SlideShare a Scribd company logo
IBM | spark.tc
Advanced Apache Spark Meetup
Spark SQL + DataFrames + Catalyst + Data Sources API
Chris Fregly, Principal Data Solutions Engineer
IBM Spark Technology Center
Sept 21, 2015
Power of data. Simplicity of design. Speed of innovation.
Meetup Housekeeping
IBM | spark.tc
Announcements
Patrick McFadin, Evangelist
DataStax
Steve Beier, Boss Man
IBM Spark Tech Center
IBM | spark.tc
Who am I?
Streaming Platform Engineer
Not a Photographer or Model
Streaming Data Engineer
Netflix Open Source Committer
Data Solutions Engineer
Apache Contributor
Principal Data Solutions Engineer
IBM Technology Center
IBM | spark.tc
Last Meetup (Spark Wins 100 TB Daytona
GraySort) On-disk only, in-memory caching disabled!sortbenchmark.org/ApacheSpark2014.pdf
IBM | spark.tc
Meetup Metrics
Total Spark Experts: ~1000 (+20%)
Mean RSVPs per Meetup: ~300
Mean Attendance: ~50-60% of RSVPs
Donations: $0 (-100%)
This is good!
“Your money is no good here.”
Lloyd from
The Shining
<--- eek!
IBM | spark.tc
Meetup Updates
Talking with other Spark Meetup Groups
Potential mergers and/or hostile takeovers!
New Sponsors!!
Looking for more South Bay/Peninsula Hosts
Required: Food, Beer/Soda/Water, Air Conditioning
Optional: A/V Recording and Live Stream
We’re trying out new PowerPoint Animations
Please be patient!
IBM | spark.tc
Constructive Criticism from Previous Attendees
“Chris, you’re like a fat version of an
already-fat Erlich from Silicon Valley -
except not funny.”
“Chris, your voice is so annoying that it
actually woke me from the sleep induced
by your boring content.”
IBM | spark.tc
Freg-a-palooza Upcoming World Tour
① New York Strata (Sept 29th – Oct 1st)
② London Spark Meetup (Oct 12th)
⑱ Scotland Data Science Meetup (Oct 13th)
④ Dublin Spark Meetup (Oct 15th)
â‘€ Barcelona Spark Meetup (Oct 20th)
â‘„ Madrid Spark Meetup (Oct 22nd)
⑩ Amsterdam Spark Summit (Oct 27th – Oct 29th)
⑧ Delft Dutch Data Science Meetup (Oct 29th)
⑹ Brussels Spark Meetup (Oct 30th)
⑩ Zurich Big Data Developers Meetup (Nov 2nd)
High probability
I’ll end up in jail
IBM | spark.tc
Topics of this Talk
①DataFrames
②Catalyst Optimizer and Query Plans
⑱Data Sources API
④Creating and Contributing Custom Data Source
①Partitions, Pruning, Pushdowns
①Native + Third-Party Data Source Impls
①Spark SQL Performance Tuning
IBM | spark.tc
DataFrames
Inspired by R and Pandas DataFrames
Cross language support
SQL, Python, Scala, Java, R
Levels performance of Python, Scala, Java, and R
Generates JVM bytecode vs serialize/pickle objects to Python
DataFrame is Container for Logical Plan
Transformations are lazy and represented as a tree
Catalyst Optimizer creates physical plan
DataFrame.rdd returns the underlying RDD if needed
Custom UDF using registerFunction()
New, experimental UDAF support
Use DataFrames
instead of RDDs!!
IBM | spark.tc
Catalyst Optimizer
Converts logical plan to physical plan
Manipulate & optimize DataFrame transformation tree
Subquery elimination – use aliases to collapse subqueries
Constant folding – replace expression with constant
Simplify filters – remove unnecessary filters
Predicate/filter pushdowns – avoid unnecessary data load
Projection collapsing – avoid unnecessary projections
Hooks for custom rules
Rules = Scala Case Classes
val newPlan = MyFilterRule(analyzedPlan)
Implements
oas.sql.catalyst.rules.Rule
Apply to any
plan stage
IBM | spark.tc
Plan Debugging
gendersCsvDF.select($"id", $"gender").filter("gender != 'F'").filter("gender != 'M'").explain(true)
Requires explain(true)
DataFrame.queryExecution.logical
DataFrame.queryExecution.analyzed
DataFrame.queryExecution.optimizedPlan
DataFrame.queryExecution.executedPlan
IBM | spark.tc
Plan Visualization & Join/Aggregation Metrics
Effectiveness
of Filter
Cost-based
Optimization
is Applied
Peak Memory for
Joins and Aggs
Optimized
CPU-cache-aware
Binary Format
Minimizes GC &
Improves Join Perf
(Project Tungsten)
New in Spark 1.5!
IBM | spark.tc
Data Sources API
Execution (o.a.s.sql.execution.commands.scala)
RunnableCommand (trait/interface)
ExplainCommand(impl: case class)
CacheTableCommand(impl: case class)
Relations (o.a.s.sql.sources.interfaces.scala)
BaseRelation (abstract class)
TableScan (impl: returns all rows)
PrunedFilteredScan (impl: column pruning and predicate pushdown)
InsertableRelation (impl: insert or overwrite data using SaveMode)
Filters (o.a.s.sql.sources.filters.scala)
Filter (abstract class for all filter pushdowns for this data source)
EqualTo
GreaterThan
StringStartsWith
IBM | spark.tc
Creating a Custom Data Source
Study Existing Native and Third-Party Data Source Impls
Native: JDBC (o.a.s.sql.execution.datasources.jdbc)
class JDBCRelation extends BaseRelation
with PrunedFilteredScan
with InsertableRelation
Third-Party: Cassandra (o.a.s.sql.cassandra)
class CassandraSourceRelation extends BaseRelation
with PrunedFilteredScan
with InsertableRelation
IBM | spark.tc
Contributing a Custom Data Source
spark-packages.org
Managed by
Contains links to externally-managed github projects
Ratings and comments
Spark version requirements of each package
Examples
https://github.com/databricks/spark-csv
https://github.com/databricks/spark-avro
https://github.com/databricks/spark-redshift
Partitions, Pruning, Pushdowns
IBM | spark.tc
Demo Dataset (from previous Spark After Dark
talks)
RATINGS
========
UserID,ProfileID,Rating
(1-10)
GENDERS
========
UserID,Gender
(M,F,U)
<-- Totally -->
Anonymous
IBM | spark.tc
Partitions
Partition based on data usage patterns
/root/gender=M/

