SlideShare a Scribd company logo
2
Most read
5
Most read
9
Most read
EC533: Digital Signal Processing
  5          l      l

           Lecture 10
       DFT and FFT
10.1 - Frequency Domain Vs. Time Domain



        CTFS              DTFS




        CTFT              DTFT
10.2 - Discrete Fourier Transform (DFT)

• A finite or periodic sequence has only N unique values,
    f              d             h    l             l
  x[n] for 0 ≤ n p N
• S t
  Spectrum is completely defined by N distinct frequency
             i       l t l d fi d b     di ti t f
  samples
• Divide 0..2π into N equal steps {ω(k)} = 2πk/N
           0 2π               steps,
• Uniform sampling of DTFT spectrum:
10.2 – DFT – contd.
Hence,




    Where,                        i.e, 1/Nth of a revolution


                         Twiddle Factor

Properties of the Twiddle Factor:
             k+N              k                                     j
         W   N
                     =
                         W    N
                                             periodicity
                  N
             k+                   k
         W   N
                  2 = −
                          W       N
                                                               -1
                                                                         1
             2
         W   N
                 =
                     W    N
                          2
                                                                    -j
                                                                         N=4
DFT Example
Find the DFT for the 4 points time sequence {1 0 0 1}, fs=8KHz
                            3                           3
                 X (0) = ∑ x(nT ) e − j 0 = ∑ x(nT )
   at k=0,

                           n =0                        n =0

                        = x(0) + x(T ) + x(2T ) + x(3T )
                        = 1+ 0 + 0 +1 = 2
                            3
    at k 1,
       k=1,       X (1) = ∑ x(nT ) e − jΩnT , Ω = 2π
                           n =0
                                                              NT
                            3
                                         − j 2πn
                  X (1) = ∑ x(nT ) e               N

                           n =0
                        = 1 + 0 + 0 + 1e − j 2π 3 4 = 1 + e − j 3π   4


                                 ⎛ 3π     ⎞         ⎛ 3π      ⎞
                        = 1 + cos⎜        ⎟ − j sin ⎜         ⎟ = 1+ j
                                 ⎝ 2      ⎠         ⎝ 2       ⎠
DFT Example – contd.
                  3                               3
                                                            − j 2π 2 n
at k=2,   X (2) = ∑ x(nT ) e   − j 2 ΩnT
                                             = ∑ x(nT ) e                N

                 n =0                            n =0
                 3
                             − j 4πn
              = ∑ x(nT ) e             N

                n =0

              = 1 + 0 + 0 + 1e − j 4π 3 4 = 1 + e − j 3π = 1 − 1 = 0
                       3
                                − j 2π 3 n
at k=3,    X (3) = ∑ x(nT ) e                N

                  n =0

               = 1 + 0 + 0 + 1e − j 9π 2 = 1 − j


           X (k ) = {2, 1 + j , 0, 1 − j}
DFT Example – contd.
x(nT)                                  |X(k)|
    1                                          2
                                                    √2

            x     x                                           x
        0   125   250   375   t(µs)             0    12.57   25.14   37.71   50.28
                                                                                     kΩ(X 103 rad/s)
                                      φ(k)(⁰)
  x(n) ={ , 0, 0,1
         1        }                       +45                                 Phase Angle 
                                                                             indeterminate
                                                                     37.71
                                           0    x                             x
                                                     12.57   25.14           50.28
                                                                                     kΩ(X 103 rad/s)

                                           ‐45




                                                 X(k) ={2,1+ j, 0,1− j}
10.3 - Inverse Discrete Fourier Transform
                  (
                  (IDFT))

  •


  • Ch k
    Check
10.4 - DFT Computational Complexity
The DFT
has:
• (N complex multiplies + N-1 complex adds per point) x N points (k = 0..N-1)
            N2 complex multiplies and N(N 1) complex additions
                                      N(N-1)
where
      cpx mult: (a+jb)(c+jd) = ac - bd + j(ad+bc)= 4 real mults + 2 real adds

       cpx add = 2 real adds

• Total: 4N2 real mults, 4N2-2N real adds

•Looking at DFT Matrix,
 lots of repeated structure are found;
 means opportunities for efficient
                t iti f      ffi i t
 algorithm to be used to reduce
  the DFT complexity
10.5 – Fast Fourier Transform (FFT)

• Reduce complexity of DFT from O(N2) to O(N log2N)
                                         O(N·log

• Grows more slowly with larger N

• Works by decomposing large DFT into several stages of
  smaller DFTs

• Often provided as a highly optimized library
10.6 - Decimation in Time (DIT) FFT

• Can rearrange DFT formula in 2 halves:
10.6 - Decimation in Time (DIT) FFT - contd.



