ˜ (V + pi I ) ui+1 = (pi I − H) ui+ 1 + f , 2 until ui is good enough. Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 3/24
  • 7. ADI ADI for Tensors Numerical Results and Shifts Conclusions ADI and Lyapunov Equations [Wachspress ’88] Lyapunov Equation FX + XF T = −GG T Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 4/24
  • 8. ADI ADI for Tensors Numerical Results and Shifts Conclusions ADI and Lyapunov Equations [Wachspress ’88] Lyapunov Equation FX + XF T = −GG T Vectorized Lyapunov Equation (I ⊗ F ) + (F ⊗ I ) vec(X ) = −vec(GG T ) =:HF =:VF Same structure ⇒ apply ADI Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 4/24
  • 9. ADI ADI for Tensors Numerical Results and Shifts Conclusions ADI and Lyapunov Equations [Wachspress ’88] Lyapunov Equation FX + XF T = −GG T Vectorized Lyapunov Equation (I ⊗ F ) + (F ⊗ I ) vec(X ) = −vec(GG T ) =:HF =:VF Same structure ⇒ apply ADI (F + pi I ) Xi+ 1 = −GG T − Xi F T − pi I 2 (F + pi I ) Xi+1 = −GG T − Xi+ 1 F T − pi I T 2 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 4/24
  • 10. ADI ADI for Tensors Numerical Results and Shifts Conclusions Generalizing Matrix Equations ∆2,h vec(X ) = vec(B) I ⊗ ∆1,h + ∆1,h ⊗ I vec(X ) = vec(B) =H =V =u =f ∆µa a Xa c + = Ba c c ∆µc Xa c Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 5/24
  • 11. ADI ADI for Tensors Numerical Results and Shifts Conclusions Generalizing Matrix Equations ∆4,h vec(X ) = vec(B) I ⊗ I ⊗ I ⊗ ∆1,h + I ⊗ I ⊗ ∆1,h ⊗ I + I ⊗ ∆1,h ⊗ I ⊗ I + ∆1,h ⊗ I ⊗ I ⊗ I vec(X ) = vec(B) =H =V =R =Q =u =f ∆µa a Xabcd + Xabcd ∆µb b + = Babcd c ∆µc Xabcd + Xabcd d ∆µd Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 5/24
  • 12. ADI ADI for Tensors Numerical Results and Shifts Conclusions Generalizing ADI I ⊗ ∆1,h + ∆1,h ⊗ I vec(X ) = vec(B) =H =V =u =f (H + I ⊗ pi,1 I )Xi+ 1 = (pi,1 I − V )Xi + B 2 (V + pi,2 I ⊗ I )Xi+ 1 = (pi,2 I − H)Xi+ 1 + B 2 2 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 6/24
  • 13. ADI ADI for Tensors Numerical Results and Shifts Conclusions Generalizing ADI I ⊗ ∆1,h + ∆1,h ⊗ I vec(X ) = vec(B) =H =V =u =f (H + I ⊗ pi,1 I )Xi+ 1 = (pi,1 I − V )Xi + B 2 (V + pi,2 I ⊗ I )Xi+ 1 = (pi,2 I − H)Xi+ 1 + B 2 2 I ⊗ I ⊗ I ⊗ ∆1,h + I ⊗ I ⊗ ∆1,h ⊗ I + I ⊗ ∆1,h ⊗ I ⊗ I + ∆1,h ⊗ I ⊗ I ⊗ I vec(X ) = vec(B) =H =V =R =Q =u =f (H + I ⊗ I ⊗ I ⊗ pi,1 I )Xi+ 1 = (pi,1 I − V − R − Q)Xi +B 4 (V + I ⊗ I ⊗ pi,2 I ⊗ I )Xi+ 1 = (pi,2 I − H − R − Q)Xi+ 1 +B 2 4 (R + I ⊗ pi,3 I ⊗ I ⊗ I )Xi+ 3 = (pi,3 I − H − V − Q)Xi+ 1 +B 4 2 (Q + pi,4 I ⊗ I ⊗ I ⊗ I )Xi+1 = (pi,4 I − H − V − R)Xi+ 3 +B 4 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 6/24
  • 14. ADI ADI for Tensors Numerical Results and Shifts Conclusions Goal Solve AX = B A = I ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ A1 + I ⊗ I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + ... + Ad ⊗ I ⊗ · · · ⊗ I ⊗ I ⊗ I B is given in tensor train decomposition ⇒ X is sought in tensor train decomposition. Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 7/24
  • 15. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] r1 ,...,rd−1 T (i1 , i2 , . . . , id ) = G1 (i1 , α1 )G2 (α1 , i2 , α2 ) α1 ,...,αd−1 =1 · · · Gj (αj−1 , ij , αj ) · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ). G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 ··· Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 8/24
