SlideShare a Scribd company logo
EC533: Digital Signal Processing


          Lecture 1
           • Introduction
           • Real-Time DSP Systems
EC533: Digital Signal Processing
• Instructor: Dr. Mohamed El‐Mahallawy
  Contact info. :    E‐mail: mahallawy@ieee.org
                     Room: 309
                     Office Hours: Wednesday 3rd

• Teaching Assistant: Eng. El‐Nasser S. Yusef
  Contact info. :    E‐mail: nasseryousef6@yahoo.com
                     Room: 314
                     Office Hours:  Tuesday 3rd, 4th.

• References:
   – Text Book: Digital Signal Processing, A Practical Approach, E. C. 
     Ifeachor & B. W. Jervis, 2nd Edition, Prentice Hall, 2002.
   – Reference: Applied Signal Processing, Concepts, Circuits, and Systems, 
     N. Hamdy, CRC Press, 2009.
Assessment System
        Assessment Tool          Marks
4th week quiz                     2.5
6th week quiz                     2.5
Lab reports (up to 7th week )      5
7th week Lab quiz                  5
7th week exam                     15
11th week quiz                     5
Lab reports (up to 12th week )     5
12th week exam                    10
Lab project                        5
Final Lab exam                     5
Final exam                        40
Total                             100
Course Outline
•   Introduction.
•   Real‐Time DSP Systems.
•   Discrete‐Time Signals & Systems.
•   Characteristics of Discrete‐Time Signals.
•   Z‐Transform.
•   Digital Filter Structure.
•   Finite Impulse Response (FIR) Filter Design.
•   Infinite Impulse Response (IIR) Filter Design.
•   Discrete Fourier Transform (DFT) & Fast  
    Fourier Transform (FFT). 
1- Introduction
                                                                                    Text Book : Chapter 1, Sections: 1.1, 1.2.



     1.1 – What is Digital Signal Processing ?
   A)Digital : Signals are either Analogue, Discrete, or Digital signals.
• Analogue Signal :                    • Discrete Signal :                                            • Digital Signal :
Continuous in both time                Discrete in time (sampled                                      Discrete in time (sampled
and amplitude, any value               signal) & Continuous in                                        signal) & Discrete in
at any time can be found.              amplitude.                                                     amplitude (Quantized
                                                                                                      Samples).
                              2
                                                      1.27
                                                      1.24

                                                      1.24




                            1.5
                                                     1.2



                                                     1.2
                                                    1.11




                                                    1.11
                                                  0.98




                                                  0.98
                                                0.82




                                                0.82




                              1
                                             0.64




                                             0.64
                                          0.44




                                          0.44




                            0.5
                                       0.22




                                       0.22
                                   0




                                                                            0




                                                                                                 0
                              0
                                                        11

                                                             13

                                                                  15

                                                                       17

                                                                                                 19

                                                                                         -0.44 21

                                                                                                 23

                                                                                                 25

                                                                                                 27

                                                                                                 29

                                                                                                 31

                                                                                                 33

                                                                                         -0.44 35

                                                                                                 37
                                   1

                                        3

                                            5

                                                7

                                                    9




                                                                                            -0.22




                                                                                            -0.22
                            -0.5
                                                                                      -0.64




                                                                                      -0.64
                                                                                   -0.82




                                                                                   -0.82
                             -1
                                                                                 -0.98




                                                                                 -0.98
                                                                               -1.11




                                                                               -1.11
                                                                              -1.2



                                                                              -1.2
                                                                            -1.26

                                                                            -1.26
                                                                            -1.28




                            -1.5
                             -2
B) Signal : It is an information-bearing function, It is either:
   1-D signal as speech.




2-D signal as grey-scale image {i(x,y)}.




   3-D signal as video {r(x,y,t),g(x,y,t),b(x,y,t)}.
C) Processing : 
   Signal Processing refers to the work of manipulating signals so that
   information carried can be expressed, transmitted, restored,… etc in a
   more efficient & reliable way by the system (hardware  software).


  Least 
            Least     • General Purpose Processors (GPP), Micro‐Controllers.
resource 
            error     • Digital Signal Processors (DSP); Dedicated Integrated 
  usage
                      Circuits.                                  Fast      Real‐
                                                                              time 
                      • Programmable Logic (PLD, FPGA).         Faster        DSP’ing




                      • Programming Languages: Pascal, C, C++,...
                      • High‐Level Languages: Matlab, MathCad,…
                      • Dedicated Tools  (e.g. Filter design s/w packages).
1.2 – Why DSP ?
• Greater Flexibility
The same DSP hardware can be programmed and reprogrammed to perform a variety of functions.

