An integrated framework for analysis of stochastic
         models of biochemical reactions

                           Michał Komorowski

                           Imperial College London
                       Theoretical Systems Biology Group


                                  21/03/11




   Michał Komorowski          Stochastic biochemical reactions   21/03/11   1 / 31
Outline



 1   Motivation: models and data

 2   Modeling framework

 3   Inference: examples

 4   Sensitivity, Fisher Information, statistical model analysis




        Michał Komorowski    Stochastic biochemical reactions      21/03/11   2 / 31
Fluorescent reporter genes




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   3 / 31
Fluorescent reporter genes




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   3 / 31
Fluorescent microscopy and flow cytometry




     Michał Komorowski   Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Fluorescent microscopy and flow cytometry




                             A                                        B
                   300
                                                            300
                   275

                   250
                                                            200
                   225

                   200                                      100
 fluorescence (a.u.)




                         0       5    10   15   20     25         0       5   10    15   20   25
                             C                                        D
                                                            300
                   300
                                                            250
                   250
                                                            200
                   200
                                                            150
                   150
                                                            100
                   100

                         0       5    10   15   20     25         0       5   10    15   20   25
                                                     time (hours)



                                     Michał Komorowski                             Stochastic biochemical reactions   Motivation   21/03/11   4 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Chemical kinetics model
   System’s state

                                      x = (x1 , . . . , xN )T
   Stoichiometry matrix

                                 S = {Sij }i=1,2...N; j=1,2...l

                         (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj )
   Reaction rates

                            F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ))

   Parameters
                                       Θ = (θ1 , ..., θr )
   x is a Poisson birth and death process

     Michał Komorowski         Stochastic biochemical reactions   Modelling   21/03/11   5 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Example: gene expression
                                        Macroscopic rate equation
                                                          ˙
                                                          φR       = kR (t) − γR φR
                                                          ˙
                                                          φP       = kP φR − γP φP


  State x = (r, p)                      Diffusion approximation
  Stoichiometry
                                           dR =         (kR (t) − γR R)dt +        kR + γR RdWR
           1    −1 0 0
  S=                                       dP =         (kP R − γP P)dt +         kP R + γP PdWP
           0     0 1 −1

  Rates                                 Linear noise approximation
                                        R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t)
  F(x, Θ) = (kr , γr r, kp r, γp p)
                                        dξR     =     (−γR ξR )dt +         kR (t) + γR φR dWξR ,
  Parameters                            dξP     =     (kP ξR − γP ξP )dt +        kP φP + γP φP dWξP
  Θ = (kr , γr , kp , γp )

       Michał Komorowski        Stochastic biochemical reactions     Modelling         21/03/11     6 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
Modelling chemical kinetics
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   7 / 31
How about inference ?




     Michał Komorowski   Stochastic biochemical reactions   Modelling   21/03/11   8 / 31
How about inference ?
   Chemical master equation
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                 l
                   dPt (x)
                           =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                     dt
                                j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)                  F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation

                         dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                x(t) = ϕ(t) + ξ(t)
                  dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


     Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                  l
                    dPt (x)
                            =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                      dt
                                 j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)    F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation (data augmentation)

                          dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation
                 x(t) = ϕ(t) + ξ(t)
                   dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


      Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
How about inference ?
   Chemical master equation (likelihood-free methods, e.g. ABC)
                                  l
                    dPt (x)
                            =          Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x)
                      dt
                                 j=1

   Macroscopic rate equation (least squares)
                dϕ
                    = S F(ϕ)    F(ϕ) = (f1 (ϕ), ..., fk (ϕ))
                 dt
   Diffusion approximation (data augmentation)

                          dx = S F(x)dt + S diag                   F(x)          dW

   Linear noise approximation (explicite likelihood)
                 x(t) = ϕ(t) + ξ(t)
                   dξ = S         ϕ F(ϕ)ξdt       + S diag             F(ϕ)           dW


      Michał Komorowski         Stochastic biochemical reactions     Modelling             21/03/11   8 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Model equations
   LNA implies Gaussian distribution

                                 x(t) ∼ MVN(ϕ(t), V(t))

   Mean ϕ(t) given as s solution of the rate equation
   Variances
         dV(t)
               = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances

                         cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t


                     dΦ(ti , s)
                                = A(ϕ, Θ, s)Φ(ti , s),            Φ(ti , ti ) = I
                       ds

     Michał Komorowski         Stochastic biochemical reactions    Inference        21/03/11   9 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Distribution of data
Vector of measurements
                    xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT}


    time-series (TS) e.g. fluorescent microscopy
    end-time-point (TP) e.g. fluorescent cytometry
    deterministic (DT) e.g. population data

