SlideShare a Scribd company logo
‫ر‬َ‫ـد‬ْ‫ق‬‫ِـ‬‫ن‬،،،‫لما‬‫اننا‬ ‫نصدق‬ْْ‫ق‬ِ‫ن‬‫ر‬َ‫د‬
LECTURE (08)
The Discrete Fourier Transform
Assist. Prof. Amr E. Mohamed
Introduction
 The discrete-time Fourier transform (DTFT) provided the frequency-
domain (ω) representation for absolutely summable sequences.
 The z-transform provided a generalized frequency-domain (z)
representation for arbitrary sequences.
 These transforms have two features in common.
 First, the transforms are defined for infinite-length sequences.
 Second, and the most important, they are functions of continuous variables
(ω or z).
 In other words, the discrete-time Fourier transform and the z-transform
are not numerically computable transforms.
 The Discrete Fourier Transform (DFT) avoids the two problems
mentioned and is a numerically computable transform that is suitable
for computer implementation.
2
Representation of Periodic
Sequences --- DFS
3
Periodic Sequences
 Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental
period of the sequence).
 Notation: a sequence with period N is satisfying the condition
 where r is any integer.
4
   ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx
x(n) x(n)
)(~)(~ rNnxnx 
Periodic Sequences
 From Fourier analysis we know that the periodic functions can be synthesized
as a linear combination of complex exponentials whose frequencies are
multiples (or harmonics) of the fundamental frequency (which in our case is
2π/N).
 The discrete version of the Fourier Series can be written as
 where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series
coefficients.
 Note That, for integer values of m, we have
(it is called Twiddle Factor)
5
 

k
kn
N
k
N
kn
j
k
kn
N
j
k WkX
N
ekX
N
eXnx )(
~1
)(
~1
)(~ 2
2


nmNk
N
N
nmNk
j
N
kn
j
kn
N WeeW )(
)(
22





Periodic Sequences
 As a result, the summation in the Discrete Fourier Series (DFS) should
contain only N terms:
 The Harmonics are
6





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
knNj
k ene )/2(
)( 
 ,2,1,0 k
Inverse DFS
 The DFS coefficients are given by
 Proof
7







1
0
1
0
2
)(~)(~)(
~ N
k
kn
N
N
k
N
kn
j
WnxenxkX

DFSInverse
)(
~
)()(
~
)(~
1
)(
~
)(~
)(
~1
)(~
1
0
1
0
2
1
0
1
0
)(
21
0
2
1
0
21
0
21
0
2
kXkpPXenx
e
N
PXenx
eePX
N
enx
N
P
N
k
N
kn
j
N
P
N
k
N
nkP
jN
k
N
kn
j
N
k
N
kn
jN
P
N
Pn
jN
k
N
kn
j
















 
 























Synthesis and Analysis (DFS-Pairs)
8
Notation
)/2( Nj
N eW 

Synthesis





1
0
)(
~1
)(~
N
k
kn
NWkX
N
nx
Analysis
)(
~
)(~ kXnx  DFS
Both have
Period N




1
0
)(~)(
~ N
k
kn
NWnxKX
Example
9
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
10
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
Example
11
k
k
n
kn
W
W
WkX
10
5
10
4
0
10
1
1
)(
~


 
0 1 2 3 4 5 6 7 8 9 n
)10/sin(
)2/sin()10/4(
k
k
e kj


 
DFS vs. FT
12
)(~ nx
0 N nN
0 n
)(nx





0
)()(
n
njj
enxeX





1
0
)(
N
n
nj
enx





1
0
)/2(
)(~)(
~ N
n
knNj
enxkX
Nk
j
eXkX
/2
)()(
~



Example
13
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Example
0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
14
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


0 1 2 3 4 5 6 7 8 9 n
0 1 2 3 4 5 6 7 8 9 n
)(~ nx
)(nx
Example
15
)2/sin(
)2/5sin(
1
1
)( 2
54
0 




 




 j
j
j
n
njj
e
e
e
eeX
)10/sin(
)2/sin(
)()(
~ )10/4(
10/2 k
k
eeXkX kj
k
j


 


