SlideShare a Scribd company logo
LLNL-PRES-697098
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC
All	
  About	
  That	
  Bayes	
  	
  
Probability,	
  Sta4s4cs,	
  and	
  the	
  Quest	
  to	
  Quan4fy	
  Uncertainty	
  
Kris%n	
  P.	
  Lennox	
  
Director	
  of	
  Sta%s%cal	
  Consul%ng	
  July 28, 2016
2	
  
LLNL-PRES-697098
Man	
  of	
  the	
  (Literal)	
  Hour	
  
Probably not Thomas Bayes, but often mistaken for him
Source: Wikipedia
3	
  
LLNL-PRES-697098
Central	
  Dogma	
  of	
  Inferen4al	
  Sta4s4cs	
  
Statisticians use probability to describe
uncertainty.
4	
  
LLNL-PRES-697098
You	
  Are	
  Here	
  
Why This Matters
What is Probability?
What is Uncertainty?
An Incomplete History of Uncertainty Quantification
The BIG Reveal
5	
  
LLNL-PRES-697098
You	
  Are	
  Here	
  
Why This Matters
What is Probability?
What is Uncertainty?
An Incomplete History of Uncertainty Quantification
The BIG Reveal
6	
  
LLNL-PRES-697098
§  Probability	
  
§  Distribu%on	
  
§  Parameter	
  
§  Likelihood	
  
What	
  is	
  Probability?	
  
1933	
  
A. N. Kolmogorov
Copyright MFO, Creative Commons License
7	
  
LLNL-PRES-697098
A. N. Kolmogorov
Copyright MFO, Creative Commons License
§  Probability	
  is	
  a	
  measure.	
  
§  Distribu%on	
  
§  Parameter	
  
§  Likelihood	
  
What	
  is	
  Probability?	
  
1933	
  
8	
  
LLNL-PRES-697098
§  Probability	
  is	
  a	
  measure.	
  
§  Distribu%ons	
  define	
  measure	
  of	
  events.	
  
§  Parameter	
  
§  Likelihood	
  
Exponential Normal/Gaussian
What	
  is	
  Probability?	
  
9	
  
LLNL-PRES-697098
§  Probability	
  is	
  a	
  measure.	
  
§  Distribu%ons	
  define	
  measure	
  of	
  events.	
  
§  Parameters	
  define	
  distribu%ons.	
  
§  Likelihood	
  
Exponential Normal/Gaussian
What	
  is	
  Probability?	
  
10	
  
LLNL-PRES-697098
f (x) = Pr(X = x |Θ =θ)
§  Probability	
  is	
  a	
  measure.	
  
§  Distribu%ons	
  define	
  measure	
  of	
  events.	
  
§  Parameters	
  define	
  distribu%ons.	
  
§  Likelihood	
  fixes	
  data	
  and	
  varies	
  parameters.	
  
What	
  is	
  Probability?	
  
11	
  
LLNL-PRES-697098
§  Probability	
  is	
  a	
  measure.	
  
§  Distribu%ons	
  define	
  measure	
  of	
  events.	
  
§  Parameters	
  define	
  distribu%ons.	
  
§  Likelihood	
  fixes	
  data	
  and	
  varies	
  parameters.	
  
l(θ) = Pr(X = x |Θ =θ)
What	
  is	
  Probability?	
  
12	
  
LLNL-PRES-697098
You	
  Are	
  Here	
  
Why This Matters
What is Probability?
What is Uncertainty?
An Incomplete History of Uncertainty Quantification
The BIG Reveal
13	
  
LLNL-PRES-697098
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
1
14	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
2
15	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
16	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
17	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
18	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
3
19	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
20	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
21	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
22	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
4
23	
  
LLNL-PRES-697098
	
  	
  	
  
A	
  Fable	
  
The	
  Sta4s4cal	
  Lunch	
  Bunch	
  and	
  the	
  Summer	
  Student	
  Revolt	
  of	
  ‘15	
  
24	
  
LLNL-PRES-697098
You	
  Are	
  Here	
  
Why This Matters
What is Probability?
What is Uncertainty?
An Incomplete History of Uncertainty Quantification
The BIG Reveal
25	
  
LLNL-PRES-697098
In	
  the	
  Beginning…	
  
	
  
