SlideShare a Scribd company logo
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
Analytic Solution Of Burger’s Equations By Variational Iteration
                            Method
                                     P. R. Mistry* and V. H. Pradhan**
                *
                    (Department of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India)
               **
                    (Departments of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India)



Abstract
By means of variational iteration method the                    2 VARIATIONAL ITERATION METHOD:
solutions of (1+1), (1+2) and (1+3) dimensional                 Consider the following differential equation:
Burger equations are exactly obtained. In this                  Lu  Nu  h ( x, t )                     (2.1)
paper, He's variational iteration method is                     where L is a linear operator, N a nonlinear
introduced to overcome the difficulty arising in
calculating Adomian polynomials.                                operator, and an     h ( x, t ) is the source
                                                                inhomogeneous term. The VIM was proposed by
Key words: Burger’s equation, Nonlinear time                    “He”, where a correctional functional for equation
dependent partial differential equations, Variational           (1.4.1) can be written as
iteration method and Lagrange multiplier.                       un 1 (t )  un (t ) 
                                                                t
                                                                                                             , n  0 (2.2)
1 Introduction
         We often come with non linear partial
                                                                  ( Lu ( )  Nu ( )  h ( )) d
                                                                0
                                                                          n
                                                                                         n


differential          equations      obtained       through
                                                                        Where  is a general Lagrange multiplier
mathematical models of scientific phenomena.
                                                                which can be identified optimally via the variational
There are some methods to obtain approximate                    theory. The subscript           n     indicates the        n th
solution of this kind of equation. Some of them are             approximation and           
                                                                                           u n is considered as a restricted
numerical methods, homotopy analysis,                    Exp-
                                                                variation, i.e.           un  0 . It is clear that the
                                                                                           
function method, and linearization of the equation
                                                                successive approximations   un , n  0 can be
[1, 6, 7]. In 1999, the variational iteration method
                                                                established by determining      , so we first
was developed by mathematician “He”. This method
                                                                determine the Lagrange multiplier  that will be
is used for solving linear and non linear differential          identified optimally via integration by parts. The
equations. The method introduces a reliable and                 successive approximation un ( x, t ), n  0 of the
efficient process for a wide variety of scientific and          solution u( x, t ) will be readily obtained using the
engineering applications [1, 2, 4, 5,]. It is based on          Lagrange multiplier obtained and by using any
Lagrange multiplier and it has the merits of                    selective function u 0 . The initial values u( x,0)
simplicity and easy execution. This method avoids               and   ut ( x,0) are usually used for selecting the
linearization of the problem.                                   zeroth approximation u 0 . With  determined, then
         In this paper exact solution of (1+1), (1+2)           several approximation    un ( x, t ), n  0 , follow
and (1+3) dimensional Burger equation [3] has been              immediately. Consequently the exact solution may
obtained by variational iteration method.                The    be obtained by using
mentioned           problem    has    been      solved    by     u  lim un                             (2.3)
                                                                      n
N.Taghizadeh etc. [3] by Homotopy Perturbation
Method and Reduced Differential Transformation                  3. APPLICATION OF                           VIM       FOR
                                                                BURGER’S EQUATION:
Method here in the present paper we have solved the             3.1       (1+1)-Dimensional Burgers equation
same problem by variational iteration mehod..                   u     u      2u 
                                                                    u     2   0                         (3.1.1)
                                                                t     x     x 


                                                                                                            242 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
                              (IJERA)                 ISSN: 2248-9622           www.ijera.com
                                    Vol. 2, Issue 6, November- December 2012, pp.242-246
                                                                               u4  {{{{x(1  t  t 2 2  t 3 3  t 4 4
           I.C.: u  x,0       x                      (3.1.2)
                                                                                 13t 5 5 2t 6 6 29t 7 7 71t 8 8
                                                                                                             
                   Now following the variational iteration                          15         3          63        252
           method given in the above section we get the                          86t 
                                                                                     9 9
                                                                                             22t 
                                                                                                 10 10
                                                                                                          5t 
                                                                                                             11 11
                                                                                                                     t12 12
           following functional                                                                                 
                                                                                   567         315         189         126
un 1 ( x, t )  un ( x, t )                                                    t 
                                                                                  13 13
                                                                                           t 
                                                                                            14 14
                                                                                                     t 
                                                                                                       15 15
                                                                                                           )}}}}          (3.1.9)
      un                               2u                                   567      3969 59535
               u               
t
                                                           (3.1.3)