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

16


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
17
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
18
Relation To The DTFT
Discrete Fourier Transform(DFT)
19
Recall of DTFT
 DTFT is not suitable for DSP applications because
 In DSP, we are able to compute the spectrum only at specific discrete values of ω
 Any signal in any DSP application can be measured only in a finite number of points.
 A finite signal measures at N-points:
 Where y(n) are the measurements taken at N-points
20









Nn
Nnny
n
nx
,0
)1(0),(
00
)(
Computation of DFT
 Recall of DTFT
 The DFT can be computed by:
 Truncate the summation so that it ranges over finite limits x[n] is a finite-length
sequence.
 Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.
 For an N-point sequence, only N values of frequency samples of X(ejw) at N
distinct frequency points, are sufficient to determine x[n]
and X(ejw) uniquely.
 So, by sampling the spectrum X(ω) in frequency domain
21
DFTenxX
N
X
N
n
N
kn
j





1
0
2
)(k)(
2
),X(kk)(



10,  Nkk
Computation of DFT
 The inverse DFT is given by:
 Proof
22
IDFTekX
N
x
N
k
N
kn
j
 


1
0
2
)(
1
n)(


 
 




























1
0
1
0
1
0
)(
2
1
0
21
0
2
)()()(n)(
1
)(n)(
)(
1
n)(
N
m
N
m
N
n
N
nmk
j
N
k
N
kn
jN
m
N
mk
j
nxnmmxx
e
N
mxx
eemx
N
x



The DFT Pair
23
N
j
N
N
k
kn
N
N
k
N
kn
j
N
n
kn
N
N
n
N
kn
j
eWwhere
NnWkX
N
x
ekX
N
xSynthesis
NkWnxX
enxXAnalysis



2
1
0
1
0
2
1
0
1
0
2
1,...,1,0)(
1
n)(
)(
1
n)(
1,...,1,0)(k)(
)(k)(




















Example
 Find the discrete Fourier Transform of the following N-points discrete
time signal
 Solution:
 On the board
24
   )1(,...),1(),0()(  Nxxxnx
Nth Root of Unity
252
1
2
1
10)
19)
2
1
2
1
8)
7)
2
1
2
1
6)
15)
2
1
2
1
4)
3)
2
1
2
1
2)
11)
9
8
2
9
8
8
8
2
8
8
7
8
2
7
8
6
8
2
6
8
5
8
2
5
8
4
8
2
4
8
3
8
2
3
8
2
8
2
2
8
1
8
2
1
8
0
8
2
0
8
jeW
eW
jeW
jeW
jeW
eW
jeW
jeW
jeW
eW
j
j
j
j
j
j
j
j
j
j






























1*
2/
2
)2/(







NN
k
N
k
N
k
N
Nk
N
k
N
Nk
N
WW
WW
WW
WW
N
j
N eW
2


Relation To The Z-transform
 Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that
 Then we can compute its z-transform:
 Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating
𝑥(𝑛) with period 𝑁, that is,
 The DFS of 𝑥 𝑛 is given by

26


 

Elsewhere
NnNonzero
nx
,0
)1(0,
)(





1
0
)(z)(
N
n
n
znxX


 

Elsewhere
Nnnx
nx
,0
)1(0),(~
)(











1
0
2
)(k)(
~ N
n
n
k
N
j
enxX

k
N
j
ez
zXX 2
)(k)(
~


Relation To The Z-transform
 which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of
the z-transform 𝑋(𝑧) around the unit circle.
27
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8


 
,)()( j
ez
j
zHeH
10,][
)()(
21
0
/2





 Nkenx
eXkX
N
nk
jN
n
Nk
j
k










N
kj
zk
2
exp
Re(z)
Im(z)
z0
z1
z2
z3
z4
z5
z6
z7
1
N = 8
28
Relation To The DTFT
DFT - Matrix Formulation
xWX
Nx
x
x
x
WWW
WWW
WWW
NX
X
X
X
NN
N
N
N
N
N
N
NNN
N
NNN


















