                              xQ ∼ MVN(µ(Θ), ΣQ (Θ))

                              µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))
                          
                          
                              V(ti )               for i = j Q ∈ {TS, TP}
                                σ2I                   for i = j Q ∈ {DT}
                          
       ΣQ (Θ)(i,j)    =
                        
                                0                 for i < j Q ∈ {TP, DT}
                          V(ti )Φ(ti , tj )T           for i < j Q ∈ {TS}
                        

      Michał Komorowski        Stochastic biochemical reactions   Inference   21/03/11   10 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Advantages of the framework




   Inference
       Explicit likelihood
       Time-series, end-time-point data
       Very low computational cost, compared to other methods
       Hidden variables
       Measurement error




     Michał Komorowski   Stochastic biochemical reactions   Inference   21/03/11   11 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40
                     30
fluorescence level

                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples   21/03/11   12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                              Rates differ between cells
                     0




                          0   2      4              6   8   10

                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                              Model:
                     30
fluorescence level




                                                                                     dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                              Rates differ between cells
                                                                                                                 2
                     0




                          0   2      4              6   8   10
                                                                                               γP ∼ Gamma(µγp , σγp )
                                         time (h)




                                  Michał Komorowski              Stochastic biochemical reactions   Examples         21/03/11     12 / 31
Hierarchical model for degradation rates: CHX
  experiment
                     40




                                                                                        Model:
                     30
fluorescence level




                                                                                               dp = (kp − γp p)dt+       kp + γp φp (t)dW
                     20
                     10




                                                                                        Rates differ between cells
                                                                                                                           2
                     0




                          0     2        4                6     8     10
                                                                                                         γP ∼ Gamma(µγp , σγp )
                                              time (h)
                     8
                     6
density

                     4
                     2
                     0




                          0.0   0.2     0.4              0.6   0.8   1.0

                                         degradation rate



                                      Michał Komorowski                    Stochastic biochemical reactions   Examples         21/03/11     12 / 31
DRB experiment



                   450


                   400


                   350


                   300
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples   21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350


                   300
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples   21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100


                    50


                     0
                         0   2   4    6        8       10   12   14   16
                                          Time (hours)




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
DRB experiment



                   450
                                                                             Model:
                   400


                   350                                                            dr     =     (kr − γr r)dt+      kr + γr φr (t)dWr
                   300
                                                                                 dp      =     (kp r − γp p)dt +     kp φr (t) + γp φr (t)dWp
GFP Fluorescence




                   250


                   200


                   150


                   100
                                                                             We can estimate
                    50

                                                                                                                     2
                     0
                         0   2   4    6        8
                                          Time (hours)
                                                       10   12   14   16                           γr ∼ Gamma(µγr , σγr )




                                 Michał Komorowski                         Stochastic biochemical reactions   Examples          21/03/11   13 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


                                                                                                   Observed fluorescence and
                                                                                                   time-course of endogenous protein
                                                                                                   differ
fluorescence intensity (a.u.)

                                   200 400 600 800




                                                                                                   GH3 rat pituitary cells with EGFP
                                                                                                   linked to prolactin gene promoter
                                                                                                   Trascription is triggered at the start of
                                                                                                   the experiment
                                                                                                   No data on mRNA level
                                   0




                                                     0      5    10     15      20   25
                                                                                                   Informative prior on mRNA and
                                                                 time (hours)
                                                                                                   protein degradation rate
                                  Experiment: Claire Harper, Mike White;
                                Department of Biology, University of Liverpool




                                                         Michał Komorowski            Stochastic biochemical reactions   Examples   21/03/11   14 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:




         Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt
                      dp     =   (kp r − γp p)dt




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Fluorescent proteins as transcriptional reporters in
single cells


   Calculating back to the transcription level


Model:


                       dr    =   (kr (t) − γr r)dt+ kr (t) + γr r dWr
                      dp     =   (kp r − γp p)dt +            kp r + γp pdWp
                  p(obs)     =   λp




         Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   15 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Inference results




              We estimated scaling factor λ = 2.11 (1.24 - 3.56)
              Translation in absolute units kp =0.46 (0.14 - 1.51)
              Transcription profile in absolute units

              ¨
      Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008




      Michał Komorowski             Stochastic biochemical reactions         Examples               21/03/11      16 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Sensitivity for stochastic systems: motivation