/gender=F/
 <-- Use case: access users by gender
/gender=U/

Partition Discovery
On read, infer partitions from organization of data (ie. gender=F)
Dynamic Partitions
Upon insert, dynamically create partitions
Specify field to use for each partition (ie. gender)
SQL: INSERT TABLE genders PARTITION (gender) SELECT 

DF: gendersDF.write.format(”parquet").partitionBy(”gender”).save(
)
IBM | spark.tc
Pruning
Partition Pruning
Filter out entire partitions of rows on partitioned data
SELECT id, gender FROM genders where gender = ‘U’
Column Pruning
Filter out entire columns for all rows if not required
Extremely useful for columnar storage formats
Parquet, ORC
SELECT id, gender FROM genders
IBM | spark.tc
Pushdowns
Predicate (aka Filter) Pushdowns
Predicate returns {true, false} for a given function/condition
Filters rows as deep into the data source as possible
Data Source must implement PrunedFilteredScan
Native Spark SQL Data Sources
IBM | spark.tc
Spark SQL Native Data Sources - Source Code
IBM | spark.tc
JSON Data Source
DataFrame
val ratingsDF = sqlContext.read.format("json")
.load("file:/root/pipeline/datasets/dating/ratings.json.bz2")
-- or --
val ratingsDF = sqlContext.read.json
("file:/root/pipeline/datasets/dating/ratings.json.bz2")
SQL Code
CREATE TABLE genders USING json
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders.json.bz2")
Convenience Method
IBM | spark.tc
JDBC Data Source
Add Driver to Spark JVM System Classpath
$ export SPARK_CLASSPATH=<jdbc-driver.jar>
DataFrame
val jdbcConfig = Map("driver" -> "org.postgresql.Driver",
"url" -> "jdbc:postgresql:hostname:port/database",
"dbtable" -> ”schema.tablename")
df.read.format("jdbc").options(jdbcConfig).load()
SQL
CREATE TABLE genders USING jdbc
OPTIONS (url, dbtable, driver, 
)
IBM | spark.tc
Parquet Data Source
Configuration
spark.sql.parquet.filterPushdown=true
spark.sql.parquet.mergeSchema=true
spark.sql.parquet.cacheMetadata=true
spark.sql.parquet.compression.codec=[uncompressed,snappy,gzip,lzo]
DataFrames
val gendersDF = sqlContext.read.format("parquet")
.load("file:/root/pipeline/datasets/dating/genders.parquet")
gendersDF.write.format("parquet").partitionBy("gender")
.save("file:/root/pipeline/datasets/dating/genders.parquet")
SQL
CREATE TABLE genders USING parquet
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders.parquet")
IBM | spark.tc
ORC Data Source
Configuration
spark.sql.orc.filterPushdown=true
DataFrames
val gendersDF = sqlContext.read.format("orc")
.load("file:/root/pipeline/datasets/dating/genders")
gendersDF.write.format("orc").partitionBy("gender")
.save("file:/root/pipeline/datasets/dating/genders")
SQL
CREATE TABLE genders USING orc
OPTIONS
(path "file:/root/pipeline/datasets/dating/genders")
Third-Party Data Sources
spark-packages.org
IBM | spark.tc
CSV Data Source (Databricks)
Github
https://github.com/databricks/spark-csv
Maven
com.databricks:spark-csv_2.10:1.2.0
Code
val gendersCsvDF = sqlContext.read
.format("com.databricks.spark.csv")
.load("file:/root/pipeline/datasets/dating/gender.csv.bz2")
.toDF("id", "gender") toDF() defines column names
IBM | spark.tc
Avro Data Source (Databricks)
Github
https://github.com/databricks/spark-avro
Maven
com.databricks:spark-avro_2.10:2.0.1
Code
val df = sqlContext.read
.format("com.databricks.spark.avro")