1654	
  
P. Fermat
Source: Wikipedia, Creative Commons License
B. Pascal
Source: Wikipedia, Creative Commons License
26	
  
LLNL-PRES-697098
Thomas	
  Bayes	
  and	
  the	
  Doctrine	
  of	
  Chances	
  
1763	
  
Still not Thomas Bayes
Source: Wikipedia
27	
  
LLNL-PRES-697098
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
28	
  
LLNL-PRES-697098
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
PriorDensity
n=0
29	
  
LLNL-PRES-697098
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
PosteriorDensity
n=1
30	
  
LLNL-PRES-697098
PosteriorDensity
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
n=2
31	
  
LLNL-PRES-697098
PosteriorDensity
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
n=10
32	
  
LLNL-PRES-697098
PosteriorDensity
Blindfolded	
  1-­‐Dimensional	
  Table	
  Bocce	
  
n=25
33	
  
LLNL-PRES-697098
§  What	
  is	
  the	
  probability	
  that	
  event	
  x	
  occurs	
  given	
  that	
  event	
  y	
  
occurs?	
  
	
  
	
  
Bayes	
  Theorem	
  
Pr(X = x |Y = y) =
Pr(Y = y | X = x)Pr(X = x)
Pr(Y = y)
34	
  
LLNL-PRES-697098
What	
  is	
  the	
  probability	
  that	
  our	
  distribu,on	
  parameter	
  is	
  θ given	
  
that	
  we	
  have	
  observed	
  data	
  x?	
  
	
  
	
  
Bayes	
  Theorem	
  –	
  Bayesian	
  Version	
  
Pr(Θ =θ | X = x) =
Pr(X = x |Θ =θ)Pr(Θ =θ)
Pr(X = x)
Prior distribution of θ
Posterior distribution of θ given x
A constant of integration that most people don’t talk about
Likelihood
35	
  
LLNL-PRES-697098
The	
  Man	
  Who	
  Invented	
  Sta4s4cs	
  
18th	
  Century	
  
P. S. Laplace
Source: Wikipedia, Creative Commons License
36	
  
LLNL-PRES-697098
The	
  Prior	
  and	
  Its	
  Enemies	
  
Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ)Pr(Θ =θ)
Posterior distribution of θ given x Likelihood
Where does the prior come from?
Prior distribution of θ
37	
  
LLNL-PRES-697098
Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ)Pr(Θ =θ)
Prior distribution of θPosterior distribution of θ given x Likelihood
What is the probability that the sun will rise
tomorrow?
The	
  Sun	
  Will	
  Come	
  Out	
  Tomorrow?	
  
	
  
38	
  
LLNL-PRES-697098
Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ)
Posterior distribution of θ given x Likelihood
What is the probability that the sun will rise
tomorrow?
The	
  Sun	
  Will	
  Come	
  Out	
  Tomorrow?	
  
	
  
in  (0,1)
39	
  
LLNL-PRES-697098
The	
  Sun	
  Will	
  Come	
  Out	
  Tomorrow?	
  
	
  
What is the probability that the sun will rise
tomorrow?
E θ | X = x[ ]=
# of times sun has come up + 1
# of times sun has come up + 2
40	
  
LLNL-PRES-697098
The	
  Sun	
  Will	
  Come	
  Out	
  Tomorrow?*	
  
	
  
What is the probability that the sun will rise
tomorrow?
= 0.9999995=
5000×365.25 + 1
5000×365.25 + 2
*As calculated by Laplace
41	
  
LLNL-PRES-697098
The	
  Frequen4sts	
  
Early	
  20th	
  Century	
  
J. Neyman
Source: Wikipedia, Creative Commons License
R. A. Fisher
Source: Wikipedia, Creative Commons License
42	
  
LLNL-PRES-697098
Case	
  Study:	
  Interval	
  Es4ma4on	
  
What  is  lowest  reasonable  Pr(X=1)?
43	
  
LLNL-PRES-697098
Case	
  Study:	
  Interval	
  Es4ma4on	
  
Bayesian	
  Solu%on	
  (Credible	
  Interval)	
  
	
  1.  Pick	
  a	
  prior.	
  
44	
  
LLNL-PRES-697098
Case	
  Study:	
  Interval	
  Es4ma4on	
  
Bayesian	
  Solu%on	
  (Credible	
  Interval)	
  
	
  1.  Pick	
  a	
  prior.	
  
2.  Calculate	
  posterior.	
  
	
  
45	
  
LLNL-PRES-697098
Bayesian	
  Solu%on	
  (Credible	
  Interval)	
  
	
  1.  Pick	
  a	
  prior.	
  
2.  Calculate	
  posterior.	
  
3.  Find	
  5th	
  percen%le.	
  
	
  
	
  
Case	
  Study:	
  Interval	
  Es4ma4on	
  
95%	
  (subjec%ve)	
  probability	
  that	
  Pr(X=1)	
  is	
  at	
  least	
  15.3%.	
  	