  • We can evaluate an N-pt DFT as two N/2-pt DFTs
                    (plus a few mults/adds)

  • But if DFTN{•} ~ O(N2)
    then DFTN/2{•} ~ O((N/2)2) = 1/4 O(N2)

  • Total computation ~ 2 * 1/4 O(N2)
    = 1/2 the computation (+ε) of direct DFT
10.6.1 - One-Stage DIT Flowgraph
10.6.2 - Multiple DIT Stages
• If decomposing one DFTN into two smaller DFTN/2’s speeds things
  up...
    p
• Why not further divide into DFTN/4’s ?

• ie
  i.e.

• so have




• Similarly,
10.6.2 - Multiple DIT Stages – contd.
Two-Stage DIT Flowgraph
10.6.2 - Multi-stage DIT FFT – contd.

• Can keep doing this until we get down to 2-pt DFTs:




      x(0)
      x(1)
10.7 - FFT Implementation Details
• Basic Butterfly at any stage




• Can be simplified to
10. 8 - 8-pt DIT FFT Flowgraph

000
001
0 0
010
                                            2
011                                        W
                                             8
100
101
110
111                                           2
                                             W
                                              8

      • -1’s absorbed into summation nodes
         0
      • WN disappears

      • Twiddle factor step=N/2 j   (stage order),   j≠1
10.9 - FFT Complexity

                                    N
• Total no. of butterflies = 
  Total no. of butterflies            log 2 N
                                        g
                                    2                  No of stages
                                                           f t


• As each butterfly gives one complex multiplication and 2
  As each butterfly gives one complex multiplication and 2 
  complex addition
• So, FFT has complex multiplications of
  So, FFT has complex multiplications of 
                 N
            Ο(     log 2 N) instead of Ο(N 2 ) in case of DFT
                 2

  and complex additions  of
          Ο(Nl 2 N) i
           (Nlog    instead of Ο(N(N - 1)) i case of DFT
                          d f              in      f
10.10 - Inverse FFT

•


• Thus



                                    Steps f calculating IFFT:
                                    St    for l l ti IFFT
                                    1. Take the conjugate of the freq.
•Hence, Use FFT to calculate IFFT      Samples
                                    2. Calculate FFT of these samples
                                    3. Divide the output by N
                                    4.
                                    4 Take the conjugate of the output

More Related Content

PPTX
Radix-2 DIT FFT
PDF
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
PPTX
Discrete Time Fourier Transform
PPT
PPT
Fft ppt
PDF
Computing DFT using Matrix method
PPTX
Properties of dft
PPTX
Overlap Add, Overlap Save(digital signal processing)
Radix-2 DIT FFT
Discrete Fourier Series | Discrete Fourier Transform | Discrete Time Fourier ...
Discrete Time Fourier Transform
Fft ppt
Computing DFT using Matrix method
Properties of dft
Overlap Add, Overlap Save(digital signal processing)

What's hot (20)