0     t
             un n
               x
                                 
                                 
                                      2n   d
                                        x  
                                                                               u5  {{{{{x(1  t  t 2 2  t 3 3  t 4 4
                                                                                           43t 6 6 13t 7 7 943t 8 8
                                                                               t 5 5                                       
           Stationary conditions can be obtained as follows:                                  45         15          1260
                                                                               3497t 9 9 27523t10 10 1477t11 11
            '    0                                                                                         
                                                                                  5670              56700             4050
                                                 (3.1.4)
           1                                                                17779t   12 12
                                                                                                     13141t  13 13
                                                                                                                       1019t14 14
                           t                                                                                     
                                                                                    68040               73710               8820
                     The Lagrange multiplier can therefore be                    63283t    15 15
                                                                                                     43363t   16 16
                                                                                                                        1080013t17 17
           simply identified as   1 , and substituting this                                                     
                                                                                   893025              1058400              48580560
           value of Lagrange multiplier into the functional
           (3.1.3) gives the following iteration equation.                       2588t   18 18
                                                                                                   162179t    19 19
                                                                                                                        16511t 20 20
                                                                                                                   
                                                                                   229635             30541455             7144200
           un 1 ( x, t )  un ( x, t )                                         207509t     21 21
                                                                                                       557t 22 22
                                                                                                                       2447t 23 23
                                                                                                                                 
            t
              un     u                   2 un     (3.1.5)                225042300            1666980 22504230
             t    un xn
           0         
                                          2
                                            x
                                                         d
                                                                             16927t 24 24 5309t 25 25             t 26 26
                                                                                                                  
                                                                               540101520 675126900 595350
                    As stated before, we can select Initial                       2t 27 27        13t 28 28          t 29 29
           condition given in the equation (3.1.2) and using                                                   
           this selection in (3.1.5) we obtain the following                     6751269 315059220 236294415
           successive approximations:                                                 t 30 30             t 31 31
                                                                                                                         )}}}}}(3.1.10)
                                                                                 3544416225 109876902975
           u1  {x  tx }                                           (3.1.6)
                                       1                                       u  x, t   u1  u2  u3  ....                (3.1.11)
           u2  {{x   (tx  t 2 x  t 3 x 2 )}} (3.1.7)
                                       3                                                       x
                                                                               u  x, t                               (3.1.12)
                                        1
           u3  {{{x  tx  t 2 x 2  t 3 x 3                                            1  t
                                        3
                                                                               3.2         (2+1)-Dimensional Burger’s equation
                              1 3 2
            (tx  t 2 x  t x ) 
                              3                                                u     u  u 
                                                    (3.1.8)
                                    2 4 3                                          u  u  
            (tx  t x  t x  t x
                    2       3    2
                                                                               t     x  y 
                                    3                                                                                       (3.2.1)
                                                                                    2u  2u 
             1           1          1
            t 5 x 4  t 6 x 5  t 7 x 6 )}}}                                 2  2 0
             3           9          63                                             x      y 
                                                                               I.C.: u  x, y,0  x  y                  (3.2.2)

                                                                               Now following the variational iteration method, we
                                                                               get the following functional




                                                                                                                        243 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
un 1 ( x, t )  un ( x, t )                         u4  {{{{x  y  2tx
     un       u       u                             2ty  4t 2 x 2 
             un n  un n  
t
     t        x       y      (3.2.3)               4t 2 y 2  8t 3 x 3
     2u  2u              d
                                                           8t 3 y 3  16t 4 x 4
0
        2n  2n           
           x     y         
                                                        16t 4 y 4 
                                                                         416 5 5
                                                                              t x
                                                                         15
Stationary conditions can be obtained as follows:            416 5 5 128 6 6
                                                                 t y         t x
 '    0
                                                              15            3
                                                            128 6 6 3712 7 7
1    
                                       (3.2.4)
                                                                t y           t x
               t                                            3            63
                                                             3712 7 7 4544 8 8
          The Lagrange multiplier can therefore be                t y           t x
simply identified as   1 , and substituting this            63             63
value of Lagrange multiplier into the functional              4544 8 8 44032 9 9
(3.2.3) gives the following iteration equation.                    t y            t x
                                                               63             567
un 1 ( x, t )  un ( x, t )                                 44032 9 9 22528 10 10
                                                                    t y             t x
                                                               567              315
   un       u       u  
           un n  un n                               
                                                              22528 10 10 10240 11 11
                                                                     t y              t x
   t        x       y  
t
                                           (3.2.5)
    2u  2u              d
                                                               315                189
                                                              10240 11 11 2048 12 12
0
      2n  2n                                                  t y           t x
         x     y         
                                                             189               63

