SlideShare a Scribd company logo
An Inferior Temporal
Cortex Model
for Object Recognition
and Classification1
Fernando Jesús García Hípola – Taller de RRNN
Introduction
• Aim of the Study: Simulating Temporal
Cortex 3D object classification through a
NN that imitates it.
• Virtual information is processed in two
major parallel pathways:
the Dorsal and the Ventral
• V1, V2,
V4
• Inferior
Temporal
Cortex
(IT)
Biological
Process
• Retinotopic
Organization
Imagen
V1: Características
básicas
V4: Características
complejas (Smaller
parts of Larger Objects)
TE: Columnar
Organization
Image Orientation: Columnar
Organization in V1
1
• Inicialización de los pesos wi
2
• Presentación en cada iteración un patrón de entrada x(t)
3
• Determinar similitud entre pesos de cada neurona y la entrada
4
• Determinar Neurona Ganadora (Mayor similitud -> Menor error)
5
• Actualización pesos de la ganadora y sus vecinas (f(x) de vecindad)
6
• Volver al paso 2 si no se ha alcanzado nº máximo de iteraciones, Si no
FIN
Kohonen SOM
Los Pesos se comparan con
el vector de entrada: Gana
la Neurona de la 2ª capa
más parecida (min error
entre sus pesos y la
entrada)
Se actualizan los pesos
según una función de
proximidad para asegurar la
vecindad de las clases
(Preservar Topología)
mnSOM
• Kohonen SOM only can deal
with vectors imputs.
• Tukunawa & Furukawa ->
mnSOM replace SOM imput
vectors by functional
modules
mnSom with RBF
Network Modules
• Radial Basis Function Neural Networks
• Advantages for Image Recognition:
 No need of an Additional Additional
Algotithm for avoiding local minima
 The network leans to store the objects
representation in the inner center
 The use of RBF is more
neurophysiologically plausible
The NN for Image Recognition
• 10 objects as image input, in different degree of rotation:
 3 objects with 5 straight segments.
 3 objects with 4 straight segments.
 4 objects with 3 straight segments.
4. Adaptative Process:
All the weights and centers within the modules are updated
following the back-propagation algorithm
3. Cooperative Process
The Weights are calculated by the neighborhood function
2. Competitive Process
The module that minimizes the error is the winner.
1. Calculating Process
Random initialization of weights and calculate all outputs for
all the imputs in a single RBF unit
An inferior temporal cortex model
Hidden
Neurons of
each Module
An inferior temporal cortex model
The NN for Image Recognition for 3D
Objects
• The previous hybrid NN works well for simple 2D
images, but... What about 3D images?
• Solution: Adding a pre-processing Module emuleting V1,
V2, V3 and IT biological neural areas, by processing
layers:
A retinal image is divided into small overlapping
patches
The patterns are filtered through a layer (S1) of
Gabor filters.
Position invariant detectors
Galbor Filter
The NN for Image Recognition for 3D
Objects
• 43D-Objects: Spherical objects and Spiky objects
• Objects were presented to the NN in projections at each 10º rotation
• Training: 200 epochs.
• Results follow: similarity between objects and similarity between the
different views of the same object
An inferior temporal cortex model
An inferior temporal cortex model

More Related Content

PPTX
PPTX
Counter propagation Network
PDF
Introduction to Artificial Neural Networks
PPTX
Introduction to Neural Network
PDF
Recurrent neural networks rnn
PDF
Deep learning
PDF
Basics Of Neural Network Analysis
PPT
Counterpropagation NETWORK
Counter propagation Network
Introduction to Artificial Neural Networks
Introduction to Neural Network
Recurrent neural networks rnn
Deep learning
Basics Of Neural Network Analysis
Counterpropagation NETWORK

What's hot (20)

