SlideShare a Scribd company logo
GAMM Workshop Applied and
                                                       Numerical Linear Algebra 2011
                                                        September 22, 2011, Bremen




          Computing Inner Eigenvalues of Matrices in
                Tensor Train Matrix Format
                                        Thomas Mach
                                 joint work with Peter Benner

                   Max Planck Institute for Dynamics of Complex Technical Systems
                       Computational Methods in Systems and Control Theory
                                             Magdeburg
                                                                                                    MAX PLANCK INSTITUTE
                                                                                                  FOR DYNAMICS OF COMPLEX
                                                                                                     TECHNICAL SYSTEMS
                                                                                                         MAGDEBURG




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format         1/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Outline



        1    Tensor Trains

        2    PINVIT and Folded Spectrum Method

        3    Numerical Results




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    2/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                        d
                                            T ∈ Rm




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                               d
                                                    T ∈ Rm

                         r
                 T =     α=1     U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm




                                                    U1 (i1 , α)

                                      U4 (i4 , α)        α         U2 (i2 , α)

                                                    U3 (i3 , α)


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                            Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                               d
                                                   T ∈ Rm

                          r
                 T =      α=1    U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm
                                            r             r                      d
                 T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd
                                             1           d
                                                                                 j=1   Uj (ij , αj ), with
                 G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm

                                                   U1 (i1 , α1 )                   U3 (i3 , α3 )
                                                        α1                  α3

                  U4 (i4 , α4 )       α4        G (α1 , . . . , α4 )        α2       U2 (i2 , α2 )


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format     3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]


                                                                  d
                                                   T ∈ Rm

                          r
                 T =      α=1    U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm
                                             r               r                    d
                 T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd
                                             1           d
                                                                                  j=1   Uj (ij , αj ), with
                 G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm




          T (i1 , i2 , . . . , id ) =                  G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · ·
                                        α1 ,...,αd−1

                                                       Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )


Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    3/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Trains
   [Oseledets, Tyrtyshnikov ’09]




          T (i1 , i2 , . . . , id ) =                  G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · ·
                                        α1 ,...,αd−1

                                                       Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id )



            G1 (i1 , α1 )        α1          G2 (α1 , i2 , α2 )          α2        G3 (α2 , i3 , α3 )           α3

                 ···        αd−1         Gd (αd−1 , id )




Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    4/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                       G1 (i1 , j1 , α1 )      α1         G2 (α1 , i2 , j2 , α2 )         α2


                                 ···    αd−1        Gd (αd−1 , id , jd )


                                                            d ×md
                                               M ∈ Rm




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )




Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )


                                 TTM is a data-sparse matrix format.

Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                          PINVIT and Folded Spectrum Method                           Numerical Results



   Tensor Train Matrix Format (TTM)
   [Oseledets ’10]



                        G1 (i1 , j1 , α1 )       α1        G2 (α1 , i2 , j2 , α2 )         α2


                                 ···      αd−1        Gd (αd−1 , id , jd )


                                                             d ×md
                                                 M ∈ Rm

                                   M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) =
                 α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd )


                                 TTM is a data-sparse matrix format.
                                   m = 2 ⇒ QTT matrix format
Max Planck Institute Magdeburg                   Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    5/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd




Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                 G1 (i1 , j1 , α1 )               j1           H1 (j1 , β1 )

                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                 G1 (i1 , j1 , α1 )               j1           H1 (j1 , β1 )

                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , i2 , j2 , α2 )               j2        H2 (β1 , j2 , β2 )

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                         α1                                          β1

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                                           (α1 , β1 )

                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                           PINVIT and Folded Spectrum Method                                    Numerical Results



   Matrix Vector Product in TT and TTM Format
   [Oseledets ’10]


                   T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT
        W (i1 , i2 , . . . , id ) =                    M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd )
                                      j1 ,j2 ,...,jd


                                                          j1
                                 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 )
                                                1)


                                                                        o       n
                                                                    ati
                                                           (α1 , β1 )
                                                                  c
                                                   t run
                            G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 )
                                      2 , 2 , α2      i       , β (β

                                         +
                                         α2                                          β2
                                          .
                                          .                                            .
                                                                                       .
                                          .                                            .
Max Planck Institute Magdeburg                          Thomas Mach, Computing Eigenvalues of Matrices in TTM Format       6/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Inversion of a Matrix in TTM Format
   [Schulz 1933, Oseledets ’10]


        Newton-Schulz Iteration
                                  Xk+1 = 2Xk − Xk MXk

        X0 initial approximation to M −1 with,

                                       ρ(MX0 − I ) < 1.
                                                                           2
        If M is symmetric, positive definite, then X0 =                    M        I is an
                                                                               2
        admissible initial approximation.