                                                        2048 12 12 8192 13 13
         As stated before, we can select Initial             t y          t x
condition given in the equation (3.2.2) and using         63           567
this selection in (3.2.5) we obtain the following
                                                        8192 13 13 16384t14 x 14
successive approximations:                                   t y 
                                                         567                3969
u1  {x  y  2t ( x  y ) }            (3.2.6)            16384t y
                                                                  14  14
                                                                            32768t15 x 15
                                                                         
u2  {{x  y  2tx  2ty                                     3969           59535
                          8                                 32768t y
                                                                   15  15
   4t 2 x 2  4t 2 y 2  t 3 x 3       (3.2.7)                        }}}}             (3.2.9)
                          3                                     59535
    8
    t 3 y 3}}
     3
u3  {{{x  y  2tx  2ty 
4t 2 x 2  4t 2 y 2  8t 3 x 3  8t 3 y 3
  32              32            32
 t 4 x 4  t 4 y 4  t 5 x 5 (3.2.8)
    3              3             3
  32              64           64
 t 5 y 5  t 6 x 6  t 6 y 6
    3              9             9
  128 7 7 128 7 7
       t x          t y }}}
   63               63




                                                                                         244 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
u5  {{{{{x  y  2tx  2ty                         un 1 ( x, t )  un ( x, t ) 
4t 2 x 2  4t 2 y 2  8t 3 x 3                        un       u        u    u  
                                                                  un n  un n  un n  
8t y  16t x  16t y
      3   3       4    4       4     4                t
                                                            t       x        y    z  
                                                        
                                                                                                                 (3.3.3)
                                2752 6 6                  2u  2u  2u                 d
32t 5 x 5  32t 5 y 5             t x            0
                                                            2  2  2 
                                                                    n      n     n         
                                 45                             x     y     z         
                                                                                         
  2752 6 6 1664 7 7
        t y                t x
   45                  15                             Stationary conditions can be obtained as follows:
  1664 7 7 60352 8 8
       t y                  t x                    '    0
   15                  315                                                                      (3.3.4)
  60352 8 8 895232t 9 x 9                            1         t
          t y 
   315                        2835
                                                                The Lagrange multiplier can therefore be
  895232t y 9    9
                         7045888t10 x 10             simply identified as   1 , and substituting this
                    
       2835                     14175                 value of Lagrange multiplier into the functional
                                                      (3.3.3) gives the following iteration equation.
  7045888t y  10     10
                            1512448t11 x 11
                        
        14175                       2025              un 1 ( x, t )  un ( x, t ) 
  1512448t y  11    11
                           9102848t12 x 12              un
                                                                  u        u    u  
        2025                       8505                          un n  un n  un n  
                                                         t        x        y     z  
                                                      t
                                                                                                                (3.3.5)
  9102848t y                53825536t13 x 13            2u  2u  2u                 d
               12    12
                        
         8505                       36855             0
                                                           2  2  2 
                                                                   n      n     n          
                                                               x     y     z          
53825536t y  13    13
                           4173824t14 x 14                                              
                         
      36855                        2205               As stated before, we can select Initial condition
  4173824t y  14     14
                             2073657344t15 x 15      given in the equation (3.3.2) and using this selection
                                                    in (3.3.5) we obtain the following successive
         2205                        893025           approximations:
  2073657344t y    15      15

          893025                                      u1  {x  y  z  3t ( x  y  z ) }         (3.3.6)
  88807424t16 x 16                                   u2  {{x  y  z  3tx  3ty
                           .......}}}}} (3.2.10)
        33075                                               3tz  9t 2 x 2  9t 2 y 2
                                                                                                    (3.3.7)
                                                            9t 2 z 2  9t 3 x 3
u  x, t   u1  u2  u3  ....          (3.2.11)
                  x y                                    9t 3 y 3  9t 3 z 3}}
u  x, y , t                           (3.2.12)     u3  {{{x  y  z  3tx  3ty
                 1  2 t
                                                       3tz  9t 2 x 2  9t 2 y 2
3.3       (3+1)-Dimensional Burger’s equation
 u     u  u  u                                   9t 2 z 2  27t 3 x 3  27t 3 y 3
     u  u  u 
 t     x  y  z                                   27t 3 z 3  54t 4 x 4  54t 4 y 4
                                            (3.3.1)
      2u  2u  2u                                  54t 4 z 4  81t 5 x 5  81t 5 y 5        (3.3.8)
   2  2  2   0
     x y     z                                    81t z  81t x  81t y
                                                              5    5         6     6   6    6


I.C.: u  x, y, z,0  x    yz           (3.3.2)     81t 6 z 6 
                                                                           243 7 7 243 7 7
                                                                              t x    t y
Now following the variational iteration method, we                          7        7
get the following functional                               243 7 7
                                                             t z }}}
                                                            7