.load("file:/root/pipeline/datasets/dating/gender.avro")
IBM | spark.tc
Redshift Data Source (Databricks)
Github
https://github.com/databricks/spark-redshift
Maven
com.databricks:spark-redshift:0.5.0
Code
val df: DataFrame = sqlContext.read
.format("com.databricks.spark.redshift")
.option("url", "jdbc:redshift://<hostname>:<port>/<database>
")
.option("query", "select x, count(*) my_table group by x")
.option("tempdir", "s3n://tmpdir")
.load()
Copies to S3 for
fast, parallel reads vs
single Redshift Master bottleneck
IBM | spark.tc
ElasticSearch Data Source (Elastic.co)
Github
https://github.com/elastic/elasticsearch-hadoop
Maven
org.elasticsearch:elasticsearch-spark_2.10:2.1.0
Code
val esConfig = Map("pushdown" -> "true", "es.nodes" -> "<hostname>",
"es.port" -> "<port>")
df.write.format("org.elasticsearch.spark.sql”).mode(SaveMode.Overwrite)
.options(esConfig).save("<index>/<document>")
IBM | spark.tc
Cassandra Data Source (DataStax)
Github
https://github.com/datastax/spark-cassandra-connector
Maven
com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1
Code
ratingsDF.write.format("org.apache.spark.sql.cassandra")
.mode(SaveMode.Append)
.options(Map("keyspace"->"dating","table"->"ratings"))
.save()
IBM | spark.tc
REST Data Source (Databricks)
Coming Soon!
https://github.com/databricks/spark-rest?
Michael Armbrust
Spark SQL Lead @ Databricks
IBM | spark.tc
DynamoDB Data Source (IBM Spark Tech Center)
Coming Soon!
https://github.com/cfregly/spark-dynamodb
Me Erlich
IBM | spark.tc
SparkSQL Performance Tuning (oas.sql.SQLConf)
spark.sql.inMemoryColumnarStorage.compressed=true
Automatically selects column codec based on data
spark.sql.inMemoryColumnarStorage.batchSize
Increase as much as possible without OOM – improves compression and GC
spark.sql.inMemoryPartitionPruning=true
Enable partition pruning for in-memory partitions
spark.sql.tungsten.enabled=true
Code Gen for CPU and Memory Optimizations (Tungsten aka Unsafe Mode)
spark.sql.shuffle.partitions
Increase from default 200 for large joins and aggregations
spark.sql.autoBroadcastJoinThreshold
Increase to tune this cost-based, physical plan optimization
spark.sql.hive.metastorePartitionPruning
Predicate pushdown into the metastore to prune partitions early
spark.sql.planner.sortMergeJoin
Prefer sort-merge (vs. hash join) for large joins
spark.sql.sources.partitionDiscovery.enabled
& spark.sql.sources.parallelPartitionDiscovery.threshold
IBM | spark.tc
Related Links
https://github.com/datastax/spark-cassandra-connector
http://blog.madhukaraphatak.com/anatomy-of-spark-dataframe-api/
https://github.com/phatek-dev/anatomy_of_spark_dataframe_api/
https://databricks.com/blog/

IBM | spark.tc
Upcoming Advanced Apache Spark Meetups
Project Tungsten Data Structs & Algos for CPU & Memory Optimization
Nov 12th, 2015
Text-based Advanced Analytics and Machine Learning
Jan 14th, 2016
ElasticSearch-Spark Connector w/ Costin Leau (Elastic.co) & Me
Feb 16th, 2016
Spark Internals Deep Dive
Mar 24th, 2016
Spark SQL Catalyst Optimizer Deep Dive
Apr 21st, 2016
Special Thanks to DataStax!!
IBM Spark Tech Center is Hiring!
Only Fun, Collaborative People - No Erlichs!
IBM | spark.tc
Sign up for our newsletter at
Thank You!
Power of data. Simplicity of design. Speed of innovation.
Power of data. Simplicity of design. Speed of innovation.
IBM Spark