                                      Hk+1 =           I − Yk
                                      Yk+1 =           Yk Hk+1
                                      Xk+1 =           Hk+1 Xk


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    7/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Inversion of a Matrix in TTM Format
   [Schulz 1933, Oseledets ’10]


        Newton-Schulz Iteration
                                  Xk+1 = 2Xk − Xk MXk

        X0 initial approximation to M −1 with,

                                       ρ(MX0 − I ) < 1.
                                                                           2
        If M is symmetric, positive definite, then X0 =                    M        I is an
                                                                               2
        admissible initial approximation.

                                      Hk+1 = T (I − Yk , )
                                      Yk+1 = T (Yk Hk+1 , )
                                      Xk+1 = T (Hk+1 Xk , )


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    7/21
Tensor Trains                           PINVIT and Folded Spectrum Method                           Numerical Results



   Eigenvalue Problem

        Problem Setting
                                 d   d
        Assume M ∈ R2 ×2 is given in TTM. M is sym. pos. definite.
                                                   d
        Compute eigenvalue λ and eigenvector v ∈ R2 of M.
                                                   d
                                               R2        Mv = λv

                 quantum molecular dynamics
                 [Lebedeva ’11]




Max Planck Institute Magdeburg                    Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    8/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                            x T Mx
                                 µ(x) = µ(x, M) =
                                                             xT x
        is called the Rayleigh quotient.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                            x T Mx
                                 µ(x) = µ(x, M) =
                                                             xT x
        is called the Rayleigh quotient.


        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]




                                 Residual r (x) = Mx − xµ(x).




        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]


        Definition
        The function
                                                                x T Mx
                                     µ(x) = µ(x, M) =
                                                                 xT x
        is called the Rayleigh quotient.


        Minimize the Rayleigh quotient by a gradient method:
                                                 2
             xi+1 := xi − α µ(xi ),     µ(x) = T (Mx − xµ(x)) ,
                                                x x
        + preconditioning ⇒ update equation:
                                 xi+1 := xi − B −1 (Mxi − xi µ(xi )) .

Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]




          Preconditioned residual B −1 r (x) = B −1 (Mx − xµ(x)).
          ⇒ inexact Newton-method




        + preconditioning ⇒ update equation:
                                 xi+1 := xi − B −1 (Mxi − xi µ(xi )) .

Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format    9/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr 2009]


                                 xi+1 := xi − B −1 (Mxi − xi µ(xi ))


        If
                 M ∈ Rn×n symmetric positive definite and
                 B −1 approximates the inverse of M, so that

                                          I − B −1 M        M
                                                                ≤ c < 1,

        then Preconditioned INVerse ITeration (PINVIT) converges and
        the number of iterations is independent of n.




Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   10/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Preconditioned Inverse Iteration
   [Knyazev, Neymeyr, et al.]

        The residual

                                     ri = Mxi − xi µ(xi )

        converges to 0, so that

                                              ri   2   <

        is a useful termination criterion.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   11/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end                    Newton-Schulz iteration:
                               Bk+1 = 2Bk − Bk MBk
                               [Oseledets ’10] for TTM


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Algorithm

        The number of iterations is independent of matrix size n = 2d .

        PINVIT(1,s)
        Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen)
                                         T

        Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤
                                                p     p

        Approximative inversion B −1 ≈ (M)−1
        R := MX0 − X0 µ, µ = X0 MX0T

        for (i := 1; R F > ; i + +) do
            Xi := Orthogonalize Xi−1 − B −1 R
            R := MXi − Xi µ, µ = XiT MXi
        end

                                           TTM-TT products


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   12/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                             How to find λi ?
                     If i = n − s with s < O(log n),
                    use subspace version PINVIT(·,s).


                                                        ...
                 0λn λn−1 λn−2                                                           λ1




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n?



                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n,
                              shift with σ near λi .


                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1
                                                  σ




Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

                                How to find λi ?
                         If i = n − s with s    log n,
                              shift with σ near λi .


                                 ...                                           ...
                 0λn                        λi+1 λi          λi−1                              λ1
                                                  σ



                 But (M − σI) is not positive definite.
Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   13/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

                         Mv = λv ⇔ Mσ v = (M − σI)2 v
                                               = M 2 v − 2σMv + σ 2 v
                                               = λ2 v − 2σλv + σ 2 v
                                               = (λ − σ)2 v


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.
        PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3]




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Folded Spectrum Method

        Folded Spectrum Method                   [Wang, Zunger 1994, Morgan 1991]


                                     Mσ = (M − σI)2

        Mσ is s.p.d., if M is s.p.d. and σ = λi .
        Assume all eigenvalues of Mσ are simple.