                                                                                                245 | P a g e
P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications
               (IJERA)                 ISSN: 2248-9622           www.ijera.com
                     Vol. 2, Issue 6, November- December 2012, pp.242-246
u4  {{{{x  y  z  3tx  3ty                                 iteration method is a powerful mathematical tool to
                                                                 solving Burger’s equations. In our work, we use the
  3tz  9t 2 x 2  9t 2 y 2  9t 2 z 2                      Mathematica Package to calculate the series
                                                                 obtained from the variational iteration method.
  27t 3 x 3  27t 3 y 3  27t 3 z 3
  81t 4 x 4  81t 4 y 4  81t 4 z 4                          References
                                                                     1.   Sadighi A and Ganji D, Exact solution of
    1053 5 5 1053 5 5
           t x          t y                                           nonlinear diffusion equations by variational
       5               5                                                  iteration    method,    Commuters        and
                                                                          Mathematics with Applications, 54, (2007),
    1053 5 5
           t z  486t 6 x 6                                            pp. 1112-1121.
       5                                                             2.   He.J.H. Variational iteration method -- a
  1053 5 5                                                                kind of non-linear analytical technique:
        t z  486t 6 x 6                                               some examples, Internat. J. Nonlinear
     5                                                                    Mech. 34, (1999).,pp. 699–708
486t 6 y 6  486t 6 z 6                                           3.   N.Taghizadeh,         M.Akbari           and
                                                                          A.Ghelichzadeh, Exact Solution of Burgers
    7047 7 7 7047 7 7
          t x            t y                                          Equations by Homotopy Perturbation
      7                7                                                  Method      and     Reduced      Differential
                                                                          Transformation Method, Australian Journal
    7047 7 7 51759 8 8
          t z             t x                                         of Basic and Applied Sciences, 5(5):
      7                28                                                 (2011),pp. 580-589,
     ...........}}}}                                (3.3.9)         4.   Salehpoor E. and Jafari H., Variational
                                                                          iteration method: A tools for solving partial
u  x, y, z, t   u1  u2  u3  ...               (3.3.10)              differential equations, The journal of
                                                                          Mathematics and Computer Science, 2,
                     x yz
u  x, y , z , t                               (3.3.11)                 (2011)pp. 388-393.
                     1  3 t                                        5.   Wazwaz A. M.., The variational iteration
                                                                          method: A Powerful scheme for handling
3.4         (n+1)-Dimensional            Burger’s     equation            linear and nonlinear diffusion equations.
                                                                          Computer       and    Mathematics       with
u     u     u     u               u                                Applications 54, (2007) pp.933-939.
    u    u     u      ......  u                              6.   M.A. Abdou and A.A. Soliman,
t     x1    x2    x3              xn                               Variational iteration method for solving
                                                                          Burger’s and coupled Burger’s equations
      2u  2u  2u      2u                                            Journal of Computational and Applied
   2  2  2  ....        0                                        Mathematics 181 (2005), pp. 245 – 251.
     x1 x2 x3        xn 2 
                                                                     7.   Junfeng Lu, Variational iteration method
(3.4.1)                                                                   for solving a nonlinear system of second-
        u  x1 , x2 , x3 ,.........., xn , 0                             order boundary value problems, Computers
I.C.:                                               (3.4.2)               and Mathematics with Applications 54
            x1  x2  ......  xn                                        (2007), pp.1133–1138.
Similarly, we apply VIM on the equation (3.4.1) we
get the following exact solution.
u  x1 , x2 , x3 ,.............., xn , t  
 x1  x2  x3  x4  ............  xn              (3.4.3)

                    1  n t

4. Conclusion
          In this paper, the variational iteration
method has been successfully applied to finding the
solution of (1+1), (1+2) and (1+3) dimensional
Burger’s equations. The solution obtained by the
variational iteration method is an infinite power
series for appropriate initial condition, which can, in
turn, be expressed in a closed form, the exact
solution. The results show that the variational



                                                                                                       246 | P a g e

More Related Content

PDF
Derivation and Application of Multistep Methods to a Class of First-order Ord...
PDF
NPDE-TCA
PDF
Adomian decomposition method for solving higher order boundary value problems
PDF
11.solution of a singular class of boundary value problems by variation itera...
PDF
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
PDF
On estimating the integrated co volatility using
PDF
Nonlinear perturbed difference equations
PDF
11.solution of a subclass of singular second order
Derivation and Application of Multistep Methods to a Class of First-order Ord...
NPDE-TCA
Adomian decomposition method for solving higher order boundary value problems
11.solution of a singular class of boundary value problems by variation itera...
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
On estimating the integrated co volatility using
Nonlinear perturbed difference equations
11.solution of a subclass of singular second order

What's hot (19)