  
	
  
46	
  
LLNL-PRES-697098
Case	
  Study:	
  Interval	
  Es4ma4on	
  
Frequen%st	
  Solu%on	
  (Confidence	
  Interval)	
  
1.  Determine	
  all	
  results	
  that	
  are	
  
as	
  or	
  more	
  consistent	
  with	
  
outcome	
  of	
  interest.	
  
	
  
	
  
	
  
	
  
Care	
  about	
  12	
  or	
  
more	
  1s	
  in	
  50	
  rolls.	
  
	
  
	
  
47	
  
LLNL-PRES-697098
Frequen%st	
  Solu%on	
  (Confidence	
  Interval)	
  
1.  Determine	
  all	
  results	
  that	
  are	
  
as	
  or	
  more	
  consistent	
  with	
  
outcome	
  of	
  interest.	
  
2.  Iden%fy	
  all	
  Pr(X=1)	
  that	
  have	
  
>5%	
  chance	
  of	
  producing	
  12	
  
or	
  more	
  1s.	
  
	
  
	
  
	
  
	
  
With	
  95%	
  confidence,	
  Pr(X=1)	
  is	
  at	
  least	
  14.5%.	
  
	
  
Case	
  Study:	
  Interval	
  Es4ma4on	
  
Pr(12ormore1sin50rolls)
Pr(X=1)
48	
  
LLNL-PRES-697098
Case	
  Study:	
  Interval	
  Es4ma4on	
  
Both	
  give	
  Pr(X=1)	
  >15%*	
  
with	
  “uncertainty”	
  of	
  5%.	
  
*15.3%	
  (Bayesian	
  with	
  Jeffreys	
  prior)	
  vs.	
  14.5%	
  (frequen%st)	
  
…	
  but	
  confidence	
  interval	
  takes	
  a	
  lot	
  longer	
  to	
  
explain.	
  
49	
  
LLNL-PRES-697098
Why	
  Did	
  This	
  Catch	
  On?	
  
Objec%ve	
  probability	
  is	
  restric%ve,	
  but	
  results	
  mean	
  the	
  
same	
  thing	
  to	
  everyone.	
  	
  
	
  
	
  
(Even	
  if	
  you	
  don’t	
  know	
  what	
  they	
  mean.)	
  	
  
	
  
	
  
50	
  
LLNL-PRES-697098
BaXle	
  of	
  the	
  Bayesians	
  
20th	
  Century	
  -­‐	
  ???	
  
vs
Representative likeness of a subjective BayesianRepresentative likeness of an objective Bayesian
51	
  
LLNL-PRES-697098
The	
  Search	
  For	
  Scorpion	
  
1968	
  
52	
  
LLNL-PRES-697098
The	
  Search	
  For	
  Scorpion	
  
1968	
  
Contact M8/3
53	
  
LLNL-PRES-697098
The	
  Search	
  For	
  Scorpion	
  
1968	
  
Scorpion location
54	
  
LLNL-PRES-697098
Computa4on	
  
Late	
  20th	
  Century	
  
55	
  
LLNL-PRES-697098
You	
  Are	
  Here	
  
Why This Matters
What is Probability?
What is Uncertainty?
An Incomplete History of Uncertainty Quantification
The BIG Reveal
56	
  
LLNL-PRES-697098
My	
  Uncertainty	
  Quan4fica4on	
  Toolbox	
  
57	
  
LLNL-PRES-697098
What	
  Have	
  We	
  Learned	
  Today?	
  
Statisticians use probability to describe
uncertainty.
We do not always agree about
how this should be done.
58	
  
LLNL-PRES-697098
Ques%ons?	
  
lennox@llnl.gov	
  
Thank	
  you	
  for	
  coming!	
  