 


]1[
]2[
]1[
]0[
1
1
1
1111
)1(
)2(
)1(
)0(
)1)(1()1(21
)1(242
121







29
Computation Complexity
 To calculate the DFT of N-Points discrete time signal, we need:
 (N-1)2 Complex Multiplications
 N(N-1) Complex Additions.
30
IDFT - Matrix Formulation
XW
N
x
XWx
NX
X
X
X
WWW
WWW
WWW
N
Nx
x
x
x
NN
N
N
N
N
N
N
NNN
N
NNN
*
1
)1)(1()1(2)1(
)1(242
)1(21
1
]1[
]2[
]1[
]0[
1
1
1
1111
1
)1(
)2(
)1(
)0(































































31
Matrix Formulation
 Result: Inverse DFT is given by
 which follows easily by checking WHW = WWH = NI, where I denotes the
identity matrix. Hermitian transpose:
 Also, “*” denotes complex conjugation.
32
DFT Interpretation
 DFT sample X(k) specifies the magnitude and phase angle of the kth spectral
component of x[n].
 The amount of power that x[n] contains at a normalized frequency, fk, can be
determined from the power density spectrum defined as
33
)(spectrumPhase
|)(|spectrumMagnitude
kX
kX


10,
|)(|
)(
2
 Nk
N
kX
kSN
Periodicity of DFT Spectrum
 The DFT spectrum is periodic with period N (which is expected, since the DTFT
spectrum is periodic as well, but with period 2π).
34
)()(N)k(
)(N)k(
)(N)k(
2
2
1
0
2
1
0
)(
2
kXekXX
eenxX
enxX
nj
nj
N
n
N
nk
j
N
n
N
nNk
j






















Example
 Example: DFT of a rectangular pulse:
 the rectangular pulse is “interpreted” by the DFT as a spectral line at
frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5)
35
Zero Padding
 What happens with the DFT of this rectangular pulse if we increase N by
zero padding:
 where x(0) = · · · = x(M − 1) = 1. Hence, DFT is
36
   0,...,0,0,0),1(,...),1(),0()(  Mxxxnx
(N-M) Positions
Zero Padding
 DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5)
37
Zero Padding
 Zero padding of analyzed sequence results in “approximating” its DTFT
better,
 Zero padding cannot improve the resolution of spectral components,
because the resolution is “proportional” to 1/M rather than 1/N,
 Zero padding is very important for fast DFT implementation (FFT).
38
Frequency Interval/Resolution
 Frequency Interval/Resolution: DFT’s frequency resolution
 and covered frequency interval
 Frequency resolution is determined only by the length of the observation
interval, whereas the frequency interval is determined by the length of
sampling interval. Thus
 Increase sampling rate =) expand frequency interval,
 Increase observation time =) improve frequency resolution.
 Question: Does zero padding alter the frequency resolution?
 Answer: No, because resolution is determined by the length of observation
interval, and zero padding does not increase this length.
39
Example (DFT Resolution)
 Example (DFT Resolution): Two complex exponentials with two close frequencies
F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds.
Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.
 DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz.
40
Example (DFT Resolution)
 DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz.
41
Example (DFT Resolution)
 DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz.
42
DSF VS DFT
 DFS and DFT pairs are identical, except that
 DFT is applied to finite sequence x(n),
 DFS is applied to periodic sequence .
 Conventional (continuous-time) FS vs. DFS
 CFS represents a continuous periodic signal using an infinite number of
complex exponentials, whereas
 DFS represents a discrete periodic signal using a finite number of complex
exponentials.
43
)(~ nx
Linear & Circular Convolution
44
Linear Convolution
 By Discrete Time Fourier Transform (DTFT)
45









-k
-k
x(k)k)-h(ny(n)
k)-x(nh(k)y(n)
x(n)*h(n)y(n)
)()()(  jjj
eXeHeY 
 )()( j
eYIDTFTny 
Circular Convolution
 Circular convolution of length N is
 By DFT
46
     
     
     