PPTX
Introduction to Neural networks (under graduate course) Lecture 8 of 9
PPTX
Introduction to Neural networks (under graduate course) Lecture 2 of 9
PPT
Counterpropagation NETWORK
PPTX
RNN & LSTM: Neural Network for Sequential Data
PDF
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
PPTX
Deep Learning Interview Questions And Answers | AI & Deep Learning Interview ...
PDF
A Comparison of Fuzzy ARTMAP
PDF
Recurrent Neural Networks
PDF
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
PPTX
PDF
Lecture 7: Recurrent Neural Networks
PPTX
Introduction to Neural networks (under graduate course) Lecture 7 of 9
PPTX
03 Single layer Perception Classifier
PDF
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
PDF
Presentation on experimental setup for verigying - "Slow Learners are F...
PPTX
Introduction to Neural networks (under graduate course) Lecture 6 of 9
PPTX
Electricity price forecasting with Recurrent Neural Networks
PDF
PPTX
Neural network
PPTX
Convolutional neural networks
Introduction to Neural networks (under graduate course) Lecture 8 of 9
Introduction to Neural networks (under graduate course) Lecture 2 of 9
Counterpropagation NETWORK
RNN & LSTM: Neural Network for Sequential Data
Deep Learning for Computer Vision: Recurrent Neural Networks (UPC 2016)
Deep Learning Interview Questions And Answers | AI & Deep Learning Interview ...
A Comparison of Fuzzy ARTMAP
Recurrent Neural Networks
Video Analysis with Recurrent Neural Networks (Master Computer Vision Barcelo...
Lecture 7: Recurrent Neural Networks
Introduction to Neural networks (under graduate course) Lecture 7 of 9
03 Single layer Perception Classifier
Deep Neural Networks (D1L2 Insight@DCU Machine Learning Workshop 2017)
Presentation on experimental setup for verigying - "Slow Learners are F...
Introduction to Neural networks (under graduate course) Lecture 6 of 9
Electricity price forecasting with Recurrent Neural Networks
Neural network
Convolutional neural networks
Ad

Similar to An inferior temporal cortex model (20)

PDF
Deep Neural Networks Presentation
PDF
Deep learning and applications in non-cognitive domains I
PDF
Comparison of Various RCNN techniques for Classification of Object from Image
PPTX
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
PPTX
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
PDF
20141003.journal club
PDF
物件偵測與辨識技術
PDF
HiPEAC 2019 Workshop - Real-Time Modelling Visual Scenes with Biological Insp...
PPTX
Introduction to computer vision with Convoluted Neural Networks
PPTX
A cortical neural network model of visual motion perception for reactive navi...
PPTX
Introduction to computer vision
PDF
Article overview: Deep Neural Networks Reveal a Gradient in the Complexity of...
PDF
Computer vision for transportation
PDF
CNN Algorithm
PPTX
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
PDF
最近の研究情勢についていくために - Deep Learningを中心に -
PDF
dl-unit-4-deep-learning deep-learning.pdf
PDF
Interpretability of Convolutional Neural Networks - Eva Mohedano - UPC Barcel...
PPTX
Sf data mining_meetup
PDF
IRJET- Identification of Scene Images using Convolutional Neural Networks - A...
Deep Neural Networks Presentation
Deep learning and applications in non-cognitive domains I
Comparison of Various RCNN techniques for Classification of Object from Image
Lecture 29 Convolutional Neural Networks - Computer Vision Spring2015
Deep Visual Understanding from Deep Learning by Prof. Jitendra Malik
20141003.journal club
物件偵測與辨識技術
HiPEAC 2019 Workshop - Real-Time Modelling Visual Scenes with Biological Insp...
Introduction to computer vision with Convoluted Neural Networks
A cortical neural network model of visual motion perception for reactive navi...
Introduction to computer vision
Article overview: Deep Neural Networks Reveal a Gradient in the Complexity of...
Computer vision for transportation
CNN Algorithm
[NS][Lab_Seminar_241118]Relation Matters: Foreground-aware Graph-based Relati...
最近の研究情勢についていくために - Deep Learningを中心に -
dl-unit-4-deep-learning deep-learning.pdf
Interpretability of Convolutional Neural Networks - Eva Mohedano - UPC Barcel...
Sf data mining_meetup
IRJET- Identification of Scene Images using Convolutional Neural Networks - A...
Ad

Recently uploaded (20)

DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PDF
Sciences of Europe No 170 (2025)
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
The scientific heritage No 166 (166) (2025)
PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
2. Earth - The Living Planet Module 2ELS
PDF
Phytochemical Investigation of Miliusa longipes.pdf
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PDF
bbec55_b34400a7914c42429908233dbd381773.pdf
PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
BIOMOLECULES PPT........................
PDF
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PDF
An interstellar mission to test astrophysical black holes
PPTX
Derivatives of integument scales, beaks, horns,.pptx
Viruses (History, structure and composition, classification, Bacteriophage Re...
Sciences of Europe No 170 (2025)
Taita Taveta Laboratory Technician Workshop Presentation.pptx
Introduction to Cardiovascular system_structure and functions-1
The scientific heritage No 166 (166) (2025)
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
2. Earth - The Living Planet Module 2ELS
Phytochemical Investigation of Miliusa longipes.pdf
2Systematics of Living Organisms t-.pptx
Cell Membrane: Structure, Composition & Functions
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
bbec55_b34400a7914c42429908233dbd381773.pdf
neck nodes and dissection types and lymph nodes levels
ECG_Course_Presentation د.محمد صقران ppt
INTRODUCTION TO EVS | Concept of sustainability
BIOMOLECULES PPT........................
Unveiling a 36 billion solar mass black hole at the centre of the Cosmic Hors...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
An interstellar mission to test astrophysical black holes
Derivatives of integument scales, beaks, horns,.pptx

An inferior temporal cortex model

  • 1. An Inferior Temporal Cortex Model for Object Recognition and Classification1 Fernando Jesús García Hípola – Taller de RRNN
  • 2. Introduction • Aim of the Study: Simulating Temporal Cortex 3D object classification through a NN that imitates it. • Virtual information is processed in two major parallel pathways: the Dorsal and the Ventral • V1, V2, V4 • Inferior Temporal Cortex (IT)
  • 3. Biological Process • Retinotopic Organization Imagen V1: Características básicas V4: Características complejas (Smaller parts of Larger Objects) TE: Columnar Organization
  • 5. 1 • Inicialización de los pesos wi 2 • Presentación en cada iteración un patrón de entrada x(t) 3 • Determinar similitud entre pesos de cada neurona y la entrada 4 • Determinar Neurona Ganadora (Mayor similitud -> Menor error) 5 • Actualización pesos de la ganadora y sus vecinas (f(x) de vecindad) 6 • Volver al paso 2 si no se ha alcanzado nº máximo de iteraciones, Si no FIN
  • 6. Kohonen SOM Los Pesos se comparan con el vector de entrada: Gana la Neurona de la 2ª capa más parecida (min error entre sus pesos y la entrada) Se actualizan los pesos según una función de proximidad para asegurar la vecindad de las clases (Preservar Topología)
  • 7. mnSOM • Kohonen SOM only can deal with vectors imputs. • Tukunawa & Furukawa -> mnSOM replace SOM imput vectors by functional modules
  • 8. mnSom with RBF Network Modules • Radial Basis Function Neural Networks • Advantages for Image Recognition:  No need of an Additional Additional Algotithm for avoiding local minima  The network leans to store the objects representation in the inner center  The use of RBF is more neurophysiologically plausible
  • 9. The NN for Image Recognition • 10 objects as image input, in different degree of rotation:  3 objects with 5 straight segments.  3 objects with 4 straight segments.  4 objects with 3 straight segments.
  • 10. 4. Adaptative Process: All the weights and centers within the modules are updated following the back-propagation algorithm 3. Cooperative Process The Weights are calculated by the neighborhood function 2. Competitive Process The module that minimizes the error is the winner. 1. Calculating Process Random initialization of weights and calculate all outputs for all the imputs in a single RBF unit
  • 14. The NN for Image Recognition for 3D Objects • The previous hybrid NN works well for simple 2D images, but... What about 3D images? • Solution: Adding a pre-processing Module emuleting V1, V2, V3 and IT biological neural areas, by processing layers: A retinal image is divided into small overlapping patches The patterns are filtered through a layer (S1) of Gabor filters. Position invariant detectors
  • 16. The NN for Image Recognition for 3D Objects • 43D-Objects: Spherical objects and Spiky objects • Objects were presented to the NN in projections at each 10º rotation • Training: 200 epochs. • Results follow: similarity between objects and similarity between the different views of the same object