Thomas Bayes would never have worn these glasses.
59	
  
LLNL-PRES-697098
§  The	
  Theory	
  That	
  Would	
  Not	
  Die:	
  How	
  Bayes'	
  Rule	
  Cracked	
  the	
  Enigma	
  Code,	
  Hunted	
  Down	
  Russian	
  Submarines,	
  and	
  
Emerged	
  Triumphant	
  from	
  Two	
  Centuries	
  of	
  Controversy.	
  McGrayne,	
  S.	
  B.	
  Yale	
  University	
  Press.	
  (2011)	
  
§  Bruno	
  de	
  FineJ:	
  Radical	
  Probabilist.	
  Ed.	
  Galavoj,	
  M.	
  C.	
  Texts	
  in	
  Philosophy	
  8.	
  College	
  Publica%ons.	
  (2009)	
  
§  Fisher,	
  Neyman,	
  and	
  the	
  Crea,on	
  of	
  Classical	
  Sta,s,cs.	
  Lehmann,	
  E.	
  L.	
  Springer.	
  (2011)	
  
§  The	
  History	
  of	
  Probability	
  and	
  Sta,s,cs	
  and	
  Their	
  Applica,ons	
  Before	
  1750.	
  Hald,	
  A.	
  Wiley-­‐Interscience.	
  (2003)	
  
§  Founda,ons	
  of	
  the	
  Theory	
  of	
  Probability.	
  Kolmogorov,	
  A.	
  N.	
  2nd	
  English	
  Edi%on.	
  Chelsea	
  Publishing	
  Company.	
  (1950)	
  
§  “Opera%ons	
  Analysis	
  During	
  the	
  Underwater	
  Search	
  for	
  Scorpion.”	
  Richardson,	
  H.	
  R.	
  and	
  Stone,	
  L.	
  D.	
  Naval	
  Research	
  
Quarterly.	
  18,	
  pp.	
  141-­‐157	
  	
  (1971)	
  	
  
§  “An	
  Essay	
  Towards	
  Solving	
  a	
  Problem	
  in	
  the	
  Doctrine	
  of	
  Chances.”	
  	
  Bayes,	
  T.	
  and	
  Price,	
  R.	
  Philosophical	
  Transac,ons.	
  
53,	
  pp.	
  370-­‐418	
  (1763)	
  	
  	
  
§  “Sta%s%cal	
  Analysis	
  and	
  the	
  Illusion	
  of	
  Objec%vity.”	
  Berger,	
  J.	
  and	
  Berry,	
  D.	
  American	
  Scien,st.	
  76,	
  pp.	
  159-­‐165	
  (1988)	
  
§  “You	
  May	
  Believe	
  You	
  are	
  a	
  Bayesian	
  but	
  You	
  are	
  Probably	
  Wrong.”	
  Senn,	
  S.	
  Ra,onality,	
  Markets	
  and	
  Morals.	
  2,	
  pp.
48-­‐66	
  (2011)	
  
§  “The	
  Case	
  for	
  Objec%ve	
  Bayes.”	
  Berger,	
  J.	
  Bayesian	
  Analysis.	
  1,	
  pp.	
  1-­‐17	
  (2004)	
  
§  “When	
  Genius	
  Errs:	
  R.A.	
  Fisher	
  and	
  the	
  Lung	
  Cancer	
  Controversy.”	
  Stoley,	
  P.	
  D.	
  American	
  Journal	
  of	
  Epidemiology.	
  
133,	
  pp.	
  416-­‐425	
  (1991)	
  
§  “The	
  Evolu%on	
  of	
  Markov	
  Chain	
  Monte	
  Carlo	
  Methods.”	
  Richey,	
  M.	
  The	
  American	
  Mathema,cal	
  Monthly.	
  117,	
  
383-­‐413	
  (May	
  2010)	
  
§  and	
  of	
  course	
  Wikipedia.org	
  
Further	
  Reading	
  
All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty

More Related Content

PDF
Conceptualizing in research : an overview
PPSX
Rational choice of inotropes and vasopressors in intensive care unit
PDF
Generative AI: Past, Present, and Future – A Practitioner's Perspective
PPTX
Basal ganglia
PPTX
Pragmatic trial.pptx
PPTX
EEG artifacts
PPTX
Lung Protective Ventilation
PPTX
Diabetes Mellitus
Conceptualizing in research : an overview
Rational choice of inotropes and vasopressors in intensive care unit
Generative AI: Past, Present, and Future – A Practitioner's Perspective
Basal ganglia
Pragmatic trial.pptx
EEG artifacts
Lung Protective Ventilation
Diabetes Mellitus

Viewers also liked (13)