1
0k
C
1
0k
C
NC
kxk-nhny
k-nxkhny
nxnhny
N
N
N
N
)()()( kXkHkY 
 )()( kYIDFTnyC 
Convolution of two periodic sequences
47
How to Compute Circular Convolutions
 Method #1:
48
How to Compute Circular Convolutions
 Method #2:
 Compute the linear convolution and then alias it:
49
How to Compute Circular Convolutions
 Method #3:
 Compute 4-point DFTs, multiply, compute 4-point inverse DFT:
50
Using Cyclic Convs and DFTs to Compute Linear Convs:
51
52

More Related Content

PDF
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
PPTX
discrete time signals and systems
PDF
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
PDF
DSP_FOEHU - Lec 07 - Digital Filters
PDF
Digital Signal Processing
PDF
Design of FIR filters
PPTX
Overview of sampling
PPTX
Design of Filters PPT
DSP_FOEHU - MATLAB 04 - The Discrete Fourier Transform (DFT)
discrete time signals and systems
DSP_2018_FOEHU - Lec 03 - Discrete-Time Signals and Systems
DSP_FOEHU - Lec 07 - Digital Filters
Digital Signal Processing
Design of FIR filters
Overview of sampling
Design of Filters PPT

What's hot (20)

PPTX
Z Transform
PPT
IIR filter design, Digital signal processing
PDF
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
PPTX
Discrete Time Fourier Transform
PDF
Chapter2 - Linear Time-Invariant System
PDF
Sampling and Reconstruction of Signal using Aliasing
PDF
DSP_FOEHU - Lec 10 - FIR Filter Design
PDF
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
PPTX
Fourier transforms of discrete signals (DSP) 5
PPTX
Impulse Response ppt
PDF
quantization
PPTX
IIR filter
PDF
Dcs lec03 - z-analysis of discrete time control systems
PDF
Z transform
PPTX
Digital filter structures
PPT
Digital signal processing part2
PDF
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
PDF
1.introduction to signals
PDF
Solved problems in waveguides
PPTX
Multirate-signal-processing.pptx
Z Transform
IIR filter design, Digital signal processing
DSP_2018_FOEHU - Lec 08 - The Discrete Fourier Transform
Discrete Time Fourier Transform
Chapter2 - Linear Time-Invariant System
Sampling and Reconstruction of Signal using Aliasing
DSP_FOEHU - Lec 10 - FIR Filter Design
DSP_2018_FOEHU - Lec 07 - IIR Filter Design
Fourier transforms of discrete signals (DSP) 5
Impulse Response ppt
quantization
IIR filter
Dcs lec03 - z-analysis of discrete time control systems
Z transform
Digital filter structures
Digital signal processing part2
DSP_2018_FOEHU - Lec 02 - Sampling of Continuous Time Signals
1.introduction to signals
Solved problems in waveguides
Multirate-signal-processing.pptx
Ad

Similar to DSP_FOEHU - Lec 08 - The Discrete Fourier Transform (20)

PDF
c5.pdf
PDF
Digital Signal Processing Lecture notes n.pdf
PDF
c5.pdf
PPTX
The discrete fourier transform (dsp) 4
PPT
Circular conv_7767038.ppt
PPTX
The Discrete Fourier Transform by Group 7..pptx
PPT
lecture_16.ppt
PPTX
Lecture 04 Adaptive filter.pptx
PDF
DFT,DCT TRANSFORMS.pdf
PPT
DSP12_PP 8 POINT RADIX-2 pptDIT-FFT.ppt
PDF
Fourier slide
PDF
lec07_DFT.pdf
PPTX
Properties of dft
PPTX
DFT and it properties_digital Signal processing.pptx
PPTX
Discrete Fourier Transform
PPT
Fast Fourier Transform (FFT) Algorithms in DSP
PPT
Digital signal processor part 3
PPT
Fft
PDF
lec_3.pdf
c5.pdf
Digital Signal Processing Lecture notes n.pdf
c5.pdf
The discrete fourier transform (dsp) 4
Circular conv_7767038.ppt
The Discrete Fourier Transform by Group 7..pptx
lecture_16.ppt
Lecture 04 Adaptive filter.pptx
DFT,DCT TRANSFORMS.pdf
DSP12_PP 8 POINT RADIX-2 pptDIT-FFT.ppt
Fourier slide
lec07_DFT.pdf
Properties of dft
DFT and it properties_digital Signal processing.pptx
Discrete Fourier Transform
Fast Fourier Transform (FFT) Algorithms in DSP
Digital signal processor part 3
Fft
lec_3.pdf
Ad