• Guaranteed Precision
Accuracy is only determined by the number of bits used. (not on resistors,…etc; analogue parameters).

• No drift in performance with temperature or age.
• Perfect Reproducibility
Identical Performance from unit to unit is obtained since there are no variations due to component
tolerance. e.g. a digital recording can be copied or reproduced several times with the same quality.

• Superior Performance
Performing tasks that are not possible with ASP, e.g. linear phase response and complex adaptive
filtering algorithms.

• DSP benefits from the tremendous advances in semiconductor
technology.
Achieving greater reliability, lower cost, smaller size, lower power consumption, and higher speed.
1.3 – DSP LIMITATIONS

• Speed & Cost Limitations of ADC & DAC
  Either too expensive or don’t have sufficient resolution for large-bandwidth DSP
  applications.
• Finite Word-Length Problems
  Degradation in system performance may result due to the usage of a limited number of
  bits for economic considerations.
• Design Time
  DSP system design requires a knowledgeable DSP engineer possessing necessary
  software resources to accomplish a design in a reasonable time.
What is DSP Used For?




             …And much more!
Application Areas

Image Processing              Instrumentation/Control         Speech/Audio                         Military
Pattern recognition           spectrum analysis                  speech recognition       secure communications
Robotic vision                 noise reduction                          speech synthesis       radar processing
Image enhancement         data compression                      text to speech                 sonar processing
Facsimile                      position and rate control          digital audio                 missile guidance
animation                                                               equalization


Telecommunications                 Biomedical                          Consumer applications
Echo cancellation                  patient monitoring                   cellular mobile phones
Adaptive equalization              scanners                             UMTS (universal Mobile Telec. Sys.)
ADPCM trans‐coders                 EEG brain mappers                    digital television 
Spread spectrum                    ECG Analysis                         digital cameras
Video conferencing                 X‐Ray storage/enhancement             internet phone 
                                                                         etc.
DSP Devices & Architectures
• Selecting a DSP – several choices:
   – Fixed‐point;
   – Floating point;
   – Application‐specific devices
     (e.g. FFT processors, speech recognizers,etc.).
• Main DSP Manufacturers:
   – Texas Instruments (http://www.ti.com)
   – Motorola (http://www.motorola.com)
   – Analog Devices (http://www.analog.com)
2.1 – Typical Real-Time DSP System
2.2 – Sampling Theorem & Aliasing




                                                       1st Image Frequency




    Time Domain                     Frequency Domain
2.2 – Sampling Theorem & Aliasing - continued




• In practice, aliasing is always present because of noise & the existence of signal outside the
band of interest.
• The problem then is deciding the level of aliasing that is acceptable and then designing a
suitable anti-aliasing filter & choosing an appropriate sampling frequency to achieve this.
2.3 – Anti-aliasing Filtering

To reduce the effect of aliasing:
a)Sharp Cut-off anti-aliasing filters are normally used to band-limit the signal.
b)Increasing the sampling frequency to widen the separation between the signal & the image
spectra.
c)Practical LPF provides sufficient attenuation at f > fN ; f > fstop to a level not detectable be ADC,
                                 Amin = 20 log( 1.5 × 2n )
                                      = 6.02n + 1.76                dB
    where n is the no of bits used by ADC
2.3.1 – Butterworth(LPF)
2.3.1 – Butterworth(LPF) - continued

Higher N
  narrower transition width (steeper roll-off).
  more phase distortion.
  allows the use of low sampling rate.
   slower, cheaper ADC


Higher fs
  fast, expensive ADC. (real-time signal
processing trend).
  usage of a simple anti-aliasing filter which
minimizes phase distortion.
   Improved SNR.




See illustrative examples in book, P. 45          54 on how to choose the sampling frequency
& aliasing control.

More Related Content

PDF
ST.Monteiro-EmbeddedFeatureSelection.pdf
PPTX
MRV – SISA
PDF
200081003 Friday Food@IBBT
PDF
Brief survey on Three-Dimensional Displays
PDF
White.p.johnson.k
PDF
The Origin of Diversity - Thinking with Chaotic Walk
PPT
SEB Baltic Household Outlook. Recovery in household finances on track but unc...
PDF
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...
ST.Monteiro-EmbeddedFeatureSelection.pdf
MRV – SISA
200081003 Friday Food@IBBT
Brief survey on Three-Dimensional Displays
White.p.johnson.k
The Origin of Diversity - Thinking with Chaotic Walk
SEB Baltic Household Outlook. Recovery in household finances on track but unc...
Steerable Filters generated with the Hypercomplex Dual-Tree Wavelet Transform...