  • 16. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] Tensor trains are computable, and d require only O(dnr 2 ) storage, with TT-rank r and T ∈ Rn . Canonical representation T (i1 , i2 , . . . , id ) = G1 (i1 , α) · · · Gd (id , α) α Tucker decomposition T (i1 , i2 , . . . , id ) = C (α1 , . . . , αd )G1 (i1 , α1 ) · · · Gd (id , αd ) α1 ,...,αd Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 9/24
  • 17. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] (I ⊗ · · · ⊗ I ⊗ A1 ) T Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 10/24
  • 18. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] (I ⊗ · · · ⊗ I ⊗ A1 ) T A1 (β, i1 ) i1 G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 ··· Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 10/24
  • 19. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] (I ⊗ · · · ⊗ I ⊗ A1 ) T A1 (β, i1 ) i1 G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 ··· Gd (αd−1 , id ) T (i1 , i2 , . . . , id ) ×1 A1 = A1 β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 ) α1 ,...,αd−1 · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 10/24
  • 20. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] (I ⊗ · · · ⊗ I ⊗ A1 ) T ˜ = G1 (β, α1 ) = A1 G1 A1 (β, i1 ) i1 G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 ··· Gd (αd−1 , id ) T (i1 , i2 , . . . , id ) ×1 A1 = A1 β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 ) α1 ,...,αd−1 · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 10/24
  • 21. ADI ADI for Tensors Numerical Results and Shifts Conclusions Tensor Trains [Oseledets, Tyrtyshnikov ’09] (I ⊗ · · · ⊗ I ⊗ A1 ) −1 T ˜ = G1 (β, α1 ) = A1 G1 A1 (β, i1 ) i1 G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 ··· Gd (αd−1 , id ) T (i1 , i2 , . . . , id ) ×1 A1 −1 = A1 −1 β,i1 G1 (i1 , α1 )G2 (α1 , i2 , α2 ) α1 ,...,αd−1 · · · Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 10/24
  • 22. ADI ADI for Tensors Numerical Results and Shifts Conclusions Algorithm Input: {A1 , . . . , Ad }, tensor train B, accuracy Output: tensor train X , with AX = B forall j ∈ {1, . . . , d} do (0) Xj := zeros(n, 1, 1) end while r (i) > do Choose shift pi forall k ∈ {1, . . . , d} do d ×j Aj ×k (Ak + pi I )−1 k k−1 k−1 X (i+ d ) := B +pi X (i+ d ) − X (i+ d ) j=1 j=k end end Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 11/24
  • 23. ADI ADI for Tensors Numerical Results and Shifts Conclusions Algorithm r (i) := B Input: {A1 , . . . , Ad }, tensor train B, accuracy forall j ∈ {1, . . . , d} do Output: tensor train X , with AX(i) B = r (i) := r − Xi ×j Aj forall j ∈ {1, . . . , d} do (0) end Xj := zeros(n, 1, 1) end while r (i) > do Choose shift pi forall k ∈ {1, . . . , d} do d ×j Aj ×k (Ak + pi I )−1 k k−1 k−1 X (i+ d ) := B +pi X (i+ d ) − X (i+ d ) j=1 j=k end end Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 11/24
  • 24. ADI ADI for Tensors Numerical Results and Shifts Conclusions Algorithm Input: {A1 , . . . , Ad }, tensor train B, accuracy Output: tensor train X , with AX = B forall j ∈ {1, . . . , d} do (0) Xj := zeros(n, 1, 1) end (I ⊗ I ⊗ · · · ⊗ I ⊗ Aj ⊗ I ⊗ · · · ⊗ I ) Xi+ k−1 d while r (i) > do Choose shift pi forall k ∈ {1, . . . , d} do d ×j Aj ×k (Ak + pi I )−1 k k−1 k−1 X (i+ d ) := B +pi X (i+ d ) − X (i+ d ) j=1 j=k end end Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 11/24