More from Amr E. Mohamed (20)

PDF
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
PDF
Dcs lec02 - z-transform
PDF
Dcs lec01 - introduction to discrete-time control systems
PDF
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
PDF
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
PDF
SE2018_Lec 17_ Coding
PDF
SE2018_Lec-22_-Continuous-Integration-Tools
PDF
SE2018_Lec 21_ Software Configuration Management (SCM)
PDF
SE2018_Lec 18_ Design Principles and Design Patterns
PDF
Selenium - Introduction
PPTX
SE2018_Lec 20_ Test-Driven Development (TDD)
PDF
SE2018_Lec 19_ Software Testing
PDF
DSP_2018_FOEHU - Lec 05 - Digital Filters
PDF
DSP_2018_FOEHU - Lec 04 - The z-Transform
PDF
SE2018_Lec 15_ Software Design
PDF
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
PDF
DSP_2018_FOEHU - Lec 0 - Course Outlines
PDF
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
PDF
SE18_Lec 13_ Project Planning
PDF
SE18_SE_Lec 12_ Project Management 1
Dsp 2018 foehu - lec 10 - multi-rate digital signal processing
Dcs lec02 - z-transform
Dcs lec01 - introduction to discrete-time control systems
DDSP_2018_FOEHU - Lec 10 - Digital Signal Processing Applications
DSP_2018_FOEHU - Lec 06 - FIR Filter Design
SE2018_Lec 17_ Coding
SE2018_Lec-22_-Continuous-Integration-Tools
SE2018_Lec 21_ Software Configuration Management (SCM)
SE2018_Lec 18_ Design Principles and Design Patterns
Selenium - Introduction
SE2018_Lec 20_ Test-Driven Development (TDD)
SE2018_Lec 19_ Software Testing
DSP_2018_FOEHU - Lec 05 - Digital Filters
DSP_2018_FOEHU - Lec 04 - The z-Transform
SE2018_Lec 15_ Software Design
DSP_2018_FOEHU - Lec 1 - Introduction to Digital Signal Processing
DSP_2018_FOEHU - Lec 0 - Course Outlines
SE2018_Lec 14_ Process Modeling and Data Flow Diagram.pptx
SE18_Lec 13_ Project Planning
SE18_SE_Lec 12_ Project Management 1

Recently uploaded (20)

PDF
composite construction of structures.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PPTX
bas. eng. economics group 4 presentation 1.pptx
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PPTX
Construction Project Organization Group 2.pptx
PPT
Mechanical Engineering MATERIALS Selection
PPTX
additive manufacturing of ss316l using mig welding
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPTX
web development for engineering and engineering
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PPT
Project quality management in manufacturing
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
composite construction of structures.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
bas. eng. economics group 4 presentation 1.pptx
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Construction Project Organization Group 2.pptx
Mechanical Engineering MATERIALS Selection
additive manufacturing of ss316l using mig welding
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
web development for engineering and engineering
Embodied AI: Ushering in the Next Era of Intelligent Systems
UNIT-1 - COAL BASED THERMAL POWER PLANTS
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Project quality management in manufacturing
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
CARTOGRAPHY AND GEOINFORMATION VISUALIZATION chapter1 NPTE (2).pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf

DSP_FOEHU - Lec 08 - The Discrete Fourier Transform

  • 2. Introduction  The discrete-time Fourier transform (DTFT) provided the frequency- domain (ω) representation for absolutely summable sequences.  The z-transform provided a generalized frequency-domain (z) representation for arbitrary sequences.  These transforms have two features in common.  First, the transforms are defined for infinite-length sequences.  Second, and the most important, they are functions of continuous variables (ω or z).  In other words, the discrete-time Fourier transform and the z-transform are not numerically computable transforms.  The Discrete Fourier Transform (DFT) avoids the two problems mentioned and is a numerically computable transform that is suitable for computer implementation. 2
  • 4. Periodic Sequences  Let 𝑥(𝑛) is a periodic sequence with period N-Samples (the fundamental period of the sequence).  Notation: a sequence with period N is satisfying the condition  where r is any integer. 4    ),...1(),...,1(),0(),1(),...,1(),0(...,)(~  NxxxNxxxnx x(n) x(n) )(~)(~ rNnxnx 
  • 5. Periodic Sequences  From Fourier analysis we know that the periodic functions can be synthesized as a linear combination of complex exponentials whose frequencies are multiples (or harmonics) of the fundamental frequency (which in our case is 2π/N).  The discrete version of the Fourier Series can be written as  where { 𝑋(𝑘), 𝑘 = 0, ± 1, . . . , ∞} are called the discrete Fourier series coefficients.  Note That, for integer values of m, we have (it is called Twiddle Factor) 5    k kn N k N kn j k kn N j k WkX N ekX N eXnx )( ~1 )( ~1 )(~ 2 2   nmNk N N nmNk j N kn j kn N WeeW )( )( 22     
  • 6. Periodic Sequences  As a result, the summation in the Discrete Fourier Series (DFS) should contain only N terms:  The Harmonics are 6      1 0 )( ~1 )(~ N k kn NWkX N nx knNj k ene )/2( )(   ,2,1,0 k
  • 7. Inverse DFS  The DFS coefficients are given by  Proof 7        1 0 1 0 2 )(~)(~)( ~ N k kn N N k N kn j WnxenxkX  DFSInverse )( ~ )()( ~ )(~ 1 )( ~ )(~ )( ~1 )(~ 1 0 1 0 2 1 0 1 0 )( 21 0 2 1 0 21 0 21 0 2 kXkpPXenx e N PXenx eePX N enx N P N k N kn j N P N k N nkP jN k N kn j N k N kn jN P N Pn jN k N kn j                                           
  • 8. Synthesis and Analysis (DFS-Pairs) 8 Notation )/2( Nj N eW   Synthesis      1 0 )( ~1 )(~ N k kn NWkX N nx Analysis )( ~ )(~ kXnx  DFS Both have Period N     1 0 )(~)( ~ N k kn NWnxKX
  • 9. Example 9 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 10. Example 10 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 11. Example 11 k k n kn W W WkX 10 5 10 4 0 10 1 1 )( ~     0 1 2 3 4 5 6 7 8 9 n )10/sin( )2/sin()10/4( k k e kj    
  • 12. DFS vs. FT 12 )(~ nx 0 N nN 0 n )(nx      0 )()( n njj enxeX      1 0 )( N n nj enx      1 0 )/2( )(~)( ~ N n knNj enxkX Nk j eXkX /2 )()( ~   
  • 13. Example 13 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 14. Example 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX 14 )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 15. 0 1 2 3 4 5 6 7 8 9 n 0 1 2 3 4 5 6 7 8 9 n )(~ nx )(nx Example 15 )2/sin( )2/5sin( 1 1 )( 2 54 0             j j j n njj e e e eeX )10/sin( )2/sin( )()( ~ )10/4( 10/2 k k eeXkX kj k j      
  • 16. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  16      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 17. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 17 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 18.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 18 Relation To The DTFT