   Difference in response to perturbations in parameters
        Deterministic model ( DT) e.g. population average
        Time-series stochastic model (TS) e.g. fluorescent microscopy
        Time-point stochastic model (TP) e.g. flow cytometry

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   17 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Implications




   Sensitivity
   Robustness - global sensitivity analysis
   Information content of data
        Optimal experimental design

        Idetifiability




      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   18 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Sensitivity and Fisher Information
   Classical sensitivity coefficients for an observable X and
   parameter θ
                                    ∂X
                                     ∂θ



   Stochastic case: observable X is drawn from a distribution ψ
                                                                   2
                                              ∂ log ψ(X, θ)
                             I(θ) = E
                                                   ∂θ


   For stochastic model of chemical reactions evaluated using Monte
   Carlo simulations
   Can be evaluated via numerical integration of ODEs

      Michał Komorowski   Stochastic biochemical reactions   Fisher Information   21/03/11   19 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder
   LNA implies Gaussian distribution
                                    x(t) ∼ MVN(ϕ(t), V(t))
   Mean ϕ(t) given as s solution of the rate equation
   Variances
        dV(t)
              = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T
          dt
   Covariances
                          cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t
                dΦ(ti , s)
                           = A(ϕ, Θ, s)Φ(ti , s),                   Φ(ti , ti ) = I
                   ds
   Fisher information
                              ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                  I(θ) =           Σ(θ)    + trace(Σ−1    Σ     )
                              ∂θ        ∂θ  2          ∂θ    ∂θ

      Michał Komorowski       Stochastic biochemical reactions   Fisher Information   21/03/11   20 / 31
Model equations - reminder


   Fisher information
                          ∂µ T      ∂µ 1           ∂Σ −1 ∂Σ
                 I(θ) =        Σ(θ)    + trace(Σ−1    Σ     )
                          ∂θ        ∂θ  2          ∂θ    ∂θ
   Covariance matrix
                      
                      
                                  V(ti )              for i = j Q ∈ {TS, TP}
                                    σ2I                  for i = j Q ∈ {DT}
                      
              (i,j)
        ΣQ (Θ)      =
                      
                                    0                for i < j Q ∈ {TP, DT}
                              V(ti )Φ(ti , tj )T          for i < j Q ∈ {TS}
                      




     Michał Komorowski    Stochastic biochemical reactions   Fisher Information   21/03/11   21 / 31
Example: expression of a gene




     Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   22 / 31
Response to parameter perturbations:
stochastic vs deterministic case




     Michał Komorowski   Stochastic biochemical reactions   Examples   21/03/11   23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                           Influence of correlation between RNA and protein
  Stochastic
  Deterministic                                                          correlation=0.24218
                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
            kr




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
            kp




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
             r




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
             p




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                  k                                r                                p
                                  r                                  p




                  Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                               Influence of correlation between RNA and protein

                                                                             correlation=0.53838
  Stochastic           0.1                              0.1                                0.1                              0.1
  Deterministic
                      0.05                             0.05                               0.05                             0.05

                        0                                0                                  0                                0
              kr




                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05
              kp




                        0                                0                                  0                                0

                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05

                        0                                0                                  0                                0
                  r




                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                              0.1                                0.1                              0.1

                      0.05                             0.05                               0.05                             0.05
                  p




                        0                                0                                  0                                0

                      0.05                             0.05                               0.05                             0.05

                       0.1                              0.1                                0.1                              0.1
                         0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                      k                                  k                                r                                p
                                      r                                  p




                      Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                           Influence of correlation between RNA and protein

                                                                         correlation=0.92828
  Stochastic       0.1                              0.1                                0.1                              0.1
  Deterministic
                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
            kr




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
            kp




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05

                    0                                0                                  0                                0
              r




                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                              0.1                                0.1                              0.1

                  0.05                             0.05                               0.05                             0.05
              p




                    0                                0                                  0                                0

                  0.05                             0.05                               0.05                             0.05

                   0.1                              0.1                                0.1                              0.1
                     0.1   0.05   0   0.05   0.1      0.1     0.05   0   0.05   0.1      0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                  k                                r                                p
                                  r                                  p




                  Michał Komorowski                         Stochastic biochemical reactions                 Examples                      21/03/11       23 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                         Influence of temporal correlations




     Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                                  Influence of temporal correlations

                                                                                       =30
                        0.1                               0.1                                 0.1                              0.1
  Stochastic           0.05                              0.05                                0.05                             0.05
  Deterministic
                         0                                 0                                   0                                0
                  kr




                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05
                  kp




                         0                                 0                                   0                                0

                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05

                         0                                 0                                   0                                0
                  r