PDF
Everything wrong with statistics (and how to fix it)
PPTX
Portunus webinar: Floating port technologies could revolutionize container co...
PDF
Space and Cyber: Roles and Issues in Deterrence
PDF
Role of Space in Deterrence
PDF
PDF
Target Fabrication Capabilities
PDF
Lessons Learned from Analysis of Minimum Deterrence Proposals
PPTX
Next-Generation Optical Fiber Fabrication
PDF
LLNL 2015 Year in Review
PDF
"Cross domain” deterrence, escalation geometries and the morphing of strategy
PDF
PDF
Julia language: inside the corporation
Everything wrong with statistics (and how to fix it)
Portunus webinar: Floating port technologies could revolutionize container co...
Space and Cyber: Roles and Issues in Deterrence
Role of Space in Deterrence
Target Fabrication Capabilities
Lessons Learned from Analysis of Minimum Deterrence Proposals
Next-Generation Optical Fiber Fabrication
LLNL 2015 Year in Review
"Cross domain” deterrence, escalation geometries and the morphing of strategy
Julia language: inside the corporation
Ad

Similar to All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty (20)

PDF
A Primer Of Ecological Statistics 2nd Edition Ellison Aaron Mgotelli
PDF
A Primer Of Ecological Statistics 2nd Edition Ellison Aaron Mgotelli
PPT
Ppt unit-05-mbf103
PPTX
Probability theory
PPT
tps5e_Ch5_3.ppt
PPT
tps5e_Ch5_3.ppt
PPTX
Notes_5.2 (1).pptx
PPTX
Notes_5.2 (1).pptx
PPTX
Notes_5.2.pptx
PDF
Different types of distributions
PDF
A survey of probability concepts DOC-20250701-WA0001..pdf
PDF
Foundations of Statistics in Ecology and Evolution. 8. Bayesian Statistics
PPT
Probability
PDF
Metabolomic data: combining wavelet representation with learning approaches
PDF
Probability Distribution (Discrete Random Variable)
PDF
Probably, Definitely, Maybe
PPTX
Statistical Analysis with R- III
PDF
2013.03.26 Bayesian Methods for Modern Statistical Analysis
PDF
2013.03.26 An Introduction to Modern Statistical Analysis using Bayesian Methods
PPT
stat-106-4-2_6.ppt
A Primer Of Ecological Statistics 2nd Edition Ellison Aaron Mgotelli
A Primer Of Ecological Statistics 2nd Edition Ellison Aaron Mgotelli
Ppt unit-05-mbf103
Probability theory
tps5e_Ch5_3.ppt
tps5e_Ch5_3.ppt
Notes_5.2 (1).pptx
Notes_5.2 (1).pptx
Notes_5.2.pptx
Different types of distributions
A survey of probability concepts DOC-20250701-WA0001..pdf
Foundations of Statistics in Ecology and Evolution. 8. Bayesian Statistics
Probability
Metabolomic data: combining wavelet representation with learning approaches
Probability Distribution (Discrete Random Variable)
Probably, Definitely, Maybe
Statistical Analysis with R- III
2013.03.26 Bayesian Methods for Modern Statistical Analysis
2013.03.26 An Introduction to Modern Statistical Analysis using Bayesian Methods
stat-106-4-2_6.ppt
Ad

More from Lawrence Livermore National Laboratory (6)

PDF
21st Century Air Force Nuclear Deterrence and Escalation
PDF
Cross-Domain Deterrence Seminar Summary Notes
PDF
Strategic Latency and World Power: How Technology Is Changing Our Concepts of...
PDF
Science and Technology Update - March 2014
PDF
Real-world STEM role models: Lab women profiled by Department of Energy
PDF
Meet some of the Women of NIF
21st Century Air Force Nuclear Deterrence and Escalation
Cross-Domain Deterrence Seminar Summary Notes
Strategic Latency and World Power: How Technology Is Changing Our Concepts of...
Science and Technology Update - March 2014
Real-world STEM role models: Lab women profiled by Department of Energy
Meet some of the Women of NIF

Recently uploaded (20)

PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PDF
An interstellar mission to test astrophysical black holes
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPTX
TOTAL hIP ARTHROPLASTY Presentation.pptx
PDF
Sciences of Europe No 170 (2025)
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPT
Chemical bonding and molecular structure
PPTX
Microbiology with diagram medical studies .pptx
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
PPTX
famous lake in india and its disturibution and importance
DOCX
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
PPT
protein biochemistry.ppt for university classes
PDF
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
PDF
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
An interstellar mission to test astrophysical black holes
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
microscope-Lecturecjchchchchcuvuvhc.pptx
TOTAL hIP ARTHROPLASTY Presentation.pptx
Sciences of Europe No 170 (2025)
2. Earth - The Living Planet Module 2ELS
SEHH2274 Organic Chemistry Notes 1 Structure and Bonding.pdf
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
Chemical bonding and molecular structure
Microbiology with diagram medical studies .pptx
INTRODUCTION TO EVS | Concept of sustainability
Classification Systems_TAXONOMY_SCIENCE8.pptx
famous lake in india and its disturibution and importance
Q1_LE_Mathematics 8_Lesson 5_Week 5.docx
protein biochemistry.ppt for university classes
ELS_Q1_Module-11_Formation-of-Rock-Layers_v2.pdf
CAPERS-LRD-z9:AGas-enshroudedLittleRedDotHostingaBroad-lineActive GalacticNuc...
7. General Toxicologyfor clinical phrmacy.pptx