PDF
Solution of a subclass of singular second order
PDF
Solution of a singular class of boundary value problems by variation iteratio...
PDF
Errors in the Discretized Solution of a Differential Equation
PDF
International Journal of Mathematics and Statistics Invention (IJMSI)
PDF
On an Optimal control Problem for Parabolic Equations
PDF
PDF
Lesson 14: Derivatives of Logarithmic and Exponential Functions
PDF
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
PDF
Quantum physics the bottom up approach
PDF
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
PDF
Lesson 15: Exponential Growth and Decay
PDF
Hk3114251433
PPTX
160280102051 c3 aem
PDF
ON COMPUTATIONS OF THPD MATRICES
PDF
Existence results for fractional q-differential equations with integral and m...
PDF
NTU_paper
PDF
Lesson 16: Inverse Trigonometric Functions
PDF
Generalization of Tensor Factorization and Applications
PDF
Conditional trees
Solution of a subclass of singular second order
Solution of a singular class of boundary value problems by variation iteratio...
Errors in the Discretized Solution of a Differential Equation
International Journal of Mathematics and Statistics Invention (IJMSI)
On an Optimal control Problem for Parabolic Equations
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Comparative Study of the Effect of Different Collocation Points on Legendre-C...
Quantum physics the bottom up approach
IRJET- Wavelet based Galerkin Method for the Numerical Solution of One Dimens...
Lesson 15: Exponential Growth and Decay
Hk3114251433
160280102051 c3 aem
ON COMPUTATIONS OF THPD MATRICES
Existence results for fractional q-differential equations with integral and m...
NTU_paper
Lesson 16: Inverse Trigonometric Functions
Generalization of Tensor Factorization and Applications
Conditional trees
Ad

Viewers also liked (20)

PDF
Av26303311
PDF
Ai26214224
PDF
Bb26347353
PDF
Hr2615091514
PDF
Dk26766771
PDF
A26001006
PDF
Ad26188191
PDF
X25119123
PDF
Na2522282231
PPT
Proyecto TIC en un centro educativo
DOCX
PDF
Shadi k waza'if by muhammad ahsan raza qadri ghaza li
PPTX
Proyecto escolar con integracion de redes sociales
PDF
Pos jaga final
PDF
Catálago thipos 2013
PPTX
Trabajo individual segundo parcial
PPTX
ArtíCulo CientíFico
DOCX
δμητρα μαρια
PPTX
Presentación splgou milagros tarco salcedo
PPTX
Wlan
Av26303311
Ai26214224
Bb26347353
Hr2615091514
Dk26766771
A26001006
Ad26188191
X25119123
Na2522282231
Proyecto TIC en un centro educativo
Shadi k waza'if by muhammad ahsan raza qadri ghaza li
Proyecto escolar con integracion de redes sociales
Pos jaga final
Catálago thipos 2013
Trabajo individual segundo parcial
ArtíCulo CientíFico
δμητρα μαρια
Presentación splgou milagros tarco salcedo
Wlan
Ad

Similar to Am26242246 (20)

PDF
A current perspectives of corrected operator splitting (os) for systems
PDF
The_variational_iteration_method_for_solving_linea.pdf
PDF
Paper id 21201486
PDF
Numerical Solution of Diffusion Equation by Finite Difference Method
PDF
A semi analytic method for solving two-dimensional fractional dispersion equa...
PDF
Solution of second order nonlinear singular value problems
PDF
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
PDF
Some new exact Solutions for the nonlinear schrödinger equation
PDF
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
PDF
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
PDF
11.numerical solution of fuzzy hybrid differential equation by third order ru...
PDF
Numerical solution of fuzzy hybrid differential equation by third order runge...
PDF
29 15021 variational final version khalid hammood(edit)
PDF
Numerical_PDE_Paper
PDF
Elzaki transform homotopy perturbation method for
PPT
Presentation03 ss
PDF
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
PDF
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
A current perspectives of corrected operator splitting (os) for systems
The_variational_iteration_method_for_solving_linea.pdf
Paper id 21201486
Numerical Solution of Diffusion Equation by Finite Difference Method
A semi analytic method for solving two-dimensional fractional dispersion equa...
Solution of second order nonlinear singular value problems
A Tau Approach for Solving Fractional Diffusion Equations using Legendre-Cheb...
Some new exact Solutions for the nonlinear schrödinger equation
Decay Property for Solutions to Plate Type Equations with Variable Coefficients
11.[8 17]numerical solution of fuzzy hybrid differential equation by third or...
11.numerical solution of fuzzy hybrid differential equation by third order ru...
Numerical solution of fuzzy hybrid differential equation by third order runge...
29 15021 variational final version khalid hammood(edit)
Numerical_PDE_Paper
Elzaki transform homotopy perturbation method for
Presentation03 ss
Existence of Solutions of Fractional Neutral Integrodifferential Equations wi...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...
APPROXIMATE ANALYTICAL SOLUTION OF NON-LINEAR BOUSSINESQ EQUATION FOR THE UNS...