        (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of
        multiplicity 2.
        PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3]
        Use PINVIT to compute V ∈ Rn×2
        ⇒ Λ(V T MV /V T V ) = {2, 3}


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   14/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.




Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.




Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                            Numerical Results



   Folded Spectrum Method
           1     Choose σ.
           2     Compute
                                       2
                  a) Mσ := (M − σI) and
                  b) B −1 :≈ Mσ .
                              −1

           3     Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ .
           4     Compute µ := v T Mv /v T v .
        (µ, v ) is the nearest eigenpair to σ.

        In TTM M can be shifted, squared and inverted with
        reasonable costs.

        If M is sparse, then squaring and inverting is prohibitive.


Max Planck Institute Magdeburg             Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   15/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Drawbacks


                 The condition number of (M − σI )2 is larger.
                                          −1
                 ⇒ The computation of Mσ is more expensive.
                      −1
                 ⇒ Mσ has larger local ranks.
                      −1
                 ⇒ Mσ v is more expensive.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   16/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Drawbacks


                 The condition number of (M − σI )2 is larger.
                                          −1
                 ⇒ The computation of Mσ is more expensive.
                      −1
                 ⇒ Mσ has larger local ranks.
                      −1
                 ⇒ Mσ v is more expensive.

                 Multiple eigenvalues of Mσ may lead to
                 incomplete subspace information.
                 ⇒ v T Mv /v T v does not approximate λ.


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   16/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Numerical Results




                                 Numerical Results




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   17/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   TT-Toolbox 2.1
   [Oseledets et al. ’09–’11]




          We use TT-Toolbox 2.1 for MATLAB from I.V. Oseledets at al.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   18/21
Tensor Trains                         PINVIT and Folded Spectrum Method                           Numerical Results



   2D Laplace
                                                                   d )2 ×(2d )2
        M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2                                      , with
        ∆1 = tridiag([−1, 2, −1]).
        without shift, 3 smallest eigenvalues
                   n              d    tinv in s      tPINVIT in s         # it.           error
                  64              3       0.449             1.577           17         1.2230 e−07
                 256              4       0.345             1.376           18         1.1450 e−07
               1 024              5       0.997             3.236           27         2.7432 e−07
               4 096              6       2.347             8.172           19         1.8911 e−07
              16 384              7       4.789            19.885           16         6.4020 e−08
              65 536              8     11.895             43.717           20         1.0688 e−07
             262 144              9     19.076             63.727           20         4.1304 e−09
           1 048 576             10     29.865             99.808           20         3.7722 e−09
           4 194 304             11   110.712*            331.059           27         5.8789 e−10
          16 777 216             12   165.560*            439.341           23         4.5062 e−09
          67 108 864             13   240.226*            587.796           26         8.9795 e−09
Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                            Numerical Results



   2D Laplace
                                                                   d )2 ×(2d )2
        M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2                                      , with
        ∆1 = tridiag([−1, 2, −1]).


        with shift σ = 203.3139, folded spectrum method, 4 eigenvalues

                  n       d         tinv in s      tPINVIT in s           # it.         error
                 64       3            0.796             0.843              8       5.5601 e−10
                256       4            3.360             3.053             45       2.9268 e−09
              1 024       5          22.659              4.581             20       1.1411 e−10
              4 096       6          60.755             32.264             31       2.5295 e−12
             16 384       7        411.165*             80.827             28       6.3665 e−12
             65 536       8      1 808.302*            344.696             27       2.5835 e−11



Max Planck Institute Magdeburg                  Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                           Numerical Results



   3D Laplace
        M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) ,
               d 3   d 3
        M ∈ R(2 ) ×(2 ) .

        without shift, 4 smallest eigenvalues

                     n           d   tinv in s     tPINVIT in s           # it.         error
                    64           2      0.219            4.518             30       2.4762 e−07
                   512           3      0.561            6.742             27       2.9333 e−07
                 4 096           4      1.109           23.715             24       1.5441 e−07
                32 768           5      7.197           99.543             28       9.1209 e−09
               262 144           6    11.052           249.084             24       1.9956 e−08
             2 097 152           7    20.893           923.874             26       1.6577 e−07
            16 777 216           8    34.937         5 131.664             34       1.1977 e−08



Max Planck Institute Magdeburg                 Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                        PINVIT and Folded Spectrum Method                           Numerical Results



   3D Laplace
        M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) ,
               d 3   d 3
        M ∈ R(2 ) ×(2 ) .