What's hot (7)

PPT
Ispra 2007 luis martín2
PDF
Choro para bordoes by paulinho nogueira
PPTX
Ppt promotional
PPTX
EwB PowerPoint Course
PPTX
Salt power
PDF
Prestidigition with PowerPoint
PDF
2012 speaker-ps42-rozita halina tun hussein
Ispra 2007 luis martín2
Choro para bordoes by paulinho nogueira
Ppt promotional
EwB PowerPoint Course
Salt power
Prestidigition with PowerPoint
2012 speaker-ps42-rozita halina tun hussein
Ad

Viewers also liked (20)

PDF
Dsp U Lec04 Discrete Time Signals & Systems
PDF
Dsp U Lec07 Realization Of Discrete Time Systems
PDF
Dsp U Lec09 Iir Filter Design
PDF
3F3 – Digital Signal Processing (DSP) - Part1
PDF
Dsp U Lec10 DFT And FFT
PDF
Introduction to Digital Signal Processing
PPT
Discrete-Time Signal Processing
PDF
Dsp U Lec08 Fir Filter Design
PDF
Dsp U Lec06 The Z Transform And Its Application
PDF
Dsp U Lec05 The Z Transform
PPT
Lecture: Digital Signal Processing Batch 2009
PDF
Ee341 dsp1 1_sv_chapter1_hay truy cap vao trang www.mientayvn.com de tai them...
PDF
Dsp U Lec02 Data Converters
PDF
Dsp U Lec03 Analogue To Digital Converters
PDF
Radar 2009 a 3 review of signals systems and dsp
PPTX
Butterworth filter design
PDF
Design of IIR filters
PPTX
Dsp ppt
PPTX
DIGITAL SIGNAL PROCESSING
Dsp U Lec04 Discrete Time Signals & Systems
Dsp U Lec07 Realization Of Discrete Time Systems
Dsp U Lec09 Iir Filter Design
3F3 – Digital Signal Processing (DSP) - Part1
Dsp U Lec10 DFT And FFT
Introduction to Digital Signal Processing
Discrete-Time Signal Processing
Dsp U Lec08 Fir Filter Design
Dsp U Lec06 The Z Transform And Its Application
Dsp U Lec05 The Z Transform
Lecture: Digital Signal Processing Batch 2009
Ee341 dsp1 1_sv_chapter1_hay truy cap vao trang www.mientayvn.com de tai them...
Dsp U Lec02 Data Converters
Dsp U Lec03 Analogue To Digital Converters
Radar 2009 a 3 review of signals systems and dsp
Butterworth filter design
Design of IIR filters
Dsp ppt
DIGITAL SIGNAL PROCESSING
Ad

Similar to Dsp U Lec01 Real Time Dsp Systems (10)

PDF
Music data is scary, beautiful and exciting
PDF
Shape contexts
PDF
Machine Learning for Speech
PDF
Why we don’t know how many colors there are
PDF
Iirs Artificial Naural network based Urban growth Modeling
PDF
Hmm Tutorial
PDF
Compressive sensing for transient analsyis
PDF
Workspace analysis of stewart platform
PDF
Effective and Efficient Shape-Based Pattern Detection over Streaming Time Series
PDF
Effective and efficient shape based pattern
Music data is scary, beautiful and exciting
Shape contexts
Machine Learning for Speech
Why we don’t know how many colors there are
Iirs Artificial Naural network based Urban growth Modeling
Hmm Tutorial
Compressive sensing for transient analsyis
Workspace analysis of stewart platform
Effective and Efficient Shape-Based Pattern Detection over Streaming Time Series
Effective and efficient shape based pattern

Recently uploaded (20)