  • 25. ADI ADI for Tensors Numerical Results and Shifts Conclusions Eigenvalues A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I St´phanos’ theorem: e ⇒ λi (A) = λi1 (A1 ) + λi2 (A2 ) + · · · + λid (Ad ), d−1 with i = i1 + i2 n1 + · · · + id nj . j=1 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 12/24
  • 26. ADI ADI for Tensors Numerical Results and Shifts Conclusions Eigenvalues A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I St´phanos’ theorem: e ⇒ λi (A) = λi1 (A1 ) + λi2 (A2 ) + · · · + λid (Ad ), d−1 with i = i1 + i2 n1 + · · · + id nj . j=1 d AX = B ⇔ X ×j Aj = B j=1 A is regular ⇔ λi (A) = 0 ∀i ⇐ Ai Hurwitz ∀i Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 12/24
  • 27. ADI ADI for Tensors Numerical Results and Shifts Conclusions Lemma Lemma [Grasedyck ’04] The tensor equation d j=1 X ×j Aj = B with Ak Hurwitz ∀k has the solution ∞ X =− 0 B ×1 exp(A1 t) ×2 · · · ×d exp(Ad t)dt Z (t) = B ×1 exp(A1 t) ×2 · · · ×d exp(Ad t) d ∞ ˙ Z (t) = Z (t) ×j Aj Z (∞) − Z (0) = ˙ Z (t)dt, j=1 0 d ∞ 0−B = Z (t)dt ×j Aj j=1 0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 13/24
  • 28. ADI ADI for Tensors Numerical Results and Shifts Conclusions Theorem Theorem {A1 , . . . , Ad } ⇒ A, Λ(A) ⊂ [−λmax , −λmin ] ⊕ ı [−µ, µ] ⊂ C− . Let k ∈ N and use the quadrature points and weights: √ hst := √k , tj := log e jhst + 1 + e 2jhst , wj := √ hst−2jh . π 1+e st Then the solution X can be approximated by r1 ,...,rd−1 ˜ X (i1 , i2 , . . . , id ) = − H1 (i1 , α1 ) · · · Hd (αd−1 , id ), α1 ,...,αd−1 =1 2tj 2wj Ap with Hp (αp−1 , ip , αp ) := k j=−k λmin βp e λmin ip ,βp Gp (αp−1 , βp , αp ) with the approximation error 2µλ−1 +1 √ (λI − 2A/λmin )−1 min ˜ X −X ≤ Cst −π k πλmin e dΓ λ B 2. 2 π Γ 2 extending [Grasedyck ’04] (X and B of low Kronecker rank) to low TT-rank Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 14/24
  • 29. ADI ADI for Tensors Numerical Results and Shifts Conclusions Approximation Accuracy Storage in 104 ·Double constant truncation error 10−2 i 8 tightened truncation error Truncation Error 6 10−8 4 10−14 2 10−20 0 5 10 15 20 25 30 Iteration Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 15/24
  • 30. ADI ADI for Tensors Numerical Results and Shifts Conclusions Example: Laplace – Ai = ∆1, 11 1 Ai = ∆1, 1 11 B = 0 0 ... 0 1 Shifts: pi := e1 (∗1 ) + . . . + ed (∗d ) — random chosen eigenvalue Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 16/24
  • 31. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = ∆1, 11 1 d t in s residual mean(#it) 2 3.887 e−01 7.015 e−10 112.8 5 5.398 e+00 7.467 e−10 45.8 8 6.007 e+00 6.936 e−10 12.8 10 3.662 e+00 7.685 e−10 6.8 25 3.142 e+01 2.437 e−10 5.0 50 2.268 e+02 2.049 e−10 5.0 75 7.192 e+02 4.036 e−10 5.0 100 1.700 e+03 1.864 e−10 5.0 150 5.538 e+03 1.801 e−10 5.0 200 1.280 e+04 1.472 e−10 5.0 250 2.499 e+04 1.816 e−10 5.0 300 4.298 e+04 2.535 e−10 5.0 500 1.952 e+05 2.039 e−10 5.0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 17/24