More Related Content

PDF
Spark SQL Deep Dive @ Melbourne Spark Meetup
PDF
20140908 spark sql & catalyst
PPTX
Spark SQL
PDF
Spark SQL with Scala Code Examples
PDF
DataEngConf SF16 - Spark SQL Workshop
PDF
Sparkcamp @ Strata CA: Intro to Apache Spark with Hands-on Tutorials
PDF
Data Source API in Spark
PPTX
Apache Spark sql
Spark SQL Deep Dive @ Melbourne Spark Meetup
20140908 spark sql & catalyst
Spark SQL
Spark SQL with Scala Code Examples
DataEngConf SF16 - Spark SQL Workshop
Sparkcamp @ Strata CA: Intro to Apache Spark with Hands-on Tutorials
Data Source API in Spark
Apache Spark sql

What's hot (20)

PDF
Introducing DataFrames in Spark for Large Scale Data Science
PDF
Spark SQL - 10 Things You Need to Know
PDF
Simplifying Big Data Analytics with Apache Spark
PDF
Spark sql
PDF
Introduction to Spark SQL & Catalyst
PDF
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
PPTX
Spark meetup v2.0.5
PDF
Using Apache Spark as ETL engine. Pros and Cons
PPTX
Introduce to Spark sql 1.3.0
PPTX
Spark etl
PDF
Beyond SQL: Speeding up Spark with DataFrames
PPTX
Optimizing Apache Spark SQL Joins
PDF
Four Things to Know About Reliable Spark Streaming with Typesafe and Databricks
PPTX
Building a modern Application with DataFrames
PDF
Apache¼ Sparkℱ 1.6 presented by Databricks co-founder Patrick Wendell
PDF
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
PDF
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
PDF
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
PDF
Strata NYC 2015 - What's coming for the Spark community
PDF
Automated Spark Deployment With Declarative Infrastructure
Introducing DataFrames in Spark for Large Scale Data Science
Spark SQL - 10 Things You Need to Know
Simplifying Big Data Analytics with Apache Spark
Spark sql
Introduction to Spark SQL & Catalyst
Spark ETL Techniques - Creating An Optimal Fantasy Baseball Roster
Spark meetup v2.0.5
Using Apache Spark as ETL engine. Pros and Cons
Introduce to Spark sql 1.3.0
Spark etl
Beyond SQL: Speeding up Spark with DataFrames
Optimizing Apache Spark SQL Joins
Four Things to Know About Reliable Spark Streaming with Typesafe and Databricks
Building a modern Application with DataFrames
Apache¼ Sparkℱ 1.6 presented by Databricks co-founder Patrick Wendell
Spark SQL Tutorial | Spark Tutorial for Beginners | Apache Spark Training | E...
Structuring Apache Spark 2.0: SQL, DataFrames, Datasets And Streaming - by Mi...
Spark Summit EU 2015: Spark DataFrames: Simple and Fast Analysis of Structure...
Strata NYC 2015 - What's coming for the Spark community
Automated Spark Deployment With Declarative Infrastructure
Ad

Similar to Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Data Sources API (20)

PDF
Scotland Data Science Meetup Oct 13, 2015: Spark SQL, DataFrames, Catalyst, ...
PDF
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
PDF
Advanced Apache Spark Meetup Data Sources API Cassandra Spark Connector Spark...
PPTX
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
PDF
Parallelizing Existing R Packages
PDF
Writing Continuous Applications with Structured Streaming in PySpark
PPTX
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
PDF
Apache spark - Architecture , Overview & libraries
PPTX
Keeping Spark on Track: Productionizing Spark for ETL
PDF
Writing Continuous Applications with Structured Streaming Python APIs in Apac...
PDF
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
PPTX
Big Data Processing with .NET and Spark (SQLBits 2020)
PDF
PyconZA19-Distributed-workloads-challenges-with-PySpark-and-Airflow
PDF
20170126 big data processing
PDF
Spark Programming Basic Training Handout
PDF
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
PDF
Fossasia 2018-chetan-khatri
PDF
Melbourne Spark Meetup Dec 09 2015
PDF
Sydney Spark Meetup Dec 08, 2015
PDF
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Scotland Data Science Meetup Oct 13, 2015: Spark SQL, DataFrames, Catalyst, ...
Advanced Apache Spark Meetup Spark and Elasticsearch 02-15-2016
Advanced Apache Spark Meetup Data Sources API Cassandra Spark Connector Spark...
Cassandra Summit Sept 2015 - Real Time Advanced Analytics with Spark and Cass...
Parallelizing Existing R Packages
Writing Continuous Applications with Structured Streaming in PySpark
Advanced Apache Spark Meetup: How Spark Beat Hadoop @ 100 TB Daytona GraySor...
Apache spark - Architecture , Overview & libraries
Keeping Spark on Track: Productionizing Spark for ETL
Writing Continuous Applications with Structured Streaming Python APIs in Apac...
DataFrame: Spark's new abstraction for data science by Reynold Xin of Databricks
Big Data Processing with .NET and Spark (SQLBits 2020)
PyconZA19-Distributed-workloads-challenges-with-PySpark-and-Airflow
20170126 big data processing
Spark Programming Basic Training Handout
Stockholm Spark Meetup Nov 23 2015 Spark After Dark 1.5
Fossasia 2018-chetan-khatri
Melbourne Spark Meetup Dec 09 2015
Sydney Spark Meetup Dec 08, 2015
Advanced Analytics and Recommendations with Apache Spark - Spark Maryland/DC ...
Ad