        with shift σ = 230.6195, folded spectrum method, 6 eigenvalues


                n        d           tinv in s      tPINVIT in s          # it.           error
              512        3            14.300             45.979            29         2.8479 e−07
            4 096        4           137.502            293.154            54         1.8060 e−08
           32 768        5        1 952.980*          1 223.395            19         1.0971 e−11
          262 144        6       37 149.998*       out of mem1



            1
                 canceled after 60 hours while using > 300 GB RAM
Max Planck Institute Magdeburg                 Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   19/21
Tensor Trains                       PINVIT and Folded Spectrum Method                           Numerical Results



   4D Laplace
        M = α∆4 = α (∆2 ⊗ I + I ⊗ ∆2 ) ,
               d 4   d 4
        M ∈ R(2 ) ×(2 )


        without shift, 5 smallest eigenvalues

                     n           d   tinv in s     tPINVIT in s          # it.          error
                   256           2      0.240            9.265            36        2.5997 e−07
                 4 096           3      0.873           23.993            28        1.7104 e−07
                65 536           4      1.436          119.348            28        5.9876 e−08
             1 048 576           5      5.975          497.812            32        2.2100 e−08
            16 777 216           6    12.655         1 710.326            31        7.9299 e−09
           268 435 456           7    23.628         7 898.374            41        5.1963 e−10



Max Planck Institute Magdeburg                Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   20/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.
                 Choose the shift and the subspace dimension carefully.




Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21
Tensor Trains                   PINVIT and Folded Spectrum Method                           Numerical Results



   Conclusions
                 Finding the eigenvalues by PINVIT is cheap and storage
                 efficient.
                 The folded spectrum method enables us to compute inner
                 eigenvalues, too.
                 The use of the folded spectrum method leads to not well
                 conditioned problems.
                 Choose the shift and the subspace dimension carefully.




                         Thank you for your attention.


Max Planck Institute Magdeburg            Thomas Mach, Computing Eigenvalues of Matrices in TTM Format   21/21

More Related Content

PPT
PDF
2003 Ames.Models
PDF
Ejercicio de fasores
PPT
Final Present Pap1on relibility
PDF
Computation of the marginal likelihood
PDF
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
PDF
02 2d systems matrix
PDF
Paris2012 session2
2003 Ames.Models
Ejercicio de fasores
Final Present Pap1on relibility
Computation of the marginal likelihood
PAC-Bayesian Bound for Gaussian Process Regression and Multiple Kernel Additi...
02 2d systems matrix
Paris2012 session2

What's hot (18)

PDF
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
PDF
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
PDF
Random Matrix Theory and Machine Learning - Part 2
PDF
Bouguet's MatLab Camera Calibration Toolbox
PDF
Random Matrix Theory and Machine Learning - Part 4
PDF
Random Matrix Theory and Machine Learning - Part 3
PDF
State Space Model
PDF
Random Matrix Theory and Machine Learning - Part 1
PDF
Future CMB Experiments
PDF
Dynamic shear stress evaluation on micro turning tool using photoelasticity
PDF
Balanced homodyne detection
PDF
Adaptive dynamic programming for control
PDF
Ps02 cmth03 unit 1
PDF
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
PPTX
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
PDF
Tele4653 l4
PDF
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Multi-Objective Optimization Algorithms for Finite Element Model Updating. Nt...
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Random Matrix Theory and Machine Learning - Part 2
Bouguet's MatLab Camera Calibration Toolbox
Random Matrix Theory and Machine Learning - Part 4
Random Matrix Theory and Machine Learning - Part 3
State Space Model
Random Matrix Theory and Machine Learning - Part 1
Future CMB Experiments
Dynamic shear stress evaluation on micro turning tool using photoelasticity
Balanced homodyne detection
Adaptive dynamic programming for control
Ps02 cmth03 unit 1
Bouguet's MatLab Camera Calibration Toolbox for Stereo Camera
Accelerating Machine Learning Algorithms by integrating GPUs into MapReduce C...
Tele4653 l4
Talk at SciCADE2013 about "Accelerated Multiple Precision ODE solver base on ...
Ad

Similar to Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format (20)

PPT
"Modern Tracking" Short Course Taught at University of Hawaii
PDF
A type system for the vectorial aspects of the linear-algebraic lambda-calculus
PDF
PDF
2_IGARSS2011_BPT_v2.pdf
PDF
Quadratic form and functional optimization
PDF
C Sanchez Reduction Saetas
PDF
Toeplitz (2)
PDF
Gaussseidelsor
 