Am26242246

  • 1. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 Analytic Solution Of Burger’s Equations By Variational Iteration Method P. R. Mistry* and V. H. Pradhan** * (Department of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India) ** (Departments of Applied Mathematics & Humanities, S.V.N.I.T., Surat-395007, India) Abstract By means of variational iteration method the 2 VARIATIONAL ITERATION METHOD: solutions of (1+1), (1+2) and (1+3) dimensional Consider the following differential equation: Burger equations are exactly obtained. In this Lu  Nu  h ( x, t ) (2.1) paper, He's variational iteration method is where L is a linear operator, N a nonlinear introduced to overcome the difficulty arising in calculating Adomian polynomials. operator, and an h ( x, t ) is the source inhomogeneous term. The VIM was proposed by Key words: Burger’s equation, Nonlinear time “He”, where a correctional functional for equation dependent partial differential equations, Variational (1.4.1) can be written as iteration method and Lagrange multiplier. un 1 (t )  un (t )  t , n  0 (2.2) 1 Introduction We often come with non linear partial   ( Lu ( )  Nu ( )  h ( )) d 0 n  n differential equations obtained through Where  is a general Lagrange multiplier mathematical models of scientific phenomena. which can be identified optimally via the variational There are some methods to obtain approximate theory. The subscript n indicates the n th solution of this kind of equation. Some of them are approximation and  u n is considered as a restricted numerical methods, homotopy analysis, Exp- variation, i.e.  un  0 . It is clear that the  function method, and linearization of the equation successive approximations un , n  0 can be [1, 6, 7]. In 1999, the variational iteration method established by determining  , so we first was developed by mathematician “He”. This method determine the Lagrange multiplier  that will be is used for solving linear and non linear differential identified optimally via integration by parts. The equations. The method introduces a reliable and successive approximation un ( x, t ), n  0 of the efficient process for a wide variety of scientific and solution u( x, t ) will be readily obtained using the engineering applications [1, 2, 4, 5,]. It is based on Lagrange multiplier obtained and by using any Lagrange multiplier and it has the merits of selective function u 0 . The initial values u( x,0) simplicity and easy execution. This method avoids and ut ( x,0) are usually used for selecting the linearization of the problem. zeroth approximation u 0 . With  determined, then In this paper exact solution of (1+1), (1+2) several approximation un ( x, t ), n  0 , follow and (1+3) dimensional Burger equation [3] has been immediately. Consequently the exact solution may obtained by variational iteration method. The be obtained by using mentioned problem has been solved by u  lim un (2.3) n N.Taghizadeh etc. [3] by Homotopy Perturbation Method and Reduced Differential Transformation 3. APPLICATION OF VIM FOR BURGER’S EQUATION: Method here in the present paper we have solved the 3.1 (1+1)-Dimensional Burgers equation same problem by variational iteration mehod.. u  u    2u   u     2   0 (3.1.1) t  x   x  242 | P a g e
  • 2. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u4  {{{{x(1  t  t 2 2  t 3 3  t 4 4 I.C.: u  x,0  x (3.1.2) 13t 5 5 2t 6 6 29t 7 7 71t 8 8     Now following the variational iteration 15 3 63 252 method given in the above section we get the 86t  9 9 22t  10 10 5t  11 11 t12 12 following functional     567 315 189 126 un 1 ( x, t )  un ( x, t )  t  13 13 t  14 14 t  15 15    )}}}} (3.1.9)  un   2u   567 3969 59535  u  t (3.1.3)  0  t    un n  x      2n   d  x   u5  {{{{{x(1  t  t 2 2  t 3 3  t 4 4 43t 6 6 13t 7 7 943t 8 8 t 5 5     Stationary conditions can be obtained as follows: 45 15 1260 3497t 9 9 27523t10 10 1477t11 11  '    0   5670 56700 4050 (3.1.4) 1     17779t  12 12 13141t  13 13 1019t14 14  t    68040 73710 8820 The Lagrange multiplier can therefore be 63283t  15 15 43363t  16 16 1080013t17 17 simply identified as   1 , and substituting this    893025 1058400 48580560 value of Lagrange multiplier into the functional (3.1.3) gives the following iteration equation. 