                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                        0.1                               0.1                                 0.1                              0.1

                       0.05                              0.05                                0.05                             0.05
                  p




                         0                                 0                                   0                                0

                       0.05                              0.05                                0.05                             0.05

                        0.1                               0.1                                 0.1                              0.1
                          0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                       k                                   k                                 r                                p
                                       r                                   p




                       Michał Komorowski                          Stochastic biochemical reactions                  Examples                      21/03/11       24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                             Influence of temporal correlations

                                                                                   =3
                   0.1                               0.1                                 0.1                              0.1
  Stochastic
  Deterministic   0.05                              0.05                                0.05                             0.05

                    0                                 0                                   0                                0
             kr




                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05
             kp




                    0                                 0                                   0                                0

                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05

                    0                                 0                                   0                                0
              r




                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                   0.1                               0.1                                 0.1                              0.1

                  0.05                              0.05                                0.05                             0.05
              p




                    0                                 0                                   0                                0

                  0.05                              0.05                                0.05                             0.05

                   0.1                               0.1                                 0.1                              0.1
                     0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1       0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                  k                                   k                                 r                                p
                                  r                                   p




                  Michał Komorowski                          Stochastic biochemical reactions                  Examples                      21/03/11       24 / 31
Response to parameter perturbations:
stochastic vs deterministic case

                                                 Influance of temporal correlations

                                                                                      =0.3
  Stochastic           0.1                               0.1                                  0.1                              0.1
  Deterministic
                      0.05                              0.05                                 0.05                             0.05

                        0                                 0                                    0                                0
             kr




                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05
             kp




                        0                                 0                                    0                                0

                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05

                        0                                 0                                    0                                0
                  r




                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1

                       0.1                               0.1                                  0.1                              0.1

                      0.05                              0.05                                 0.05                             0.05
                  p




                        0                                 0                                    0                                0

                      0.05                              0.05                                 0.05                             0.05

                       0.1                               0.1                                  0.1                              0.1
                         0.1   0.05   0   0.05    0.1      0.1     0.05   0   0.05   0.1        0.1   0.05   0   0.05   0.1      0.1   0.05   0     0.05   0.1
                                      k                                   k                                  r                                p
                                      r                                   p




                      Michał Komorowski                          Stochastic biochemical reactions                   Examples                      21/03/11       24 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                       optimal sampling frequency
         (non-zero eigenvalues)




  Type                         TS         TP          DT
  Stationary                    4          2           1
  Perturbation                  4          4           3
  Perturbation: 5-fold increased initial conditions




            Michał Komorowski                 Stochastic biochemical reactions   Examples   21/03/11   25 / 31
Amount of information in the data

      Only protein level is measured
      Measurements are taken from a stationary state

     # of identifiable parameters                                                  optimal sampling frequency
         (non-zero eigenvalues)

                                                                                  80
                                                                                                                                             set 1
                                                                                                                                             set 2
                                                                                  70                                                         set 3
                                                                                                                                             set 4
                                                                                  60
  Type                         TS         TP          DT
                                                                                  50

  Stationary                    4          2           1

                                                                     det( FIM )
                                                                                  40

  Perturbation                  4          4           3                          30


                                                                                  20
  Perturbation: 5-fold increased initial conditions
                                                                                  10


                                                                                   0
                                                                                       0   0.2   0.4    0.6   0.8   1   1.2   1.4    1.6   1.8       2




            Michał Komorowski                 Stochastic biochemical reactions                         Examples                     21/03/11             25 / 31
p53 system
p53 protein regulates cell cycle, response to DNA damage and it is a
tumour repressor.
   x = (p, y0 , y).                                          y0 - mdm2 precursor
   p - p53                                                   y - mdm2
Deterministic version:
                            ˙                        φp
                           φp = βx − αx φp − αk φy
                                                   φp + k
                           ˙ y = β y φp − α0 φy
                           φ0                            0
                           ˙
                           φy = α 0 φy0 − α y φy .
 Parameter vector
                             Θ = (βx , αx , αk , k, βy , α0 , αy ).


    Role of parameters: which parameters control stochastic effects in
    the model?
    Fluorescent microscopy or flow cytometry?
       Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   26 / 31
p53 system
p53 protein regulates cell cycle, response to DNA damage and it is a
tumour repressor.
   x = (p, y0 , y).                                          y0 - mdm2 precursor
   p - p53                                                   y - mdm2
Deterministic version:
                            ˙                        φp
                           φp = βx − αx φp − αk φy
                                                   φp + k
                           ˙ y = β y φp − α0 φy
                           φ0                            0
                           ˙
                           φy = α 0 φy0 − α y φy .
 Parameter vector
                             Θ = (βx , αx , αk , k, βy , α0 , αy ).