PDF
Bo2422422286
PDF
Dsp U Lec10 DFT And FFT
KEY
Tprimal agh
PDF
Datamining 2nd decisiontree
PPT
Matrix factorization
PDF
03 image transform
PDF
Datamining 2nd Decisiontree
PDF
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
PDF
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
PPT
Struc lec. no.444
PDF
TaPL名古屋 Chap2
DOCX
1 d wave equation
"Modern Tracking" Short Course Taught at University of Hawaii
A type system for the vectorial aspects of the linear-algebraic lambda-calculus
2_IGARSS2011_BPT_v2.pdf
Quadratic form and functional optimization
C Sanchez Reduction Saetas
Toeplitz (2)
Gaussseidelsor
 
Bo2422422286
Dsp U Lec10 DFT And FFT
Tprimal agh
Datamining 2nd decisiontree
Matrix factorization
03 image transform
Datamining 2nd Decisiontree
Parameter Estimation in Stochastic Differential Equations by Continuous Optim...
Index Determination in DAEs using the Library indexdet and the ADOL-C Package...
Struc lec. no.444
TaPL名古屋 Chap2
1 d wave equation
Ad

More from Thomas Mach (9)

PDF
Fast and backward stable computation of roots of polynomials
PDF
On Deflations in Extended QR Algorithms
PDF
On Deflations in Extended QR Algorithms
PDF
ADI for Tensor Structured Equations
PDF
Eigenvalues of Symmetrix Hierarchical Matrices
PDF
ADI for Tensor Structured Equations
PDF
Preconditioned Inverse Iteration for Hierarchical Matrices
PDF
Preconditioned Inverse Iteration for Hierarchical Matrices
PDF
Hierarchical Matrices: Concept, Application and Eigenvalues
Fast and backward stable computation of roots of polynomials
On Deflations in Extended QR Algorithms
On Deflations in Extended QR Algorithms
ADI for Tensor Structured Equations
Eigenvalues of Symmetrix Hierarchical Matrices
ADI for Tensor Structured Equations
Preconditioned Inverse Iteration for Hierarchical Matrices
Preconditioned Inverse Iteration for Hierarchical Matrices
Hierarchical Matrices: Concept, Application and Eigenvalues

Recently uploaded (20)

PDF
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
PDF
RMMM.pdf make it easy to upload and study
PDF
Computing-Curriculum for Schools in Ghana
PDF
Anesthesia in Laparoscopic Surgery in India
PDF
FourierSeries-QuestionsWithAnswers(Part-A).pdf
PDF
Complications of Minimal Access Surgery at WLH
PDF
O7-L3 Supply Chain Operations - ICLT Program
PPTX
Institutional Correction lecture only . . .
PDF
TR - Agricultural Crops Production NC III.pdf
PPTX
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
PDF
Classroom Observation Tools for Teachers
PDF
Supply Chain Operations Speaking Notes -ICLT Program
PPTX
Cell Structure & Organelles in detailed.
PPTX
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
PDF
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
PDF
Module 4: Burden of Disease Tutorial Slides S2 2025
PPTX
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
PPTX
GDM (1) (1).pptx small presentation for students
PDF
STATICS OF THE RIGID BODIES Hibbelers.pdf
PPTX
Pharma ospi slides which help in ospi learning
3rd Neelam Sanjeevareddy Memorial Lecture.pdf
RMMM.pdf make it easy to upload and study
Computing-Curriculum for Schools in Ghana
Anesthesia in Laparoscopic Surgery in India
FourierSeries-QuestionsWithAnswers(Part-A).pdf
Complications of Minimal Access Surgery at WLH
O7-L3 Supply Chain Operations - ICLT Program
Institutional Correction lecture only . . .
TR - Agricultural Crops Production NC III.pdf
IMMUNITY IMMUNITY refers to protection against infection, and the immune syst...
Classroom Observation Tools for Teachers
Supply Chain Operations Speaking Notes -ICLT Program
Cell Structure & Organelles in detailed.
1st Inaugural Professorial Lecture held on 19th February 2020 (Governance and...
Saundersa Comprehensive Review for the NCLEX-RN Examination.pdf
Module 4: Burden of Disease Tutorial Slides S2 2025
school management -TNTEU- B.Ed., Semester II Unit 1.pptx
GDM (1) (1).pptx small presentation for students
STATICS OF THE RIGID BODIES Hibbelers.pdf
Pharma ospi slides which help in ospi learning

Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format

  • 1. GAMM Workshop Applied and Numerical Linear Algebra 2011 September 22, 2011, Bremen Computing Inner Eigenvalues of Matrices in Tensor Train Matrix Format Thomas Mach joint work with Peter Benner Max Planck Institute for Dynamics of Complex Technical Systems Computational Methods in Systems and Control Theory Magdeburg MAX PLANCK INSTITUTE FOR DYNAMICS OF COMPLEX TECHNICAL SYSTEMS MAGDEBURG Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 1/21
  • 2. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Outline 1 Tensor Trains 2 PINVIT and Folded Spectrum Method 3 Numerical Results Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 2/21
  • 3. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 4. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm U1 (i1 , α) U4 (i4 , α) α U2 (i2 , α) U3 (i3 , α) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 5. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm r r d T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd 1 d j=1 Uj (ij , αj ), with G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm U1 (i1 , α1 ) U3 (i3 , α3 ) α1 α3 U4 (i4 , α4 ) α4 G (α1 , . . . , α4 ) α2 U2 (i2 , α2 ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 6. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] d T ∈ Rm r T = α=1 U1 (i1 , α)U2 (i2 , α) · · · Ud (id , α), with Uj (·, α) ∈ Rm r r d T (i1 , i2 , . . . , id ) = α1 =1 · · · αd =1 Gα1 ,...,αd 1 d j=1 Uj (ij , αj ), with G ∈ Rr1 ×···×rd and Uj (·, αj ) ∈ Rm T (i1 , i2 , . . . , id ) = G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · · α1 ,...,αd−1 Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 3/21
  • 7. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Trains [Oseledets, Tyrtyshnikov ’09] T (i1 , i2 , . . . , id ) = G1 (i1 , α1 )G2 (α1 , i2 , α2 ) · · · α1 ,...,αd−1 Gd−1 (αd−2 , id−1 , αd−1 )Gd (αd−1 , id ) G1 (i1 , α1 ) α1 G2 (α1 , i2 , α2 ) α2 G3 (α2 , i3 , α3 ) α3 ··· αd−1 Gd (αd−1 , id ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 4/21
  • 8. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 9. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 10. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) TTM is a data-sparse matrix format. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 11. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Tensor Train Matrix Format (TTM) [Oseledets ’10] G1 (i1 , j1 , α1 ) α1 G2 (α1 , i2 , j2 , α2 ) α2 ··· αd−1 Gd (αd−1 , id , jd ) d ×md M ∈ Rm M (i1 , i2 , . . . , id ; j1 , j2 , . . . , jd ) = α1 ,...,αd−1 G1 (i1 , j1 , α1 )G2 (α1 , i2 , j2 , α2 ) · · · · · · Gd (αd−1 , id , jd ) TTM is a data-sparse matrix format. m = 2 ⇒ QTT matrix format Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 5/21
  • 12. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 13. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 14. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd G1 (i1 , j1 , α1 ) j1 H1 (j1 , β1 ) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 15. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd G1 (i1 , j1 , α1 ) j1 H1 (j1 , β1 ) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 16. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 17. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , i2 , j2 , α2 ) j2 H2 (β1 , j2 , β2 ) α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 18. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 19. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) α1 β1 G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 20. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) (α1 , β1 ) G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 21. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Matrix Vector Product in TT and TTM Format [Oseledets ’10] T ∈ (Q)TT , M ∈ (Q)TTM ⇒ MT = W ∈ (Q)TT W (i1 , i2 , . . . , id ) = M(i1 , j1 , i2 , j2 , . . . , id , jd )T (j1 , j2 , . . . , jd ) j1 ,j2 ,...,jd j1 G1 (i1 , j1 , αK1 (i1 , (α1 , β1 )) H1 (j1 , β1 ) 1) o n ati (α1 , β1 ) c t run G2 (α1 , iK2j((α1 ,)β1 ),j22 , (α2H22 ))1 , j2 , β2 ) 2 , 2 , α2 i , β (β + α2 β2 . . . . . . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 6/21
  • 22. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Inversion of a Matrix in TTM Format [Schulz 1933, Oseledets ’10] Newton-Schulz Iteration Xk+1 = 2Xk − Xk MXk X0 initial approximation to M −1 with, ρ(MX0 − I ) < 1. 2 If M is symmetric, positive definite, then X0 = M I is an 2 admissible initial approximation. Hk+1 = I − Yk Yk+1 = Yk Hk+1 Xk+1 = Hk+1 Xk Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 7/21
  • 23. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Inversion of a Matrix in TTM Format [Schulz 1933, Oseledets ’10] Newton-Schulz Iteration Xk+1 = 2Xk − Xk MXk X0 initial approximation to M −1 with, ρ(MX0 − I ) < 1. 2 If M is symmetric, positive definite, then X0 = M I is an 2 admissible initial approximation. Hk+1 = T (I − Yk , ) Yk+1 = T (Yk Hk+1 , ) Xk+1 = T (Hk+1 Xk , ) Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 7/21