  • 32. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = ∆1, 11 1 sparse dense d TADI MESS Penzl’s sh. lyap 2 0.310 0.0006 0.024 0.003 0.0003 0.0005 4 3.130 0.1695 0.011 0.049 6.331 0.012 6 8.147 — 0.076 0.094 — 7.17 8 5.458 — 5.863 1.097 — 13 698.2 10 5.306 — 3 445.523 249.464 — — Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 18/24
  • 33. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = ∆1, 11 1 105 104 Computation Time in s 103 102 Tensor ADI 101 sparse MESS 100 Penzl’s shifts 10−1 dense lyap 10−2 10 100 300 Dimension d Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 19/24
  • 34. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = ∆1, 11 1 105 104 Computation Time in s 103 102 Tensor ADI 101 sparse MESS 100 Penzl’s shifts 10−1 dense lyap 10−2 10 100 300 Dimension d Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 19/24
  • 35. ADI ADI for Tensors Numerical Results and Shifts Conclusions Single Shift and Convergence A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I We assume Λ(Ak ) ⊂ R− . Error Propagation, Single Shift p− λk + λl λk   d d k k G1 2 ≤ max = 1 −  . λk ∈Λ(Ak ), p + λl p + λl k=1,...,d l=0 l=0 If G1 2 < 1, then the ADI iteration converges. p < 0 and p > −∞ Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 20/24
  • 36. ADI ADI for Tensors Numerical Results and Shifts Conclusions Single Shift and Convergence A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I We assume Λ(Ak ) ⊂ R− . Error Propagation, Single Shift p− λk + λl λk   d d k k G1 2 ≤ max = 1 −  . λk ∈Λ(Ak ), p + λl p + λl k=1,...,d l=0 l=0 If G1 2 < 1, then the ADI iteration converges. p < 0 and p > −∞ d p < λi (A) = k=1 λk (Ak ) ∀i Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 20/24
  • 37. ADI ADI for Tensors Numerical Results and Shifts Conclusions Single Shift and Convergence A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I We assume Λ(Ak ) ⊂ R− . Error Propagation, Single Shift p− λk + λl λk   d d k k G1 2 ≤ max = 1 −  . λk ∈Λ(Ak ), p + λl p + λl k=1,...,d l=0 l=0 If G1 2 < 1, then the ADI iteration converges. p < 0 and p > −∞ d p < λi (A) = k=1 λk (Ak ) ∀i d−2 Lyapunov case (Ak = A0 ∀k): p < 2 λmin (A0 ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 20/24
  • 38. ADI ADI for Tensors Numerical Results and Shifts Conclusions Single Shift and Convergence A = I ⊗ · · · ⊗ I ⊗ A1 + I ⊗ · · · ⊗ I ⊗ A2 ⊗ I + . . . + Ad ⊗ I ⊗ · · · ⊗ I We assume Λ(Ak ) ⊂ R− . Error Propagation, Single Shift p− λk + λl λk   d d k k G1 2 ≤ max = 1 −  . λk ∈Λ(Ak ), p + λl p + λl k=1,...,d l=0 l=0 If G1 2 < 1, then the ADI iteration converges. p < 0 and p > −∞ d p < λi (A) = k=1 λk (Ak ) ∀i 2−2 Lyapunov case (Ak = A0 ∀k): p < 2 λmin (A0 ) =0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 20/24
  • 39. ADI ADI for Tensors Numerical Results and Shifts Conclusions Shifts Min-Max-Problem d pi,k − j=k λj min max {p1,1 ,...,p ,d }⊂C λk ∈Λ(Ak ) ∀k pi,k + λk i=0 k=0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 21/24
  • 40. ADI ADI for Tensors Numerical Results and Shifts Conclusions Shifts Min-Max-Problem d pi,k − j=k λj min max {p1,1 ,...,p ,d }⊂C λk ∈Λ(Ak ) ∀k pi,k + λk i=0 k=0 Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz) d pi,k − j=k λj min max {p1,1 ,...,p ,d }⊂C λk ∈Λ(A0 ) ∀k pi,k + λk i=0 k=0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 21/24