More from Chris Fregly (20)

PDF
AWS reInvent 2022 reCap AI/ML and Data
PDF
Pandas on AWS - Let me count the ways.pdf
PDF
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
PDF
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
PDF
Amazon reInvent 2020 Recap: AI and Machine Learning
PDF
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
PDF
Quantum Computing with Amazon Braket
PDF
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
PDF
AWS Re:Invent 2019 Re:Cap
PDF
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
PDF
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
PDF
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
PDF
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
PDF
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
PDF
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
PDF
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
PDF
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
PDF
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
PDF
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
PDF
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...
AWS reInvent 2022 reCap AI/ML and Data
Pandas on AWS - Let me count the ways.pdf
Ray AI Runtime (AIR) on AWS - Data Science On AWS Meetup
Smokey and the Multi-Armed Bandit Featuring BERT Reynolds Updated
Amazon reInvent 2020 Recap: AI and Machine Learning
Waking the Data Scientist at 2am: Detect Model Degradation on Production Mod...
Quantum Computing with Amazon Braket
15 Tips to Scale a Large AI/ML Workshop - Both Online and In-Person
AWS Re:Invent 2019 Re:Cap
KubeFlow + GPU + Keras/TensorFlow 2.0 + TF Extended (TFX) + Kubernetes + PyTo...
Swift for TensorFlow - Tanmay Bakshi - Advanced Spark and TensorFlow Meetup -...
Hands-on Learning with KubeFlow + Keras/TensorFlow 2.0 + TF Extended (TFX) + ...
Spark SQL Catalyst Optimizer, Custom Expressions, UDFs - Advanced Spark and T...
PipelineAI Continuous Machine Learning and AI - Rework Deep Learning Summit -...
PipelineAI Real-Time Machine Learning - Global Artificial Intelligence Confer...
Hyper-Parameter Tuning Across the Entire AI Pipeline GPU Tech Conference San ...
PipelineAI Optimizes Your Enterprise AI Pipeline from Distributed Training to...
Advanced Spark and TensorFlow Meetup - Dec 12 2017 - Dong Meng, MapR + Kubern...
High Performance Distributed TensorFlow in Production with GPUs - NIPS 2017 -...
PipelineAI + TensorFlow AI + Spark ML + Kuberenetes + Istio + AWS SageMaker +...

Recently uploaded (20)

PPTX
Odoo POS Development Services by CandidRoot Solutions
PPTX
ai tools demonstartion for schools and inter college
PPTX
history of c programming in notes for students .pptx
PDF
Adobe Illustrator 28.6 Crack My Vision of Vector Design
PPTX
Introduction to Artificial Intelligence
PPTX
VVF-Customer-Presentation2025-Ver1.9.pptx
PPTX
ManageIQ - Sprint 268 Review - Slide Deck
PDF
How to Migrate SBCGlobal Email to Yahoo Easily
PDF
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
PDF
System and Network Administraation Chapter 3
PDF
Nekopoi APK 2025 free lastest update
PDF
Upgrade and Innovation Strategies for SAP ERP Customers
PDF
System and Network Administration Chapter 2
PPTX
Transform Your Business with a Software ERP System
PDF
Navsoft: AI-Powered Business Solutions & Custom Software Development
PDF
2025 Textile ERP Trends: SAP, Odoo & Oracle
PDF
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
PDF
Design an Analysis of Algorithms I-SECS-1021-03
PDF
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
PPTX
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx
Odoo POS Development Services by CandidRoot Solutions
ai tools demonstartion for schools and inter college
history of c programming in notes for students .pptx
Adobe Illustrator 28.6 Crack My Vision of Vector Design
Introduction to Artificial Intelligence
VVF-Customer-Presentation2025-Ver1.9.pptx
ManageIQ - Sprint 268 Review - Slide Deck
How to Migrate SBCGlobal Email to Yahoo Easily
Flood Susceptibility Mapping Using Image-Based 2D-CNN Deep Learnin. Overview ...
System and Network Administraation Chapter 3
Nekopoi APK 2025 free lastest update
Upgrade and Innovation Strategies for SAP ERP Customers
System and Network Administration Chapter 2
Transform Your Business with a Software ERP System
Navsoft: AI-Powered Business Solutions & Custom Software Development
2025 Textile ERP Trends: SAP, Odoo & Oracle
Internet Downloader Manager (IDM) Crack 6.42 Build 42 Updates Latest 2025
Design an Analysis of Algorithms I-SECS-1021-03
SAP S4 Hana Brochure 3 (PTS SYSTEMS AND SOLUTIONS)
CHAPTER 12 - CYBER SECURITY AND FUTURE SKILLS (1) (1).pptx

Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst Optimizer + Data Sources API

  • 1. IBM | spark.tc Advanced Apache Spark Meetup Spark SQL + DataFrames + Catalyst + Data Sources API Chris Fregly, Principal Data Solutions Engineer IBM Spark Technology Center Sept 21, 2015 Power of data. Simplicity of design. Speed of innovation.
  • 3. IBM | spark.tc Announcements Patrick McFadin, Evangelist DataStax Steve Beier, Boss Man IBM Spark Tech Center
  • 4. IBM | spark.tc Who am I? Streaming Platform Engineer Not a Photographer or Model Streaming Data Engineer Netflix Open Source Committer Data Solutions Engineer Apache Contributor Principal Data Solutions Engineer IBM Technology Center
  • 5. IBM | spark.tc Last Meetup (Spark Wins 100 TB Daytona GraySort) On-disk only, in-memory caching disabled!sortbenchmark.org/ApacheSpark2014.pdf
  • 6. IBM | spark.tc Meetup Metrics Total Spark Experts: ~1000 (+20%) Mean RSVPs per Meetup: ~300 Mean Attendance: ~50-60% of RSVPs Donations: $0 (-100%) This is good! “Your money is no good here.” Lloyd from The Shining <--- eek!
  • 7. IBM | spark.tc Meetup Updates Talking with other Spark Meetup Groups Potential mergers and/or hostile takeovers! New Sponsors!! Looking for more South Bay/Peninsula Hosts Required: Food, Beer/Soda/Water, Air Conditioning Optional: A/V Recording and Live Stream We’re trying out new PowerPoint Animations Please be patient!
  • 8. IBM | spark.tc Constructive Criticism from Previous Attendees “Chris, you’re like a fat version of an already-fat Erlich from Silicon Valley - except not funny.” “Chris, your voice is so annoying that it actually woke me from the sleep induced by your boring content.”
  • 9. IBM | spark.tc Freg-a-palooza Upcoming World Tour ① New York Strata (Sept 29th – Oct 1st) ② London Spark Meetup (Oct 12th) ⑱ Scotland Data Science Meetup (Oct 13th) ④ Dublin Spark Meetup (Oct 15th) â‘€ Barcelona Spark Meetup (Oct 20th) â‘„ Madrid Spark Meetup (Oct 22nd) ⑩ Amsterdam Spark Summit (Oct 27th – Oct 29th) ⑧ Delft Dutch Data Science Meetup (Oct 29th) ⑹ Brussels Spark Meetup (Oct 30th) ⑩ Zurich Big Data Developers Meetup (Nov 2nd) High probability I’ll end up in jail
  • 10. IBM | spark.tc Topics of this Talk ①DataFrames ②Catalyst Optimizer and Query Plans ⑱Data Sources API ④Creating and Contributing Custom Data Source ①Partitions, Pruning, Pushdowns ①Native + Third-Party Data Source Impls ①Spark SQL Performance Tuning
  • 11. IBM | spark.tc DataFrames Inspired by R and Pandas DataFrames Cross language support SQL, Python, Scala, Java, R Levels performance of Python, Scala, Java, and R Generates JVM bytecode vs serialize/pickle objects to Python DataFrame is Container for Logical Plan Transformations are lazy and represented as a tree Catalyst Optimizer creates physical plan DataFrame.rdd returns the underlying RDD if needed Custom UDF using registerFunction() New, experimental UDAF support Use DataFrames instead of RDDs!!
  • 12. IBM | spark.tc Catalyst Optimizer Converts logical plan to physical plan Manipulate & optimize DataFrame transformation tree Subquery elimination – use aliases to collapse subqueries Constant folding – replace expression with constant Simplify filters – remove unnecessary filters Predicate/filter pushdowns – avoid unnecessary data load Projection collapsing – avoid unnecessary projections Hooks for custom rules Rules = Scala Case Classes val newPlan = MyFilterRule(analyzedPlan) Implements oas.sql.catalyst.rules.Rule Apply to any plan stage
  • 13. IBM | spark.tc Plan Debugging gendersCsvDF.select($"id", $"gender").filter("gender != 'F'").filter("gender != 'M'").explain(true) Requires explain(true) DataFrame.queryExecution.logical DataFrame.queryExecution.analyzed DataFrame.queryExecution.optimizedPlan DataFrame.queryExecution.executedPlan
  • 14. IBM | spark.tc Plan Visualization & Join/Aggregation Metrics Effectiveness of Filter Cost-based Optimization is Applied Peak Memory for Joins and Aggs Optimized CPU-cache-aware Binary Format Minimizes GC & Improves Join Perf (Project Tungsten) New in Spark 1.5!