PDF
Review of recent advances in non-invasive hemoglobin estimation
PDF
Diabetes mellitus diagnosis method based random forest with bat algorithm
PDF
cuic standard and advanced reporting.pdf
PPTX
sap open course for s4hana steps from ECC to s4
PDF
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
PPTX
Cloud computing and distributed systems.
PDF
MIND Revenue Release Quarter 2 2025 Press Release
PDF
Approach and Philosophy of On baking technology
PDF
Machine learning based COVID-19 study performance prediction
PPTX
Spectroscopy.pptx food analysis technology
PPT
“AI and Expert System Decision Support & Business Intelligence Systems”
PPTX
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
PPTX
Programs and apps: productivity, graphics, security and other tools
PDF
NewMind AI Weekly Chronicles - August'25 Week I
PDF
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
PDF
Empathic Computing: Creating Shared Understanding
PDF
Agricultural_Statistics_at_a_Glance_2022_0.pdf
PDF
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
PDF
Electronic commerce courselecture one. Pdf
PDF
How UI/UX Design Impacts User Retention in Mobile Apps.pdf
Review of recent advances in non-invasive hemoglobin estimation
Diabetes mellitus diagnosis method based random forest with bat algorithm
cuic standard and advanced reporting.pdf
sap open course for s4hana steps from ECC to s4
Profit Center Accounting in SAP S/4HANA, S4F28 Col11
Cloud computing and distributed systems.
MIND Revenue Release Quarter 2 2025 Press Release
Approach and Philosophy of On baking technology
Machine learning based COVID-19 study performance prediction
Spectroscopy.pptx food analysis technology
“AI and Expert System Decision Support & Business Intelligence Systems”
VMware vSphere Foundation How to Sell Presentation-Ver1.4-2-14-2024.pptx
Programs and apps: productivity, graphics, security and other tools
NewMind AI Weekly Chronicles - August'25 Week I
7 ChatGPT Prompts to Help You Define Your Ideal Customer Profile.pdf
Empathic Computing: Creating Shared Understanding
Agricultural_Statistics_at_a_Glance_2022_0.pdf
Optimiser vos workloads AI/ML sur Amazon EC2 et AWS Graviton
Electronic commerce courselecture one. Pdf
How UI/UX Design Impacts User Retention in Mobile Apps.pdf