All About that Bayes: Probability, Statistics, and the Quest to Quantify Uncertainty

  • 1. LLNL-PRES-697098 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC All  About  That  Bayes     Probability,  Sta4s4cs,  and  the  Quest  to  Quan4fy  Uncertainty   Kris%n  P.  Lennox   Director  of  Sta%s%cal  Consul%ng  July 28, 2016
  • 2. 2   LLNL-PRES-697098 Man  of  the  (Literal)  Hour   Probably not Thomas Bayes, but often mistaken for him Source: Wikipedia
  • 3. 3   LLNL-PRES-697098 Central  Dogma  of  Inferen4al  Sta4s4cs   Statisticians use probability to describe uncertainty.
  • 4. 4   LLNL-PRES-697098 You  Are  Here   Why This Matters What is Probability? What is Uncertainty? An Incomplete History of Uncertainty Quantification The BIG Reveal
  • 5. 5   LLNL-PRES-697098 You  Are  Here   Why This Matters What is Probability? What is Uncertainty? An Incomplete History of Uncertainty Quantification The BIG Reveal
  • 6. 6   LLNL-PRES-697098 §  Probability   §  Distribu%on   §  Parameter   §  Likelihood   What  is  Probability?   1933   A. N. Kolmogorov Copyright MFO, Creative Commons License
  • 7. 7   LLNL-PRES-697098 A. N. Kolmogorov Copyright MFO, Creative Commons License §  Probability  is  a  measure.   §  Distribu%on   §  Parameter   §  Likelihood   What  is  Probability?   1933  
  • 8. 8   LLNL-PRES-697098 §  Probability  is  a  measure.   §  Distribu%ons  define  measure  of  events.   §  Parameter   §  Likelihood   Exponential Normal/Gaussian What  is  Probability?  
  • 9. 9   LLNL-PRES-697098 §  Probability  is  a  measure.   §  Distribu%ons  define  measure  of  events.   §  Parameters  define  distribu%ons.   §  Likelihood   Exponential Normal/Gaussian What  is  Probability?  
  • 10. 10   LLNL-PRES-697098 f (x) = Pr(X = x |Θ =θ) §  Probability  is  a  measure.   §  Distribu%ons  define  measure  of  events.   §  Parameters  define  distribu%ons.   §  Likelihood  fixes  data  and  varies  parameters.   What  is  Probability?  
  • 11. 11   LLNL-PRES-697098 §  Probability  is  a  measure.   §  Distribu%ons  define  measure  of  events.   §  Parameters  define  distribu%ons.   §  Likelihood  fixes  data  and  varies  parameters.   l(θ) = Pr(X = x |Θ =θ) What  is  Probability?  
  • 12. 12   LLNL-PRES-697098 You  Are  Here   Why This Matters What is Probability? What is Uncertainty? An Incomplete History of Uncertainty Quantification The BIG Reveal
  • 13. 13   LLNL-PRES-697098 A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15   1
  • 14. 14   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15   2
  • 15. 15   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 16. 16   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 17. 17   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 18. 18   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15   3
  • 19. 19   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 20. 20   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 21. 21   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 22. 22   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15   4
  • 23. 23   LLNL-PRES-697098       A  Fable   The  Sta4s4cal  Lunch  Bunch  and  the  Summer  Student  Revolt  of  ‘15  
  • 24. 24   LLNL-PRES-697098 You  Are  Here   Why This Matters What is Probability? What is Uncertainty? An Incomplete History of Uncertainty Quantification The BIG Reveal
  • 25. 25   LLNL-PRES-697098 In  the  Beginning…     1654   P. Fermat Source: Wikipedia, Creative Commons License B. Pascal Source: Wikipedia, Creative Commons License