  • 15. IBM | spark.tc Data Sources API Execution (o.a.s.sql.execution.commands.scala) RunnableCommand (trait/interface) ExplainCommand(impl: case class) CacheTableCommand(impl: case class) Relations (o.a.s.sql.sources.interfaces.scala) BaseRelation (abstract class) TableScan (impl: returns all rows) PrunedFilteredScan (impl: column pruning and predicate pushdown) InsertableRelation (impl: insert or overwrite data using SaveMode) Filters (o.a.s.sql.sources.filters.scala) Filter (abstract class for all filter pushdowns for this data source) EqualTo GreaterThan StringStartsWith
  • 16. IBM | spark.tc Creating a Custom Data Source Study Existing Native and Third-Party Data Source Impls Native: JDBC (o.a.s.sql.execution.datasources.jdbc) class JDBCRelation extends BaseRelation with PrunedFilteredScan with InsertableRelation Third-Party: Cassandra (o.a.s.sql.cassandra) class CassandraSourceRelation extends BaseRelation with PrunedFilteredScan with InsertableRelation
  • 17. IBM | spark.tc Contributing a Custom Data Source spark-packages.org Managed by Contains links to externally-managed github projects Ratings and comments Spark version requirements of each package Examples https://github.com/databricks/spark-csv https://github.com/databricks/spark-avro https://github.com/databricks/spark-redshift
  • 19. IBM | spark.tc Demo Dataset (from previous Spark After Dark talks) RATINGS ======== UserID,ProfileID,Rating (1-10) GENDERS ======== UserID,Gender (M,F,U) <-- Totally --> Anonymous
  • 20. IBM | spark.tc Partitions Partition based on data usage patterns /root/gender=M/
 /gender=F/
 <-- Use case: access users by gender /gender=U/
 Partition Discovery On read, infer partitions from organization of data (ie. gender=F) Dynamic Partitions Upon insert, dynamically create partitions Specify field to use for each partition (ie. gender) SQL: INSERT TABLE genders PARTITION (gender) SELECT 
 DF: gendersDF.write.format(”parquet").partitionBy(”gender”).save(
)
  • 21. IBM | spark.tc Pruning Partition Pruning Filter out entire partitions of rows on partitioned data SELECT id, gender FROM genders where gender = ‘U’ Column Pruning Filter out entire columns for all rows if not required Extremely useful for columnar storage formats Parquet, ORC SELECT id, gender FROM genders
  • 22. IBM | spark.tc Pushdowns Predicate (aka Filter) Pushdowns Predicate returns {true, false} for a given function/condition Filters rows as deep into the data source as possible Data Source must implement PrunedFilteredScan
  • 23. Native Spark SQL Data Sources
  • 24. IBM | spark.tc Spark SQL Native Data Sources - Source Code
  • 25. IBM | spark.tc JSON Data Source DataFrame val ratingsDF = sqlContext.read.format("json") .load("file:/root/pipeline/datasets/dating/ratings.json.bz2") -- or -- val ratingsDF = sqlContext.read.json ("file:/root/pipeline/datasets/dating/ratings.json.bz2") SQL Code CREATE TABLE genders USING json OPTIONS (path "file:/root/pipeline/datasets/dating/genders.json.bz2") Convenience Method
  • 26. IBM | spark.tc JDBC Data Source Add Driver to Spark JVM System Classpath $ export SPARK_CLASSPATH=<jdbc-driver.jar> DataFrame val jdbcConfig = Map("driver" -> "org.postgresql.Driver", "url" -> "jdbc:postgresql:hostname:port/database", "dbtable" -> ”schema.tablename") df.read.format("jdbc").options(jdbcConfig).load() SQL CREATE TABLE genders USING jdbc OPTIONS (url, dbtable, driver, 
)
  • 27. IBM | spark.tc Parquet Data Source Configuration spark.sql.parquet.filterPushdown=true spark.sql.parquet.mergeSchema=true spark.sql.parquet.cacheMetadata=true spark.sql.parquet.compression.codec=[uncompressed,snappy,gzip,lzo] DataFrames val gendersDF = sqlContext.read.format("parquet") .load("file:/root/pipeline/datasets/dating/genders.parquet") gendersDF.write.format("parquet").partitionBy("gender") .save("file:/root/pipeline/datasets/dating/genders.parquet") SQL CREATE TABLE genders USING parquet OPTIONS (path "file:/root/pipeline/datasets/dating/genders.parquet")
  • 28. IBM | spark.tc ORC Data Source Configuration spark.sql.orc.filterPushdown=true DataFrames val gendersDF = sqlContext.read.format("orc") .load("file:/root/pipeline/datasets/dating/genders") gendersDF.write.format("orc").partitionBy("gender") .save("file:/root/pipeline/datasets/dating/genders") SQL CREATE TABLE genders USING orc OPTIONS (path "file:/root/pipeline/datasets/dating/genders")