2588t  18 18 162179t  19 19 16511t 20 20    229635 30541455 7144200 un 1 ( x, t )  un ( x, t )  207509t  21 21 557t 22 22 2447t 23 23     t  un  u    2 un   (3.1.5) 225042300 1666980 22504230   t    un xn 0    2   x   d  16927t 24 24 5309t 25 25 t 26 26   540101520 675126900 595350 As stated before, we can select Initial 2t 27 27 13t 28 28 t 29 29 condition given in the equation (3.1.2) and using    this selection in (3.1.5) we obtain the following 6751269 315059220 236294415 successive approximations: t 30 30 t 31 31   )}}}}}(3.1.10) 3544416225 109876902975 u1  {x  tx } (3.1.6) 1 u  x, t   u1  u2  u3  .... (3.1.11) u2  {{x   (tx  t 2 x  t 3 x 2 )}} (3.1.7) 3 x u  x, t   (3.1.12) 1 u3  {{{x  tx  t 2 x 2  t 3 x 3 1  t 3 3.2 (2+1)-Dimensional Burger’s equation 1 3 2  (tx  t 2 x  t x )  3 u  u u  (3.1.8) 2 4 3  u  u    (tx  t x  t x  t x 2 3 2 t  x y  3 (3.2.1)   2u  2u  1 1 1  t 5 x 4  t 6 x 5  t 7 x 6 )}}}  2  2 0 3 9 63  x y  I.C.: u  x, y,0  x  y (3.2.2) Now following the variational iteration method, we get the following functional 243 | P a g e
  • 3. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 un 1 ( x, t )  un ( x, t )  u4  {{{{x  y  2tx  un  u u    2ty  4t 2 x 2      un n  un n   t  t  x y   (3.2.3) 4t 2 y 2  8t 3 x 3      2u  2u   d  8t 3 y 3  16t 4 x 4 0     2n  2n    x y       16t 4 y 4  416 5 5 t x 15 Stationary conditions can be obtained as follows: 416 5 5 128 6 6  t y  t x  '    0 15 3 128 6 6 3712 7 7 1     (3.2.4)  t y  t x  t 3 63 3712 7 7 4544 8 8 The Lagrange multiplier can therefore be  t y  t x simply identified as   1 , and substituting this 63 63 value of Lagrange multiplier into the functional 4544 8 8 44032 9 9 (3.2.3) gives the following iteration equation.  t y  t x 63 567 un 1 ( x, t )  un ( x, t )  44032 9 9 22528 10 10  t y  t x 567 315  un  u u       un n  un n    22528 10 10 10240 11 11 t y  t x  t  x y   t (3.2.5)     2u  2u   d 315 189 10240 11 11 2048 12 12 0     2n  2n    t y  t x  x y      189 63 2048 12 12 8192 13 13 As stated before, we can select Initial  t y  t x condition given in the equation (3.2.2) and using 63 567 this selection in (3.2.5) we obtain the following 8192 13 13 16384t14 x 14 successive approximations:  t y  567 3969 u1  {x  y  2t ( x  y ) } (3.2.6) 16384t y 14 14 32768t15 x 15   u2  {{x  y  2tx  2ty  3969 59535 8 32768t y 15 15 4t 2 x 2  4t 2 y 2  t 3 x 3 (3.2.7)  }}}} (3.2.9) 3 59535 8  t 3 y 3}} 3 u3  {{{x  y  2tx  2ty  4t 2 x 2  4t 2 y 2  8t 3 x 3  8t 3 y 3 32 32 32  t 4 x 4  t 4 y 4  t 5 x 5 (3.2.8) 3 3 3 32 64 64  t 5 y 5  t 6 x 6  t 6 y 6 3 9 9 128 7 7 128 7 7  t x  t y }}} 63 63 244 | P a g e
  • 4. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u5  {{{{{x  y  2tx  2ty un 1 ( x, t )  un ( x, t )  4t 2 x 2  4t 2 y 2  8t 3 x 3  un  u u u       un n  un n  un n   8t y  16t x  16t y 3 3 4 4 4 4 t t  x y z    (3.3.3) 2752 6 6     2u  2u  2u   d 32t 5 x 5  32t 5 y 5  t x 0    2  2  2  n n n  45  x y z      2752 6 6 1664 7 7  t y  t x 45 15 Stationary conditions can be obtained as follows: 1664 7 7 60352 8 8  t y  t x  '    0 15 315 (3.3.4) 60352 8 8 895232t 9 x 9 1      t  t y  315 2835 The Lagrange multiplier can therefore be 895232t y 9 9 7045888t10 x 10 simply identified as   1 , and substituting this   2835 14175 value of Lagrange multiplier into the functional (3.3.3) gives the following iteration equation. 