  • 24. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Eigenvalue Problem Problem Setting d d Assume M ∈ R2 ×2 is given in TTM. M is sym. pos. definite. d Compute eigenvalue λ and eigenvector v ∈ R2 of M. d R2 Mv = λv quantum molecular dynamics [Lebedeva ’11] Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 8/21
  • 25. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 26. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 27. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Residual r (x) = Mx − xµ(x). Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 28. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Definition The function x T Mx µ(x) = µ(x, M) = xT x is called the Rayleigh quotient. Minimize the Rayleigh quotient by a gradient method: 2 xi+1 := xi − α µ(xi ), µ(x) = T (Mx − xµ(x)) , x x + preconditioning ⇒ update equation: xi+1 := xi − B −1 (Mxi − xi µ(xi )) . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 29. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] Preconditioned residual B −1 r (x) = B −1 (Mx − xµ(x)). ⇒ inexact Newton-method + preconditioning ⇒ update equation: xi+1 := xi − B −1 (Mxi − xi µ(xi )) . Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 9/21
  • 30. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr 2009] xi+1 := xi − B −1 (Mxi − xi µ(xi )) If M ∈ Rn×n symmetric positive definite and B −1 approximates the inverse of M, so that I − B −1 M M ≤ c < 1, then Preconditioned INVerse ITeration (PINVIT) converges and the number of iterations is independent of n. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 10/21
  • 31. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Preconditioned Inverse Iteration [Knyazev, Neymeyr, et al.] The residual ri = Mxi − xi µ(xi ) converges to 0, so that ri 2 < is a useful termination criterion. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 11/21
  • 32. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 33. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end Newton-Schulz iteration: Bk+1 = 2Bk − Bk MBk [Oseledets ’10] for TTM Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 34. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Algorithm The number of iterations is independent of matrix size n = 2d . PINVIT(1,s) Input: M ∈ Rn×n , X0 ∈ Rn×s (X0 X0 = I , e.g. randomly chosen) T Output: Xp ∈ R n×s , µ ∈ Rs×s , with MX − X µ ≤ p p Approximative inversion B −1 ≈ (M)−1 R := MX0 − X0 µ, µ = X0 MX0T for (i := 1; R F > ; i + +) do Xi := Orthogonalize Xi−1 − B −1 R R := MXi − Xi µ, µ = XiT MXi end TTM-TT products Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 12/21
  • 35. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s < O(log n), use subspace version PINVIT(·,s). ... 0λn λn−1 λn−2 λ1 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 36. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n? ... ... 0λn λi+1 λi λi−1 λ1 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 37. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n, shift with σ near λi . ... ... 0λn λi+1 λi λi−1 λ1 σ Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 38. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method How to find λi ? If i = n − s with s log n, shift with σ near λi . ... ... 0λn λi+1 λi λi−1 λ1 σ But (M − σI) is not positive definite. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 13/21
  • 39. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. Mv = λv ⇔ Mσ v = (M − σI)2 v = M 2 v − 2σMv + σ 2 v = λ2 v − 2σλv + σ 2 v = (λ − σ)2 v Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 40. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 41. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3] Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 42. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method Folded Spectrum Method [Wang, Zunger 1994, Morgan 1991] Mσ = (M − σI)2 Mσ is s.p.d., if M is s.p.d. and σ = λi . Assume all eigenvalues of Mσ are simple. (2, v2 ), (3, v3 ), σ = 2.5 ⇒ Mσ has eigenvalue 0.25 of multiplicity 2. PINVIT computes v ∈ span(v2 , v3 ). ⇒ v T Mv /v T v ∈ [2, 3] Use PINVIT to compute V ∈ Rn×2 ⇒ Λ(V T MV /V T V ) = {2, 3} Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 14/21
  • 43. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 44. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 45. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 46. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 47. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Folded Spectrum Method 1 Choose σ. 2 Compute 2 a) Mσ := (M − σI) and b) B −1 :≈ Mσ . −1 3 Use PINVIT to find the smallest eigenpair (µσ , v ) of Mσ . 4 Compute µ := v T Mv /v T v . (µ, v ) is the nearest eigenpair to σ. In TTM M can be shifted, squared and inverted with reasonable costs. If M is sparse, then squaring and inverting is prohibitive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 15/21