PDF
Chapter4 - The Continuous-Time Fourier Transform
PDF
Design of IIR filters
PDF
Fft presentation
PPTX
DIFFERENTIAL AMPLIFIER using MOSFET
PPTX
EC8352-Signals and Systems - Laplace transform
PDF
Fast Fourier Transform
PDF
Digital Signal Processing
PDF
DSP_2018_FOEHU - Lec 04 - The z-Transform
PDF
DSP_FOEHU - Lec 10 - FIR Filter Design
PDF
DFT and IDFT Matlab Code
PDF
Basics of Digital Filters
PPTX
DFT and its properties
PDF
Signal Processing Introduction using Fourier Transforms
PPTX
EM3 mini project Laplace Transform
PDF
DSP_FOEHU - Lec 11 - IIR Filter Design
PDF
Design of FIR filters
PPTX
Unit 1 -Introduction to signals and standard signals
PDF
Decimation in Time
PDF
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
PPT
Fourier transform
Chapter4 - The Continuous-Time Fourier Transform
Design of IIR filters
Fft presentation
DIFFERENTIAL AMPLIFIER using MOSFET
EC8352-Signals and Systems - Laplace transform
Fast Fourier Transform
Digital Signal Processing
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_FOEHU - Lec 10 - FIR Filter Design
DFT and IDFT Matlab Code
Basics of Digital Filters
DFT and its properties
Signal Processing Introduction using Fourier Transforms
EM3 mini project Laplace Transform
DSP_FOEHU - Lec 11 - IIR Filter Design
Design of FIR filters
Unit 1 -Introduction to signals and standard signals
Decimation in Time
Signal and System, CT Signal DT Signal, Signal Processing(amplitude and time ...
Fourier transform
Ad

Viewers also liked (20)

PDF
Dsp U Lec09 Iir Filter Design
PDF
Dsp U Lec01 Real Time Dsp Systems
PDF
Dsp U Lec04 Discrete Time Signals & Systems
PDF
Dsp U Lec07 Realization Of Discrete Time Systems
PPTX
Discrete Fourier Transform
PPT
DIT-Radix-2-FFT in SPED
PDF
Dsp U Lec08 Fir Filter Design
PDF
Dsp U Lec06 The Z Transform And Its Application
PDF
Dft and its applications
PDF
Dsp U Lec05 The Z Transform
PPT
Decimation in time and frequency
PPTX
FFT and DFT algorithm
PDF
Design of FFT Processor
PDF
Dsp U Lec02 Data Converters
PDF
Dsp U Lec03 Analogue To Digital Converters
PPTX
The discrete fourier transform (dsp) 4
PPTX
Dft,fft,windowing
PPTX
Fourier transforms
PPTX
Radix 4 FFT algorithm and it time complexity computation
Dsp U Lec09 Iir Filter Design
Dsp U Lec01 Real Time Dsp Systems
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U Lec07 Realization Of Discrete Time Systems
Discrete Fourier Transform
DIT-Radix-2-FFT in SPED
Dsp U Lec08 Fir Filter Design
Dsp U Lec06 The Z Transform And Its Application
Dft and its applications
Dsp U Lec05 The Z Transform
Decimation in time and frequency
FFT and DFT algorithm
Design of FFT Processor
Dsp U Lec02 Data Converters
Dsp U Lec03 Analogue To Digital Converters
The discrete fourier transform (dsp) 4
Dft,fft,windowing
Fourier transforms
Radix 4 FFT algorithm and it time complexity computation
Ad

Similar to Dsp U Lec10 DFT And FFT (20)

PPT
Chapter 9 computation of the dft
PPT
Discrete Fourier Transform
PDF
Solutions_Chapter3.pdf
PDF
Match.dft
PDF
DFT - Discrete Fourier Transform and its Properties
PPTX
Discrete fourier transform
PDF
Csr2011 june14 17_00_pospelov
PPTX
The Discrete Fourier Transform by Group 7..pptx
PPT
16 fft
PPT
PPT
DSP12_PP 8 POINT RADIX-2 pptDIT-FFT.ppt
PDF
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
PPT
15Tarique_DSP_8ETC.PPT
PDF
E0522327
PDF
Signal Processing Course : Fourier
PDF
GATE - Physics - 2006
 
PPT
Use Of DFT In Power Spectral Estimation
PPT
Circular conv_7767038.ppt
Chapter 9 computation of the dft
Discrete Fourier Transform
Solutions_Chapter3.pdf
Match.dft
DFT - Discrete Fourier Transform and its Properties
Discrete fourier transform
Csr2011 june14 17_00_pospelov
The Discrete Fourier Transform by Group 7..pptx
16 fft
DSP12_PP 8 POINT RADIX-2 pptDIT-FFT.ppt
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
15Tarique_DSP_8ETC.PPT
E0522327
Signal Processing Course : Fourier
GATE - Physics - 2006
 
Use Of DFT In Power Spectral Estimation
Circular conv_7767038.ppt

Recently uploaded (20)