  • 30. IBM | spark.tc CSV Data Source (Databricks) Github https://github.com/databricks/spark-csv Maven com.databricks:spark-csv_2.10:1.2.0 Code val gendersCsvDF = sqlContext.read .format("com.databricks.spark.csv") .load("file:/root/pipeline/datasets/dating/gender.csv.bz2") .toDF("id", "gender") toDF() defines column names
  • 31. IBM | spark.tc Avro Data Source (Databricks) Github https://github.com/databricks/spark-avro Maven com.databricks:spark-avro_2.10:2.0.1 Code val df = sqlContext.read .format("com.databricks.spark.avro") .load("file:/root/pipeline/datasets/dating/gender.avro")
  • 32. IBM | spark.tc Redshift Data Source (Databricks) Github https://github.com/databricks/spark-redshift Maven com.databricks:spark-redshift:0.5.0 Code val df: DataFrame = sqlContext.read .format("com.databricks.spark.redshift") .option("url", "jdbc:redshift://<hostname>:<port>/<database>
") .option("query", "select x, count(*) my_table group by x") .option("tempdir", "s3n://tmpdir") .load() Copies to S3 for fast, parallel reads vs single Redshift Master bottleneck
  • 33. IBM | spark.tc ElasticSearch Data Source (Elastic.co) Github https://github.com/elastic/elasticsearch-hadoop Maven org.elasticsearch:elasticsearch-spark_2.10:2.1.0 Code val esConfig = Map("pushdown" -> "true", "es.nodes" -> "<hostname>", "es.port" -> "<port>") df.write.format("org.elasticsearch.spark.sql”).mode(SaveMode.Overwrite) .options(esConfig).save("<index>/<document>")
  • 34. IBM | spark.tc Cassandra Data Source (DataStax) Github https://github.com/datastax/spark-cassandra-connector Maven com.datastax.spark:spark-cassandra-connector_2.10:1.5.0-M1 Code ratingsDF.write.format("org.apache.spark.sql.cassandra") .mode(SaveMode.Append) .options(Map("keyspace"->"dating","table"->"ratings")) .save()
  • 35. IBM | spark.tc REST Data Source (Databricks) Coming Soon! https://github.com/databricks/spark-rest? Michael Armbrust Spark SQL Lead @ Databricks
  • 36. IBM | spark.tc DynamoDB Data Source (IBM Spark Tech Center) Coming Soon! https://github.com/cfregly/spark-dynamodb Me Erlich
  • 37. IBM | spark.tc SparkSQL Performance Tuning (oas.sql.SQLConf) spark.sql.inMemoryColumnarStorage.compressed=true Automatically selects column codec based on data spark.sql.inMemoryColumnarStorage.batchSize Increase as much as possible without OOM – improves compression and GC spark.sql.inMemoryPartitionPruning=true Enable partition pruning for in-memory partitions spark.sql.tungsten.enabled=true Code Gen for CPU and Memory Optimizations (Tungsten aka Unsafe Mode) spark.sql.shuffle.partitions Increase from default 200 for large joins and aggregations spark.sql.autoBroadcastJoinThreshold Increase to tune this cost-based, physical plan optimization spark.sql.hive.metastorePartitionPruning Predicate pushdown into the metastore to prune partitions early spark.sql.planner.sortMergeJoin Prefer sort-merge (vs. hash join) for large joins spark.sql.sources.partitionDiscovery.enabled & spark.sql.sources.parallelPartitionDiscovery.threshold
  • 38. IBM | spark.tc Related Links https://github.com/datastax/spark-cassandra-connector http://blog.madhukaraphatak.com/anatomy-of-spark-dataframe-api/ https://github.com/phatek-dev/anatomy_of_spark_dataframe_api/ https://databricks.com/blog/

  • 39. IBM | spark.tc Upcoming Advanced Apache Spark Meetups Project Tungsten Data Structs & Algos for CPU & Memory Optimization Nov 12th, 2015 Text-based Advanced Analytics and Machine Learning Jan 14th, 2016 ElasticSearch-Spark Connector w/ Costin Leau (Elastic.co) & Me Feb 16th, 2016 Spark Internals Deep Dive Mar 24th, 2016 Spark SQL Catalyst Optimizer Deep Dive Apr 21st, 2016
  • 40. Special Thanks to DataStax!! IBM Spark Tech Center is Hiring! Only Fun, Collaborative People - No Erlichs! IBM | spark.tc Sign up for our newsletter at Thank You! Power of data. Simplicity of design. Speed of innovation.
  • 41. Power of data. Simplicity of design. Speed of innovation. IBM Spark