  • 48. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Drawbacks The condition number of (M − σI )2 is larger. −1 ⇒ The computation of Mσ is more expensive. −1 ⇒ Mσ has larger local ranks. −1 ⇒ Mσ v is more expensive. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 16/21
  • 49. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Drawbacks The condition number of (M − σI )2 is larger. −1 ⇒ The computation of Mσ is more expensive. −1 ⇒ Mσ has larger local ranks. −1 ⇒ Mσ v is more expensive. Multiple eigenvalues of Mσ may lead to incomplete subspace information. ⇒ v T Mv /v T v does not approximate λ. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 16/21
  • 50. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Numerical Results Numerical Results Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 17/21
  • 51. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results TT-Toolbox 2.1 [Oseledets et al. ’09–’11] We use TT-Toolbox 2.1 for MATLAB from I.V. Oseledets at al. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 18/21
  • 52. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 2D Laplace d )2 ×(2d )2 M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2 , with ∆1 = tridiag([−1, 2, −1]). without shift, 3 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 64 3 0.449 1.577 17 1.2230 e−07 256 4 0.345 1.376 18 1.1450 e−07 1 024 5 0.997 3.236 27 2.7432 e−07 4 096 6 2.347 8.172 19 1.8911 e−07 16 384 7 4.789 19.885 16 6.4020 e−08 65 536 8 11.895 43.717 20 1.0688 e−07 262 144 9 19.076 63.727 20 4.1304 e−09 1 048 576 10 29.865 99.808 20 3.7722 e−09 4 194 304 11 110.712* 331.059 27 5.8789 e−10 16 777 216 12 165.560* 439.341 23 4.5062 e−09 67 108 864 13 240.226* 587.796 26 8.9795 e−09 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 53. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 2D Laplace d )2 ×(2d )2 M = α∆2 = α (∆1 ⊗ I + I ⊗ ∆1 ) ∈ R(2 , with ∆1 = tridiag([−1, 2, −1]). with shift σ = 203.3139, folded spectrum method, 4 eigenvalues n d tinv in s tPINVIT in s # it. error 64 3 0.796 0.843 8 5.5601 e−10 256 4 3.360 3.053 45 2.9268 e−09 1 024 5 22.659 4.581 20 1.1411 e−10 4 096 6 60.755 32.264 31 2.5295 e−12 16 384 7 411.165* 80.827 28 6.3665 e−12 65 536 8 1 808.302* 344.696 27 2.5835 e−11 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 54. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 3D Laplace M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) , d 3 d 3 M ∈ R(2 ) ×(2 ) . without shift, 4 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 64 2 0.219 4.518 30 2.4762 e−07 512 3 0.561 6.742 27 2.9333 e−07 4 096 4 1.109 23.715 24 1.5441 e−07 32 768 5 7.197 99.543 28 9.1209 e−09 262 144 6 11.052 249.084 24 1.9956 e−08 2 097 152 7 20.893 923.874 26 1.6577 e−07 16 777 216 8 34.937 5 131.664 34 1.1977 e−08 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 55. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 3D Laplace M = α∆3 = α (∆1 ⊗ I ⊗ I + I ⊗ ∆1 ⊗ I + I ⊗ I ⊗ ∆1 ) , d 3 d 3 M ∈ R(2 ) ×(2 ) . with shift σ = 230.6195, folded spectrum method, 6 eigenvalues n d tinv in s tPINVIT in s # it. error 512 3 14.300 45.979 29 2.8479 e−07 4 096 4 137.502 293.154 54 1.8060 e−08 32 768 5 1 952.980* 1 223.395 19 1.0971 e−11 262 144 6 37 149.998* out of mem1 1 canceled after 60 hours while using > 300 GB RAM Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 19/21
  • 56. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results 4D Laplace M = α∆4 = α (∆2 ⊗ I + I ⊗ ∆2 ) , d 4 d 4 M ∈ R(2 ) ×(2 ) without shift, 5 smallest eigenvalues n d tinv in s tPINVIT in s # it. error 256 2 0.240 9.265 36 2.5997 e−07 4 096 3 0.873 23.993 28 1.7104 e−07 65 536 4 1.436 119.348 28 5.9876 e−08 1 048 576 5 5.975 497.812 32 2.2100 e−08 16 777 216 6 12.655 1 710.326 31 7.9299 e−09 268 435 456 7 23.628 7 898.374 41 5.1963 e−10 Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 20/21
  • 57. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 58. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 59. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 60. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Choose the shift and the subspace dimension carefully. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21
  • 61. Tensor Trains PINVIT and Folded Spectrum Method Numerical Results Conclusions Finding the eigenvalues by PINVIT is cheap and storage efficient. The folded spectrum method enables us to compute inner eigenvalues, too. The use of the folded spectrum method leads to not well conditioned problems. Choose the shift and the subspace dimension carefully. Thank you for your attention. Max Planck Institute Magdeburg Thomas Mach, Computing Eigenvalues of Matrices in TTM Format 21/21