This document provides an overview of algorithm analysis and determining the time complexity of algorithms. It discusses that the time an algorithm takes to run can be estimated by counting the number of basic operations and expressing the runtime using asymptotic notation. Examples are provided to demonstrate how to analyze the runtime of simple algorithms with loops and nested loops. The key growth rates like constant, linear, quadratic, and exponential are defined. Determining the highest order term provides the overall time complexity of an algorithm in Big O notation.