PDF
Laughter Yoga Basic Learning Workshop Manual
PDF
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
PDF
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
PPTX
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
PDF
COST SHEET- Tender and Quotation unit 2.pdf
PDF
Power and position in leadershipDOC-20250808-WA0011..pdf
PPTX
Belch_12e_PPT_Ch18_Accessible_university.pptx
PDF
Nidhal Samdaie CV - International Business Consultant
PPTX
ICG2025_ICG 6th steering committee 30-8-24.pptx
PPTX
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
PPTX
Principles of Marketing, Industrial, Consumers,
PPT
Data mining for business intelligence ch04 sharda
PDF
How to Get Funding for Your Trucking Business
PDF
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
PDF
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
PPTX
HR Introduction Slide (1).pptx on hr intro
PDF
Training And Development of Employee .pdf
PDF
A Brief Introduction About Julia Allison
PDF
IFRS Notes in your pocket for study all the time
PPTX
New Microsoft PowerPoint Presentation - Copy.pptx
Laughter Yoga Basic Learning Workshop Manual
20250805_A. Stotz All Weather Strategy - Performance review July 2025.pdf
Elevate Cleaning Efficiency Using Tallfly Hair Remover Roller Factory Expertise
AI-assistance in Knowledge Collection and Curation supporting Safe and Sustai...
COST SHEET- Tender and Quotation unit 2.pdf
Power and position in leadershipDOC-20250808-WA0011..pdf
Belch_12e_PPT_Ch18_Accessible_university.pptx
Nidhal Samdaie CV - International Business Consultant
ICG2025_ICG 6th steering committee 30-8-24.pptx
The Marketing Journey - Tracey Phillips - Marketing Matters 7-2025.pptx
Principles of Marketing, Industrial, Consumers,
Data mining for business intelligence ch04 sharda
How to Get Funding for Your Trucking Business
Stem Cell Market Report | Trends, Growth & Forecast 2025-2034
BsN 7th Sem Course GridNNNNNNNN CCN.pdf
HR Introduction Slide (1).pptx on hr intro
Training And Development of Employee .pdf
A Brief Introduction About Julia Allison
IFRS Notes in your pocket for study all the time
New Microsoft PowerPoint Presentation - Copy.pptx