  • 26. 26   LLNL-PRES-697098 Thomas  Bayes  and  the  Doctrine  of  Chances   1763   Still not Thomas Bayes Source: Wikipedia
  • 28. 28   LLNL-PRES-697098 Blindfolded  1-­‐Dimensional  Table  Bocce   PriorDensity n=0
  • 29. 29   LLNL-PRES-697098 Blindfolded  1-­‐Dimensional  Table  Bocce   PosteriorDensity n=1
  • 33. 33   LLNL-PRES-697098 §  What  is  the  probability  that  event  x  occurs  given  that  event  y   occurs?       Bayes  Theorem   Pr(X = x |Y = y) = Pr(Y = y | X = x)Pr(X = x) Pr(Y = y)
  • 34. 34   LLNL-PRES-697098 What  is  the  probability  that  our  distribu,on  parameter  is  θ given   that  we  have  observed  data  x?       Bayes  Theorem  –  Bayesian  Version   Pr(Θ =θ | X = x) = Pr(X = x |Θ =θ)Pr(Θ =θ) Pr(X = x) Prior distribution of θ Posterior distribution of θ given x A constant of integration that most people don’t talk about Likelihood
  • 35. 35   LLNL-PRES-697098 The  Man  Who  Invented  Sta4s4cs   18th  Century   P. S. Laplace Source: Wikipedia, Creative Commons License
  • 36. 36   LLNL-PRES-697098 The  Prior  and  Its  Enemies   Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ)Pr(Θ =θ) Posterior distribution of θ given x Likelihood Where does the prior come from? Prior distribution of θ
  • 37. 37   LLNL-PRES-697098 Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ)Pr(Θ =θ) Prior distribution of θPosterior distribution of θ given x Likelihood What is the probability that the sun will rise tomorrow? The  Sun  Will  Come  Out  Tomorrow?    
  • 38. 38   LLNL-PRES-697098 Pr(Θ =θ | X = x)∝ Pr(X = x |Θ =θ) Posterior distribution of θ given x Likelihood What is the probability that the sun will rise tomorrow? The  Sun  Will  Come  Out  Tomorrow?     in  (0,1)
  • 39. 39   LLNL-PRES-697098 The  Sun  Will  Come  Out  Tomorrow?     What is the probability that the sun will rise tomorrow? E θ | X = x[ ]= # of times sun has come up + 1 # of times sun has come up + 2
  • 40. 40   LLNL-PRES-697098 The  Sun  Will  Come  Out  Tomorrow?*     What is the probability that the sun will rise tomorrow? = 0.9999995= 5000×365.25 + 1 5000×365.25 + 2 *As calculated by Laplace
  • 41. 41   LLNL-PRES-697098 The  Frequen4sts   Early  20th  Century   J. Neyman Source: Wikipedia, Creative Commons License R. A. Fisher Source: Wikipedia, Creative Commons License
  • 42. 42   LLNL-PRES-697098 Case  Study:  Interval  Es4ma4on   What  is  lowest  reasonable  Pr(X=1)?
  • 43. 43   LLNL-PRES-697098 Case  Study:  Interval  Es4ma4on   Bayesian  Solu%on  (Credible  Interval)    1.  Pick  a  prior.  
  • 44. 44   LLNL-PRES-697098 Case  Study:  Interval  Es4ma4on   Bayesian  Solu%on  (Credible  Interval)    1.  Pick  a  prior.   2.  Calculate  posterior.    
  • 45. 45   LLNL-PRES-697098 Bayesian  Solu%on  (Credible  Interval)    1.  Pick  a  prior.   2.  Calculate  posterior.   3.  Find  5th  percen%le.       Case  Study:  Interval  Es4ma4on   95%  (subjec%ve)  probability  that  Pr(X=1)  is  at  least  15.3%.      
  • 46. 46   LLNL-PRES-697098 Case  Study:  Interval  Es4ma4on   Frequen%st  Solu%on  (Confidence  Interval)   1.  Determine  all  results  that  are   as  or  more  consistent  with   outcome  of  interest.           Care  about  12  or   more  1s  in  50  rolls.      
  • 47. 47   LLNL-PRES-697098 Frequen%st  Solu%on  (Confidence  Interval)   1.  Determine  all  results  that  are   as  or  more  consistent  with   outcome  of  interest.   2.  Iden%fy  all  Pr(X=1)  that  have   >5%  chance  of  producing  12   or  more  1s.           With  95%  confidence,  Pr(X=1)  is  at  least  14.5%.     Case  Study:  Interval  Es4ma4on   Pr(12ormore1sin50rolls) Pr(X=1)