7045888t y 10 10 1512448t11 x 11   14175 2025 un 1 ( x, t )  un ( x, t )  1512448t y 11 11 9102848t12 x 12  un    u u u   2025 8505     un n  un n  un n    t  x y z   t (3.3.5) 9102848t y 53825536t13 x 13     2u  2u  2u   d 12 12   8505 36855 0    2  2  2  n n n   x y z   53825536t y 13 13 4173824t14 x 14     36855 2205 As stated before, we can select Initial condition 4173824t y 14 14 2073657344t15 x 15 given in the equation (3.3.2) and using this selection   in (3.3.5) we obtain the following successive 2205 893025 approximations: 2073657344t y 15 15  893025 u1  {x  y  z  3t ( x  y  z ) } (3.3.6) 88807424t16 x 16 u2  {{x  y  z  3tx  3ty   .......}}}}} (3.2.10) 33075  3tz  9t 2 x 2  9t 2 y 2 (3.3.7)  9t 2 z 2  9t 3 x 3 u  x, t   u1  u2  u3  .... (3.2.11) x y  9t 3 y 3  9t 3 z 3}} u  x, y , t   (3.2.12) u3  {{{x  y  z  3tx  3ty 1  2 t 3tz  9t 2 x 2  9t 2 y 2 3.3 (3+1)-Dimensional Burger’s equation u  u u u  9t 2 z 2  27t 3 x 3  27t 3 y 3  u  u  u  t  x y z  27t 3 z 3  54t 4 x 4  54t 4 y 4 (3.3.1)   2u  2u  2u  54t 4 z 4  81t 5 x 5  81t 5 y 5 (3.3.8)   2  2  2   0  x y z  81t z  81t x  81t y 5 5 6 6 6 6 I.C.: u  x, y, z,0  x  yz (3.3.2) 81t 6 z 6  243 7 7 243 7 7 t x  t y Now following the variational iteration method, we 7 7 get the following functional 243 7 7  t z }}} 7 245 | P a g e
  • 5. P. R. Mistry, V. H. Pradhan / International Journal of Engineering Research and Applications (IJERA) ISSN: 2248-9622 www.ijera.com Vol. 2, Issue 6, November- December 2012, pp.242-246 u4  {{{{x  y  z  3tx  3ty iteration method is a powerful mathematical tool to solving Burger’s equations. In our work, we use the  3tz  9t 2 x 2  9t 2 y 2  9t 2 z 2 Mathematica Package to calculate the series obtained from the variational iteration method.  27t 3 x 3  27t 3 y 3  27t 3 z 3  81t 4 x 4  81t 4 y 4  81t 4 z 4 References 1. Sadighi A and Ganji D, Exact solution of 1053 5 5 1053 5 5  t x  t y nonlinear diffusion equations by variational 5 5 iteration method, Commuters and Mathematics with Applications, 54, (2007), 1053 5 5  t z  486t 6 x 6 pp. 1112-1121. 5 2. He.J.H. Variational iteration method -- a 1053 5 5 kind of non-linear analytical technique:  t z  486t 6 x 6 some examples, Internat. J. Nonlinear 5 Mech. 34, (1999).,pp. 699–708 486t 6 y 6  486t 6 z 6 3. N.Taghizadeh, M.Akbari and A.Ghelichzadeh, Exact Solution of Burgers 7047 7 7 7047 7 7  t x  t y Equations by Homotopy Perturbation 7 7 Method and Reduced Differential Transformation Method, Australian Journal 7047 7 7 51759 8 8  t z  t x of Basic and Applied Sciences, 5(5): 7 28 (2011),pp. 580-589,  ...........}}}} (3.3.9) 4. Salehpoor E. and Jafari H., Variational iteration method: A tools for solving partial u  x, y, z, t   u1  u2  u3  ... (3.3.10) differential equations, The journal of Mathematics and Computer Science, 2, x yz u  x, y , z , t   (3.3.11) (2011)pp. 388-393. 1  3 t 5. Wazwaz A. M.., The variational iteration method: A Powerful scheme for handling 3.4 (n+1)-Dimensional Burger’s equation linear and nonlinear diffusion equations. Computer and Mathematics with u  u u u u  Applications 54, (2007) pp.933-939.  u u u  ......  u  6. M.A. Abdou and A.A. Soliman, t  x1 x2 x3 xn  Variational iteration method for solving Burger’s and coupled Burger’s equations   2u  2u  2u  2u  Journal of Computational and Applied    2  2  2  ....  0 Mathematics 181 (2005), pp. 245 – 251.  x1 x2 x3 xn 2  7. Junfeng Lu, Variational iteration method (3.4.1) for solving a nonlinear system of second- u  x1 , x2 , x3 ,.........., xn , 0  order boundary value problems, Computers I.C.: (3.4.2) and Mathematics with Applications 54  x1  x2  ......  xn (2007), pp.1133–1138. Similarly, we apply VIM on the equation (3.4.1) we get the following exact solution. u  x1 , x2 , x3 ,.............., xn , t    x1  x2  x3  x4  ............  xn  (3.4.3) 1  n t 4. Conclusion In this paper, the variational iteration method has been successfully applied to finding the solution of (1+1), (1+2) and (1+3) dimensional Burger’s equations. The solution obtained by the variational iteration method is an infinite power series for appropriate initial condition, which can, in turn, be expressed in a closed form, the exact solution. The results show that the variational 246 | P a g e