Dsp U Lec10 DFT And FFT

  • 1. EC533: Digital Signal Processing 5 l l Lecture 10 DFT and FFT
  • 2. 10.1 - Frequency Domain Vs. Time Domain CTFS DTFS CTFT DTFT
  • 3. 10.2 - Discrete Fourier Transform (DFT) • A finite or periodic sequence has only N unique values, f d h l l x[n] for 0 ≤ n p N • S t Spectrum is completely defined by N distinct frequency i l t l d fi d b di ti t f samples • Divide 0..2π into N equal steps {ω(k)} = 2πk/N 0 2π steps, • Uniform sampling of DTFT spectrum:
  • 4. 10.2 – DFT – contd. Hence, Where, i.e, 1/Nth of a revolution Twiddle Factor Properties of the Twiddle Factor: k+N k j W N = W N periodicity N k+ k W N 2 = − W N -1 1 2 W N = W N 2 -j N=4
  • 5. DFT Example Find the DFT for the 4 points time sequence {1 0 0 1}, fs=8KHz 3 3 X (0) = ∑ x(nT ) e − j 0 = ∑ x(nT ) at k=0, n =0 n =0 = x(0) + x(T ) + x(2T ) + x(3T ) = 1+ 0 + 0 +1 = 2 3 at k 1, k=1, X (1) = ∑ x(nT ) e − jΩnT , Ω = 2π n =0 NT 3 − j 2πn X (1) = ∑ x(nT ) e N n =0 = 1 + 0 + 0 + 1e − j 2π 3 4 = 1 + e − j 3π 4 ⎛ 3π ⎞ ⎛ 3π ⎞ = 1 + cos⎜ ⎟ − j sin ⎜ ⎟ = 1+ j ⎝ 2 ⎠ ⎝ 2 ⎠
  • 6. DFT Example – contd. 3 3 − j 2π 2 n at k=2, X (2) = ∑ x(nT ) e − j 2 ΩnT = ∑ x(nT ) e N n =0 n =0 3 − j 4πn = ∑ x(nT ) e N n =0 = 1 + 0 + 0 + 1e − j 4π 3 4 = 1 + e − j 3π = 1 − 1 = 0 3 − j 2π 3 n at k=3, X (3) = ∑ x(nT ) e N n =0 = 1 + 0 + 0 + 1e − j 9π 2 = 1 − j X (k ) = {2, 1 + j , 0, 1 − j}
  • 7. DFT Example – contd. x(nT) |X(k)| 1 2 √2 x x x 0 125 250 375 t(µs) 0 12.57 25.14 37.71 50.28 kΩ(X 103 rad/s) φ(k)(⁰) x(n) ={ , 0, 0,1 1 } +45 Phase Angle  indeterminate 37.71 0 x x 12.57 25.14 50.28 kΩ(X 103 rad/s) ‐45 X(k) ={2,1+ j, 0,1− j}
  • 8. 10.3 - Inverse Discrete Fourier Transform ( (IDFT)) • • Ch k Check
  • 9. 10.4 - DFT Computational Complexity The DFT has: • (N complex multiplies + N-1 complex adds per point) x N points (k = 0..N-1) N2 complex multiplies and N(N 1) complex additions N(N-1) where cpx mult: (a+jb)(c+jd) = ac - bd + j(ad+bc)= 4 real mults + 2 real adds cpx add = 2 real adds • Total: 4N2 real mults, 4N2-2N real adds •Looking at DFT Matrix, lots of repeated structure are found; means opportunities for efficient t iti f ffi i t algorithm to be used to reduce the DFT complexity
  • 10. 10.5 – Fast Fourier Transform (FFT) • Reduce complexity of DFT from O(N2) to O(N log2N) O(N·log • Grows more slowly with larger N • Works by decomposing large DFT into several stages of smaller DFTs • Often provided as a highly optimized library
  • 11. 10.6 - Decimation in Time (DIT) FFT • Can rearrange DFT formula in 2 halves:
  • 12. 10.6 - Decimation in Time (DIT) FFT - contd. • We can evaluate an N-pt DFT as two N/2-pt DFTs (plus a few mults/adds) • But if DFTN{•} ~ O(N2) then DFTN/2{•} ~ O((N/2)2) = 1/4 O(N2) • Total computation ~ 2 * 1/4 O(N2) = 1/2 the computation (+ε) of direct DFT
  • 13. 10.6.1 - One-Stage DIT Flowgraph
  • 14. 10.6.2 - Multiple DIT Stages • If decomposing one DFTN into two smaller DFTN/2’s speeds things up... p • Why not further divide into DFTN/4’s ? • ie i.e. • so have • Similarly,
  • 15. 10.6.2 - Multiple DIT Stages – contd. Two-Stage DIT Flowgraph
  • 16. 10.6.2 - Multi-stage DIT FFT – contd. • Can keep doing this until we get down to 2-pt DFTs: x(0) x(1)
  • 17. 10.7 - FFT Implementation Details • Basic Butterfly at any stage • Can be simplified to
  • 18. 10. 8 - 8-pt DIT FFT Flowgraph 000 001 0 0 010 2 011 W 8 100 101 110 111 2 W 8 • -1’s absorbed into summation nodes 0 • WN disappears • Twiddle factor step=N/2 j (stage order), j≠1
  • 19. 10.9 - FFT Complexity N • Total no. of butterflies =  Total no. of butterflies  log 2 N g 2 No of stages f t • As each butterfly gives one complex multiplication and 2 As each butterfly gives one complex multiplication and 2  complex addition • So, FFT has complex multiplications of So, FFT has complex multiplications of  N Ο( log 2 N) instead of Ο(N 2 ) in case of DFT 2 and complex additions  of Ο(Nl 2 N) i (Nlog instead of Ο(N(N - 1)) i case of DFT d f in f
  • 20. 10.10 - Inverse FFT • • Thus Steps f calculating IFFT: St for l l ti IFFT 1. Take the conjugate of the freq. •Hence, Use FFT to calculate IFFT Samples 2. Calculate FFT of these samples 3. Divide the output by N 4. 4 Take the conjugate of the output