  • 48. 48   LLNL-PRES-697098 Case  Study:  Interval  Es4ma4on   Both  give  Pr(X=1)  >15%*   with  “uncertainty”  of  5%.   *15.3%  (Bayesian  with  Jeffreys  prior)  vs.  14.5%  (frequen%st)   …  but  confidence  interval  takes  a  lot  longer  to   explain.  
  • 49. 49   LLNL-PRES-697098 Why  Did  This  Catch  On?   Objec%ve  probability  is  restric%ve,  but  results  mean  the   same  thing  to  everyone.         (Even  if  you  don’t  know  what  they  mean.)        
  • 50. 50   LLNL-PRES-697098 BaXle  of  the  Bayesians   20th  Century  -­‐  ???   vs Representative likeness of a subjective BayesianRepresentative likeness of an objective Bayesian
  • 51. 51   LLNL-PRES-697098 The  Search  For  Scorpion   1968  
  • 52. 52   LLNL-PRES-697098 The  Search  For  Scorpion   1968   Contact M8/3
  • 53. 53   LLNL-PRES-697098 The  Search  For  Scorpion   1968   Scorpion location
  • 55. 55   LLNL-PRES-697098 You  Are  Here   Why This Matters What is Probability? What is Uncertainty? An Incomplete History of Uncertainty Quantification The BIG Reveal
  • 56. 56   LLNL-PRES-697098 My  Uncertainty  Quan4fica4on  Toolbox  
  • 57. 57   LLNL-PRES-697098 What  Have  We  Learned  Today?   Statisticians use probability to describe uncertainty. We do not always agree about how this should be done.
  • 58. 58   LLNL-PRES-697098 Ques%ons?   lennox@llnl.gov   Thank  you  for  coming!   Thomas Bayes would never have worn these glasses.
  • 59. 59   LLNL-PRES-697098 §  The  Theory  That  Would  Not  Die:  How  Bayes'  Rule  Cracked  the  Enigma  Code,  Hunted  Down  Russian  Submarines,  and   Emerged  Triumphant  from  Two  Centuries  of  Controversy.  McGrayne,  S.  B.  Yale  University  Press.  (2011)   §  Bruno  de  FineJ:  Radical  Probabilist.  Ed.  Galavoj,  M.  C.  Texts  in  Philosophy  8.  College  Publica%ons.  (2009)   §  Fisher,  Neyman,  and  the  Crea,on  of  Classical  Sta,s,cs.  Lehmann,  E.  L.  Springer.  (2011)   §  The  History  of  Probability  and  Sta,s,cs  and  Their  Applica,ons  Before  1750.  Hald,  A.  Wiley-­‐Interscience.  (2003)   §  Founda,ons  of  the  Theory  of  Probability.  Kolmogorov,  A.  N.  2nd  English  Edi%on.  Chelsea  Publishing  Company.  (1950)   §  “Opera%ons  Analysis  During  the  Underwater  Search  for  Scorpion.”  Richardson,  H.  R.  and  Stone,  L.  D.  Naval  Research   Quarterly.  18,  pp.  141-­‐157    (1971)     §  “An  Essay  Towards  Solving  a  Problem  in  the  Doctrine  of  Chances.”    Bayes,  T.  and  Price,  R.  Philosophical  Transac,ons.   53,  pp.  370-­‐418  (1763)       §  “Sta%s%cal  Analysis  and  the  Illusion  of  Objec%vity.”  Berger,  J.  and  Berry,  D.  American  Scien,st.  76,  pp.  159-­‐165  (1988)   §  “You  May  Believe  You  are  a  Bayesian  but  You  are  Probably  Wrong.”  Senn,  S.  Ra,onality,  Markets  and  Morals.  2,  pp. 48-­‐66  (2011)   §  “The  Case  for  Objec%ve  Bayes.”  Berger,  J.  Bayesian  Analysis.  1,  pp.  1-­‐17  (2004)   §  “When  Genius  Errs:  R.A.  Fisher  and  the  Lung  Cancer  Controversy.”  Stoley,  P.  D.  American  Journal  of  Epidemiology.   133,  pp.  416-­‐425  (1991)   §  “The  Evolu%on  of  Markov  Chain  Monte  Carlo  Methods.”  Richey,  M.  The  American  Mathema,cal  Monthly.  117,   383-­‐413  (May  2010)   §  and  of  course  Wikipedia.org   Further  Reading