  • 20. Recall of DTFT  DTFT is not suitable for DSP applications because  In DSP, we are able to compute the spectrum only at specific discrete values of ω  Any signal in any DSP application can be measured only in a finite number of points.  A finite signal measures at N-points:  Where y(n) are the measurements taken at N-points 20          Nn Nnny n nx ,0 )1(0),( 00 )(
  • 21. Computation of DFT  Recall of DTFT  The DFT can be computed by:  Truncate the summation so that it ranges over finite limits x[n] is a finite-length sequence.  Discretize ω to ωk  evaluate DTFT at a finite number of discrete frequencies.  For an N-point sequence, only N values of frequency samples of X(ejw) at N distinct frequency points, are sufficient to determine x[n] and X(ejw) uniquely.  So, by sampling the spectrum X(ω) in frequency domain 21 DFTenxX N X N n N kn j      1 0 2 )(k)( 2 ),X(kk)(    10,  Nkk
  • 22. Computation of DFT  The inverse DFT is given by:  Proof 22 IDFTekX N x N k N kn j     1 0 2 )( 1 n)(                                   1 0 1 0 1 0 )( 2 1 0 21 0 2 )()()(n)( 1 )(n)( )( 1 n)( N m N m N n N nmk j N k N kn jN m N mk j nxnmmxx e N mxx eemx N x   
  • 24. Example  Find the discrete Fourier Transform of the following N-points discrete time signal  Solution:  On the board 24    )1(,...),1(),0()(  Nxxxnx
  • 25. Nth Root of Unity 252 1 2 1 10) 19) 2 1 2 1 8) 7) 2 1 2 1 6) 15) 2 1 2 1 4) 3) 2 1 2 1 2) 11) 9 8 2 9 8 8 8 2 8 8 7 8 2 7 8 6 8 2 6 8 5 8 2 5 8 4 8 2 4 8 3 8 2 3 8 2 8 2 2 8 1 8 2 1 8 0 8 2 0 8 jeW eW jeW jeW jeW eW jeW jeW jeW eW j j j j j j j j j j                               1* 2/ 2 )2/(        NN k N k N k N Nk N k N Nk N WW WW WW WW N j N eW 2  
  • 26. Relation To The Z-transform  Let 𝑥(𝑛) be a finite-duration sequence of duration 𝑁 such that  Then we can compute its z-transform:  Now we construct a periodic sequence 𝑥 𝑛 by periodically repeating 𝑥(𝑛) with period 𝑁, that is,  The DFS of 𝑥 𝑛 is given by  26      Elsewhere NnNonzero nx ,0 )1(0, )(      1 0 )(z)( N n n znxX      Elsewhere Nnnx nx ,0 )1(0),(~ )(            1 0 2 )(k)( ~ N n n k N j enxX  k N j ez zXX 2 )(k)( ~  
  • 27. Relation To The Z-transform  which means that the DFS 𝑿(𝑘) represents 𝑁 evenly spaced samples of the z-transform 𝑋(𝑧) around the unit circle. 27 Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8
  • 28.     ,)()( j ez j zHeH 10,][ )()( 21 0 /2       Nkenx eXkX N nk jN n Nk j k           N kj zk 2 exp Re(z) Im(z) z0 z1 z2 z3 z4 z5 z6 z7 1 N = 8 28 Relation To The DTFT
  • 29. DFT - Matrix Formulation xWX Nx x x x WWW WWW WWW NX X X X NN N N N N N N NNN N NNN                                                       ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 )1( )2( )1( )0( )1)(1()1(21 )1(242 121        29
  • 30. Computation Complexity  To calculate the DFT of N-Points discrete time signal, we need:  (N-1)2 Complex Multiplications  N(N-1) Complex Additions. 30
  • 31. IDFT - Matrix Formulation XW N x XWx NX X X X WWW WWW WWW N Nx x x x NN N N N N N N NNN N NNN * 1 )1)(1()1(2)1( )1(242 )1(21 1 ]1[ ]2[ ]1[ ]0[ 1 1 1 1111 1 )1( )2( )1( )0(                                                                31
  • 32. Matrix Formulation  Result: Inverse DFT is given by  which follows easily by checking WHW = WWH = NI, where I denotes the identity matrix. Hermitian transpose:  Also, “*” denotes complex conjugation. 32
  • 33. DFT Interpretation  DFT sample X(k) specifies the magnitude and phase angle of the kth spectral component of x[n].  The amount of power that x[n] contains at a normalized frequency, fk, can be determined from the power density spectrum defined as 33 )(spectrumPhase |)(|spectrumMagnitude kX kX   10, |)(| )( 2  Nk N kX kSN