    Role of parameters: which parameters control stochastic effects in
    the model?
    Fluorescent microscopy or flow cytometry?
       Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   26 / 31
p53 system
p53 protein regulates cell cycle, response to DNA damage and it is a
tumour repressor.
   x = (p, y0 , y).                                          y0 - mdm2 precursor
   p - p53                                                   y - mdm2
Deterministic version:
                            ˙                        φp
                           φp = βx − αx φp − αk φy
                                                   φp + k
                           ˙ y = β y φp − α0 φy
                           φ0                            0
                           ˙
                           φy = α 0 φy0 − α y φy .
 Parameter vector
                             Θ = (βx , αx , αk , k, βy , α0 , αy ).


    Role of parameters: which parameters control stochastic effects in
    the model?
    Fluorescent microscopy or flow cytometry?
       Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   26 / 31
p53 system
p53 protein regulates cell cycle, response to DNA damage and it is a
tumour repressor.
   x = (p, y0 , y).                                          y0 - mdm2 precursor
   p - p53                                                   y - mdm2
Deterministic version:
                            ˙                        φp
                           φp = βx − αx φp − αk φy
                                                   φp + k
                           ˙ y = β y φp − α0 φy
                           φ0                            0
                           ˙
                           φy = α 0 φy0 − α y φy .
 Parameter vector
                             Θ = (βx , αx , αk , k, βy , α0 , αy ).


    Role of parameters: which parameters control stochastic effects in
    the model?
    Fluorescent microscopy or flow cytometry?
       Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   26 / 31
p53 system
p53 protein regulates cell cycle, response to DNA damage and it is a
tumour repressor.
   x = (p, y0 , y).                                          y0 - mdm2 precursor
   p - p53                                                   y - mdm2
Deterministic version:
                            ˙                        φp
                           φp = βx − αx φp − αk φy
                                                   φp + k
                           ˙ y = β y φp − α0 φy
                           φ0                            0
                           ˙
                           φy = α 0 φy0 − α y φy .
 Parameter vector
                             Θ = (βx , αx , αk , k, βy , α0 , αy ).


    Role of parameters: which parameters control stochastic effects in
    the model?
    Fluorescent microscopy or flow cytometry?
       Michał Komorowski         Stochastic biochemical reactions   Examples   21/03/11   26 / 31
Role of parameters
                                    Eigen values normalized against model maximum
            1
                                                                                                      TS
                                                                                                      TP
           0.8                                                                                        DT


           0.6


           0.4


           0.2


            0
                 1       2          3                    4                      5              6           7




                                    Eigen values normalized against total maximum
            1
                                                                                                      TS
                                                                                                      TP
           0.8                                                                                        DT


           0.6


           0.4


           0.2


            0
                 1       2          3                    4                      5              6           7




     Michał Komorowski       Stochastic biochemical reactions                       Examples       21/03/11    27 / 31
Which parameters are involved in controlling
stochastic effects?
                          TS - heatmap, DT - contour plot




      Michał Komorowski       Stochastic biochemical reactions   Examples   21/03/11   28 / 31
Fluorescent microscopy vs flow cytometry


                                    23
                                x 10
                           12
                                             TP
                                             TS
                           10



                            8
              det( FIM )




                            6



                            4



                            2



                            0
                                0        1    2       3       4     5      6       7       8   9        10
                                                  Number of TP measurements per time point              4
                                                                                                     x 10


     Michał Komorowski                            Stochastic biochemical reactions        Examples           21/03/11   29 / 31
Summary

  Efficient and simple inference framework for stochastic systems
  Fisher Information Matrix for stochastic models can be
  represented as solutions of ODEs
  Substantial differences is sensitivities between stochastic and
  deterministic models may exist
  Applicability experimental design
  Matlab package for sensitivity of stochastic systems available
  www.theosysbio.bio.ic.ac.uk/resources/stns/
  Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical
  kinetics models, PNAS in press, 2011.
                         ¨
  Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and
  other parameters of gene expression, Biophysical J., 98, 2010.
                           ¨
  Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the
  linear noise approximation, BMC Bioinformatics, 10, 2009;




       Michał Komorowski               Stochastic biochemical reactions          Summary                21/03/11       30 / 31
Summary