  • 41. ADI ADI for Tensors Numerical Results and Shifts Conclusions Shifts Min-Max-Problem d pi,k − j=k λj min max {p1,1 ,...,p ,d }⊂C λk ∈Λ(Ak ) ∀k pi,k + λk i=0 k=0 Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz) d pi − j=k λj min max {p1 ,...,p }⊂C λk ∈Λ(A0 ) ∀k pi + λk i=0 k=0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 21/24
  • 42. ADI ADI for Tensors Numerical Results and Shifts Conclusions Shifts Min-Max-Problem d pi,k − j=k λj min max {p1,1 ,...,p ,d }⊂C λk ∈Λ(Ak ) ∀k pi,k + λk i=0 k=0 Min-Max-Problem, Lyapunov case (Ak = A0 ∀k, A0 Hurwitz) d pi − j=k λj min max {p1 ,...,p }⊂C λk ∈Λ(A0 ) ∀k pi + λk i=0 k=0 λk = λ0 ∀k Penzl’s idea: {p1 , . . . , p } ⊂ (d − 1)Λ(A0 ) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 21/24
  • 43. ADI ADI for Tensors Numerical Results and Shifts Conclusions Random Example seed := 1; R := rand(10); R := R + R ; R := R − λmin + 0.1; A0 = −R; Λ(A0 ) = {−0.1000, −0.2250, −1.1024, −1.7496, −2.0355, −2.4402, −3.1330, −3.3961, −3.9347, −11.9713} ⇒ The random shifts do not lead to convergence. p0 = λ10 (A0 )(d − 1) p1 = λ9 (A0 )(d − 1) p2 = λ8 (A0 )(d − 1) Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 22/24
  • 44. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = −R d t in s residual #it 2 2.7673 9.1353 e−09 219.0 5 7.8942 9.6503 e−09 98.0 8 18.9964 9.8650 e−09 84.0 10 18.4739 7.5746 e−09 58.0 15 27.5661 5.0619 e−09 40.0 20 32.2409 4.9971 e−09 32.0 25 40.2462 5.1732 e−09 29.0 50 76.3225 7.4093 e−09 14.0 75 159.6627 3.2629 e−09 10.0 100 436.6120 9.1137 e−09 11.0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 23/24
  • 45. ADI ADI for Tensors Numerical Results and Shifts Conclusions Numerical Results – Ai = −R d t in s tdmrg in s #it 2 2.7673 0.0148 219.0 5 7.8942 2.5576 98.0 8 18.9964 5.4536 84.0 10 18.4739 5.5852 58.0 15 27.5661 6.3068 40.0 20 32.2409 7.4044 32.0 25 40.2462 8.3371 29.0 50 76.3225 11.8840 14.0 75 159.6627 18.0581 10.0 100 436.6120 28.8515 11.0 Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 23/24
  • 46. ADI ADI for Tensors Numerical Results and Shifts Conclusions Conclusions and Outlook We have seen a generalization of the ADI method, capable of solving tensor Lyapunov and Sylvester equations, producing solutions of low TT-rank. Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 24/24
  • 47. ADI ADI for Tensors Numerical Results and Shifts Conclusions Conclusions and Outlook We have seen a generalization of the ADI method, capable of solving tensor Lyapunov and Sylvester equations, producing solutions of low TT-rank. Open questions: more sophisticated shift strategies and why is the dmrg solver so much faster? Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 24/24
  • 48. ADI ADI for Tensors Numerical Results and Shifts Conclusions Conclusions and Outlook We have seen a generalization of the ADI method, capable of solving tensor Lyapunov and Sylvester equations, producing solutions of low TT-rank. Open questions: more sophisticated shift strategies and why is the dmrg solver so much faster? Thank you for your attention. Max Planck Institute Magdeburg Thomas Mach, Jens Saak, Tensor-ADI 24/24