  • 34. Periodicity of DFT Spectrum  The DFT spectrum is periodic with period N (which is expected, since the DTFT spectrum is periodic as well, but with period 2π). 34 )()(N)k( )(N)k( )(N)k( 2 2 1 0 2 1 0 )( 2 kXekXX eenxX enxX nj nj N n N nk j N n N nNk j                      
  • 35. Example  Example: DFT of a rectangular pulse:  the rectangular pulse is “interpreted” by the DFT as a spectral line at frequency ω = 0. DFT and DTFT of a rectangular pulse (N=5) 35
  • 36. Zero Padding  What happens with the DFT of this rectangular pulse if we increase N by zero padding:  where x(0) = · · · = x(M − 1) = 1. Hence, DFT is 36    0,...,0,0,0),1(,...),1(),0()(  Mxxxnx (N-M) Positions
  • 37. Zero Padding  DFT and DTFT of a Rectangular Pulse with Zero Padding (N = 10, M = 5) 37
  • 38. Zero Padding  Zero padding of analyzed sequence results in “approximating” its DTFT better,  Zero padding cannot improve the resolution of spectral components, because the resolution is “proportional” to 1/M rather than 1/N,  Zero padding is very important for fast DFT implementation (FFT). 38
  • 39. Frequency Interval/Resolution  Frequency Interval/Resolution: DFT’s frequency resolution  and covered frequency interval  Frequency resolution is determined only by the length of the observation interval, whereas the frequency interval is determined by the length of sampling interval. Thus  Increase sampling rate =) expand frequency interval,  Increase observation time =) improve frequency resolution.  Question: Does zero padding alter the frequency resolution?  Answer: No, because resolution is determined by the length of observation interval, and zero padding does not increase this length. 39
  • 40. Example (DFT Resolution)  Example (DFT Resolution): Two complex exponentials with two close frequencies F1 = 10 Hz and F2 = 12 Hz sampled with the sampling interval T = 0.02 seconds. Consider various data lengths N = 10, 15, 30, 100 with zero padding to 512 points.  DFT with N=10 and zero padding to 512 points. Not resolved: F2−F1 = 2 Hz < 1/(NT) = 5 Hz. 40
  • 41. Example (DFT Resolution)  DFT with N = 30 and zero padding to 512 points. Resolved: F2 − F1 = 2 Hz > 1/(NT)=1.7 Hz. 41
  • 42. Example (DFT Resolution)  DFT with N=100 and zero padding to 512 points. Resolved: F2−F1 = 2 Hz > 1/(NT) = 0.5 Hz. 42
  • 43. DSF VS DFT  DFS and DFT pairs are identical, except that  DFT is applied to finite sequence x(n),  DFS is applied to periodic sequence .  Conventional (continuous-time) FS vs. DFS  CFS represents a continuous periodic signal using an infinite number of complex exponentials, whereas  DFS represents a discrete periodic signal using a finite number of complex exponentials. 43 )(~ nx
  • 44. Linear & Circular Convolution 44
  • 45. Linear Convolution  By Discrete Time Fourier Transform (DTFT) 45          -k -k x(k)k)-h(ny(n) k)-x(nh(k)y(n) x(n)*h(n)y(n) )()()(  jjj eXeHeY   )()( j eYIDTFTny 
  • 46. Circular Convolution  Circular convolution of length N is  By DFT 46                           1 0k C 1 0k C NC kxk-nhny k-nxkhny nxnhny N N N N )()()( kXkHkY   )()( kYIDFTnyC 
  • 47. Convolution of two periodic sequences 47
  • 48. How to Compute Circular Convolutions  Method #1: 48
  • 49. How to Compute Circular Convolutions  Method #2:  Compute the linear convolution and then alias it: 49
  • 50. How to Compute Circular Convolutions  Method #3:  Compute 4-point DFTs, multiply, compute 4-point inverse DFT: 50
  • 51. Using Cyclic Convs and DFTs to Compute Linear Convs: 51
  • 52. 52