  Efficient and simple inference framework for stochastic systems
  Fisher Information Matrix for stochastic models can be
  represented as solutions of ODEs
  Substantial differences is sensitivities between stochastic and
  deterministic models may exist
  Applicability experimental design
  Matlab package for sensitivity of stochastic systems available
  www.theosysbio.bio.ic.ac.uk/resources/stns/
  Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical
  kinetics models, PNAS in press, 2011.
                         ¨
  Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and
  other parameters of gene expression, Biophysical J., 98, 2010.
                           ¨
  Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the
  linear noise approximation, BMC Bioinformatics, 10, 2009;




       Michał Komorowski               Stochastic biochemical reactions          Summary                21/03/11       30 / 31
Summary

  Efficient and simple inference framework for stochastic systems
  Fisher Information Matrix for stochastic models can be
  represented as solutions of ODEs
  Substantial differences is sensitivities between stochastic and
  deterministic models may exist
  Applicability experimental design
  Matlab package for sensitivity of stochastic systems available
  www.theosysbio.bio.ic.ac.uk/resources/stns/
  Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical
  kinetics models, PNAS in press, 2011.
                         ¨
  Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and
  other parameters of gene expression, Biophysical J., 98, 2010.
                           ¨
  Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the
  linear noise approximation, BMC Bioinformatics, 10, 2009;




       Michał Komorowski               Stochastic biochemical reactions          Summary                21/03/11       30 / 31
Summary

  Efficient and simple inference framework for stochastic systems
  Fisher Information Matrix for stochastic models can be
  represented as solutions of ODEs
  Substantial differences is sensitivities between stochastic and
  deterministic models may exist
  Applicability experimental design
  Matlab package for sensitivity of stochastic systems available
  www.theosysbio.bio.ic.ac.uk/resources/stns/
  Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical
  kinetics models, PNAS in press, 2011.
                         ¨
  Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and
  other parameters of gene expression, Biophysical J., 98, 2010.
                           ¨
  Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the
  linear noise approximation, BMC Bioinformatics, 10, 2009;




       Michał Komorowski               Stochastic biochemical reactions          Summary                21/03/11       30 / 31
Summary

  Efficient and simple inference framework for stochastic systems
  Fisher Information Matrix for stochastic models can be
  represented as solutions of ODEs
  Substantial differences is sensitivities between stochastic and
  deterministic models may exist
  Applicability experimental design
  Matlab package for sensitivity of stochastic systems available
  www.theosysbio.bio.ic.ac.uk/resources/stns/
  Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical
  kinetics models, PNAS in press, 2011.
                         ¨
  Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and
  other parameters of gene expression, Biophysical J., 98, 2010.
                           ¨
  Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the
  linear noise approximation, BMC Bioinformatics, 10, 2009;




       Michał Komorowski               Stochastic biochemical reactions          Summary                21/03/11       30 / 31
Acknowledgement
                        Michael Stumpf
               Imperial College London


                 ¨             ¨
                Barbel Finkenstad
               Warwick University



                    Dan Woodcock
               Warwick University



                        David Rand
               Warwick University

    Michał Komorowski        Stochastic biochemical reactions   Summary   21/03/11   31 / 31
Thank you!




Michał Komorowski    Stochastic biochemical reactions   Summary   21/03/11   31 / 31

More Related Content

PDF
Optimal design of experiments
PDF
Calculus of biochemical noise
PPTX
Inventory valuation
XLS
Break Even Analysis
PDF
TALAT Lecture 2704: Member with Requirement to Fire Resistance
PDF
TALAT Lecture 2504: Examples and Applications
PDF
Csbmm 2005 villar
PPT
Fusion improvement
Optimal design of experiments
Calculus of biochemical noise
Inventory valuation
Break Even Analysis
TALAT Lecture 2704: Member with Requirement to Fire Resistance
TALAT Lecture 2504: Examples and Applications
Csbmm 2005 villar
Fusion improvement

Recently uploaded (20)

PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PDF
Journal of Dental Science - UDMY (2021).pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Journal of Dental Science - UDMY (2020).pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
Complications of Minimal Access-Surgery.pdf
PPTX
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PDF
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
Hazard Identification & Risk Assessment .pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
Climate and Adaptation MCQs class 7 from chatgpt
Journal of Dental Science - UDMY (2021).pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 2).pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Journal of Dental Science - UDMY (2020).pdf
B.Sc. DS Unit 2 Software Engineering.pptx
Complications of Minimal Access-Surgery.pdf
DRUGS USED FOR HORMONAL DISORDER, SUPPLIMENTATION, CONTRACEPTION, & MEDICAL T...
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
BP 505 T. PHARMACEUTICAL JURISPRUDENCE (UNIT 1).pdf
Cambridge-Practice-Tests-for-IELTS-12.docx
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Hazard Identification & Risk Assessment .pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
Computer Architecture Input Output Memory.pptx
Introduction to pro and eukaryotes and differences.pptx
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Ad
Ad