Dsp U Lec01 Real Time Dsp Systems

  • 1. EC533: Digital Signal Processing Lecture 1 • Introduction • Real-Time DSP Systems
  • 2. EC533: Digital Signal Processing • Instructor: Dr. Mohamed El‐Mahallawy Contact info. :    E‐mail: mahallawy@ieee.org Room: 309 Office Hours: Wednesday 3rd • Teaching Assistant: Eng. El‐Nasser S. Yusef Contact info. :    E‐mail: nasseryousef6@yahoo.com Room: 314 Office Hours:  Tuesday 3rd, 4th. • References: – Text Book: Digital Signal Processing, A Practical Approach, E. C.  Ifeachor & B. W. Jervis, 2nd Edition, Prentice Hall, 2002. – Reference: Applied Signal Processing, Concepts, Circuits, and Systems,  N. Hamdy, CRC Press, 2009.
  • 3. Assessment System Assessment Tool Marks 4th week quiz 2.5 6th week quiz 2.5 Lab reports (up to 7th week ) 5 7th week Lab quiz 5 7th week exam 15 11th week quiz 5 Lab reports (up to 12th week ) 5 12th week exam 10 Lab project 5 Final Lab exam 5 Final exam 40 Total 100
  • 4. Course Outline • Introduction. • Real‐Time DSP Systems. • Discrete‐Time Signals & Systems. • Characteristics of Discrete‐Time Signals. • Z‐Transform. • Digital Filter Structure. • Finite Impulse Response (FIR) Filter Design. • Infinite Impulse Response (IIR) Filter Design. • Discrete Fourier Transform (DFT) & Fast   Fourier Transform (FFT). 
  • 5. 1- Introduction Text Book : Chapter 1, Sections: 1.1, 1.2. 1.1 – What is Digital Signal Processing ? A)Digital : Signals are either Analogue, Discrete, or Digital signals. • Analogue Signal : • Discrete Signal : • Digital Signal : Continuous in both time Discrete in time (sampled Discrete in time (sampled and amplitude, any value signal) & Continuous in signal) & Discrete in at any time can be found. amplitude. amplitude (Quantized Samples). 2 1.27 1.24 1.24 1.5 1.2 1.2 1.11 1.11 0.98 0.98 0.82 0.82 1 0.64 0.64 0.44 0.44 0.5 0.22 0.22 0 0 0 0 11 13 15 17 19 -0.44 21 23 25 27 29 31 33 -0.44 35 37 1 3 5 7 9 -0.22 -0.22 -0.5 -0.64 -0.64 -0.82 -0.82 -1 -0.98 -0.98 -1.11 -1.11 -1.2 -1.2 -1.26 -1.26 -1.28 -1.5 -2
  • 6. B) Signal : It is an information-bearing function, It is either: 1-D signal as speech. 2-D signal as grey-scale image {i(x,y)}. 3-D signal as video {r(x,y,t),g(x,y,t),b(x,y,t)}.
  • 7. C) Processing :  Signal Processing refers to the work of manipulating signals so that information carried can be expressed, transmitted, restored,… etc in a more efficient & reliable way by the system (hardware software). Least  Least  • General Purpose Processors (GPP), Micro‐Controllers. resource  error • Digital Signal Processors (DSP); Dedicated Integrated  usage Circuits. Fast Real‐ time  • Programmable Logic (PLD, FPGA). Faster DSP’ing • Programming Languages: Pascal, C, C++,... • High‐Level Languages: Matlab, MathCad,… • Dedicated Tools  (e.g. Filter design s/w packages).
  • 8. 1.2 – Why DSP ? • Greater Flexibility The same DSP hardware can be programmed and reprogrammed to perform a variety of functions. • Guaranteed Precision Accuracy is only determined by the number of bits used. (not on resistors,…etc; analogue parameters). • No drift in performance with temperature or age. • Perfect Reproducibility Identical Performance from unit to unit is obtained since there are no variations due to component tolerance. e.g. a digital recording can be copied or reproduced several times with the same quality. • Superior Performance Performing tasks that are not possible with ASP, e.g. linear phase response and complex adaptive filtering algorithms. • DSP benefits from the tremendous advances in semiconductor technology. Achieving greater reliability, lower cost, smaller size, lower power consumption, and higher speed.
  • 9. 1.3 – DSP LIMITATIONS • Speed & Cost Limitations of ADC & DAC Either too expensive or don’t have sufficient resolution for large-bandwidth DSP applications. • Finite Word-Length Problems Degradation in system performance may result due to the usage of a limited number of bits for economic considerations. • Design Time DSP system design requires a knowledgeable DSP engineer possessing necessary software resources to accomplish a design in a reasonable time.
  • 10. What is DSP Used For? …And much more!
  • 11. Application Areas Image Processing              Instrumentation/Control         Speech/Audio Military Pattern recognition           spectrum analysis                  speech recognition       secure communications Robotic vision  noise reduction                          speech synthesis  radar processing Image enhancement         data compression                      text to speech                 sonar processing Facsimile position and rate control          digital audio           missile guidance animation  equalization Telecommunications        Biomedical Consumer applications Echo cancellation patient monitoring cellular mobile phones Adaptive equalization scanners UMTS (universal Mobile Telec. Sys.) ADPCM trans‐coders EEG brain mappers digital television  Spread spectrum ECG Analysis digital cameras Video conferencing X‐Ray storage/enhancement internet phone  etc.
  • 12. DSP Devices & Architectures • Selecting a DSP – several choices: – Fixed‐point; – Floating point; – Application‐specific devices (e.g. FFT processors, speech recognizers,etc.). • Main DSP Manufacturers: – Texas Instruments (http://www.ti.com) – Motorola (http://www.motorola.com) – Analog Devices (http://www.analog.com)
  • 13. 2.1 – Typical Real-Time DSP System
  • 14. 2.2 – Sampling Theorem & Aliasing 1st Image Frequency Time Domain Frequency Domain
  • 15. 2.2 – Sampling Theorem & Aliasing - continued • In practice, aliasing is always present because of noise & the existence of signal outside the band of interest. • The problem then is deciding the level of aliasing that is acceptable and then designing a suitable anti-aliasing filter & choosing an appropriate sampling frequency to achieve this.
  • 16. 2.3 – Anti-aliasing Filtering To reduce the effect of aliasing: a)Sharp Cut-off anti-aliasing filters are normally used to band-limit the signal. b)Increasing the sampling frequency to widen the separation between the signal & the image spectra. c)Practical LPF provides sufficient attenuation at f > fN ; f > fstop to a level not detectable be ADC, Amin = 20 log( 1.5 × 2n ) = 6.02n + 1.76 dB where n is the no of bits used by ADC
  • 18. 2.3.1 – Butterworth(LPF) - continued Higher N narrower transition width (steeper roll-off). more phase distortion. allows the use of low sampling rate. slower, cheaper ADC Higher fs fast, expensive ADC. (real-time signal processing trend). usage of a simple anti-aliasing filter which minimizes phase distortion. Improved SNR. See illustrative examples in book, P. 45 54 on how to choose the sampling frequency & aliasing control.