An integrated framework for analysis of stochastic models of biochemical reactions

  • 1. An integrated framework for analysis of stochastic models of biochemical reactions Michał Komorowski Imperial College London Theoretical Systems Biology Group 21/03/11 Michał Komorowski Stochastic biochemical reactions 21/03/11 1 / 31
  • 2. Outline 1 Motivation: models and data 2 Modeling framework 3 Inference: examples 4 Sensitivity, Fisher Information, statistical model analysis Michał Komorowski Stochastic biochemical reactions 21/03/11 2 / 31
  • 3. Fluorescent reporter genes Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31
  • 4. Fluorescent reporter genes Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 3 / 31
  • 5. Fluorescent microscopy and flow cytometry Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 6. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 7. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 8. Fluorescent microscopy and flow cytometry A B 300 300 275 250 200 225 200 100 fluorescence (a.u.) 0 5 10 15 20 25 0 5 10 15 20 25 C D 300 300 250 250 200 200 150 150 100 100 0 5 10 15 20 25 0 5 10 15 20 25 time (hours) Michał Komorowski Stochastic biochemical reactions Motivation 21/03/11 4 / 31
  • 9. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 10. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 11. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 12. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 13. Chemical kinetics model System’s state x = (x1 , . . . , xN )T Stoichiometry matrix S = {Sij }i=1,2...N; j=1,2...l (x1 , ...., xN ) → (x1 + S1j , ...., xN + SNj ) Reaction rates F(x, Θ) = (f1 (x, Θ), ..., fl (x, Θ)) Parameters Θ = (θ1 , ..., θr ) x is a Poisson birth and death process Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 5 / 31
  • 14. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 15. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 16. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 17. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 18. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 19. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 20. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 21. Example: gene expression Macroscopic rate equation ˙ φR = kR (t) − γR φR ˙ φP = kP φR − γP φP State x = (r, p) Diffusion approximation Stoichiometry dR = (kR (t) − γR R)dt + kR + γR RdWR 1 −1 0 0 S= dP = (kP R − γP P)dt + kP R + γP PdWP 0 0 1 −1 Rates Linear noise approximation R(t) = φR (t) + ξR (t) P(t) = φP (t) + ξP (t) F(x, Θ) = (kr , γr r, kp r, γp p) dξR = (−γR ξR )dt + kR (t) + γR φR dWξR , Parameters dξP = (kP ξR − γP ξP )dt + kP φP + γP φP dWξP Θ = (kr , γr , kp , γp ) Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 6 / 31
  • 22. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 23. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 24. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 25. Modelling chemical kinetics Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 7 / 31
  • 26. How about inference ? Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 27. How about inference ? Chemical master equation l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 28. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 29. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 30. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation (data augmentation) dx = S F(x)dt + S diag F(x) dW Linear noise approximation x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 31. How about inference ? Chemical master equation (likelihood-free methods, e.g. ABC) l dPt (x) = Pt (x − S·j )fj (x − S·j ) − Pt (x)fj (x) dt j=1 Macroscopic rate equation (least squares) dϕ = S F(ϕ) F(ϕ) = (f1 (ϕ), ..., fk (ϕ)) dt Diffusion approximation (data augmentation) dx = S F(x)dt + S diag F(x) dW Linear noise approximation (explicite likelihood) x(t) = ϕ(t) + ξ(t) dξ = S ϕ F(ϕ)ξdt + S diag F(ϕ) dW Michał Komorowski Stochastic biochemical reactions Modelling 21/03/11 8 / 31
  • 32. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 33. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 34. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 35. Model equations LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 9 / 31
  • 36. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 37. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 38. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 39. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 40. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 41. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 42. Distribution of data Vector of measurements xQ ≡ (xt1 , . . . , xtn ) for Q ∈ {TS, TP, DT} time-series (TS) e.g. fluorescent microscopy end-time-point (TP) e.g. fluorescent cytometry deterministic (DT) e.g. population data xQ ∼ MVN(µ(Θ), ΣQ (Θ)) µ(Θ) = (ϕ(t1 ), ..., ϕ(tn ))    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  ΣQ (Θ)(i,j) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 10 / 31
  • 43. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 44. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 45. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 46. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 47. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 48. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 49. Advantages of the framework Inference Explicit likelihood Time-series, end-time-point data Very low computational cost, compared to other methods Hidden variables Measurement error Michał Komorowski Stochastic biochemical reactions Inference 21/03/11 11 / 31
  • 50. Hierarchical model for degradation rates: CHX experiment 40 30 fluorescence level 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 51. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 52. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 53. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 0 0 2 4 6 8 10 time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 54. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 2 0 0 2 4 6 8 10 γP ∼ Gamma(µγp , σγp ) time (h) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 55. Hierarchical model for degradation rates: CHX experiment 40 Model: 30 fluorescence level dp = (kp − γp p)dt+ kp + γp φp (t)dW 20 10 Rates differ between cells 2 0 0 2 4 6 8 10 γP ∼ Gamma(µγp , σγp ) time (h) 8 6 density 4 2 0 0.0 0.2 0.4 0.6 0.8 1.0 degradation rate Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 12 / 31
  • 56. DRB experiment 450 400 350 300 GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 57. DRB experiment 450 Model: 400 350 300 GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 58. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 59. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 Time (hours) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 60. DRB experiment 450 Model: 400 350 dr = (kr − γr r)dt+ kr + γr φr (t)dWr 300 dp = (kp r − γp p)dt + kp φr (t) + γp φr (t)dWp GFP Fluorescence 250 200 150 100 We can estimate 50 2 0 0 2 4 6 8 Time (hours) 10 12 14 16 γr ∼ Gamma(µγr , σγr ) Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 13 / 31
  • 61. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 62. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 63. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 64. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 65. Fluorescent proteins as transcriptional reporters in single cells Observed fluorescence and time-course of endogenous protein differ fluorescence intensity (a.u.) 200 400 600 800 GH3 rat pituitary cells with EGFP linked to prolactin gene promoter Trascription is triggered at the start of the experiment No data on mRNA level 0 0 5 10 15 20 25 Informative prior on mRNA and time (hours) protein degradation rate Experiment: Claire Harper, Mike White; Department of Biology, University of Liverpool Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 14 / 31
  • 66. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 67. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 68. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 69. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt dp = (kp r − γp p)dt Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 70. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 71. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 72. Fluorescent proteins as transcriptional reporters in single cells Calculating back to the transcription level Model: dr = (kr (t) − γr r)dt+ kr (t) + γr r dWr dp = (kp r − γp p)dt + kp r + γp pdWp p(obs) = λp Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 15 / 31
  • 73. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 74. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 75. Inference results We estimated scaling factor λ = 2.11 (1.24 - 3.56) Translation in absolute units kp =0.46 (0.14 - 1.51) Transcription profile in absolute units ¨ Finkenstadt B., Heron E.,Komorowski M. et al.Reconstruction of transcriptional dynamics, Bioinformatics 24, 2008 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 16 / 31
  • 76. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 77. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 78. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 79. Sensitivity for stochastic systems: motivation Difference in response to perturbations in parameters Deterministic model ( DT) e.g. population average Time-series stochastic model (TS) e.g. fluorescent microscopy Time-point stochastic model (TP) e.g. flow cytometry Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 17 / 31
  • 80. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 81. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 82. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 83. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 84. Implications Sensitivity Robustness - global sensitivity analysis Information content of data Optimal experimental design Idetifiability Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 18 / 31
  • 85. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 86. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 87. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 88. Sensitivity and Fisher Information Classical sensitivity coefficients for an observable X and parameter θ ∂X ∂θ Stochastic case: observable X is drawn from a distribution ψ 2 ∂ log ψ(X, θ) I(θ) = E ∂θ For stochastic model of chemical reactions evaluated using Monte Carlo simulations Can be evaluated via numerical integration of ODEs Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 19 / 31
  • 89. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 90. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 91. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 92. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 93. Model equations - reminder LNA implies Gaussian distribution x(t) ∼ MVN(ϕ(t), V(t)) Mean ϕ(t) given as s solution of the rate equation Variances dV(t) = A(ϕ, Θ, t)V + VA(ϕ, Θ, t)T + E(ϕ, Θ, t)E(ϕ, Θ, t)T dt Covariances cov(x(s), x(t)) = V(s)Φ(s, t)T for s ≥ t dΦ(ti , s) = A(ϕ, Θ, s)Φ(ti , s), Φ(ti , ti ) = I ds Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 20 / 31
  • 94. Model equations - reminder Fisher information ∂µ T ∂µ 1 ∂Σ −1 ∂Σ I(θ) = Σ(θ) + trace(Σ−1 Σ ) ∂θ ∂θ 2 ∂θ ∂θ Covariance matrix    V(ti ) for i = j Q ∈ {TS, TP} σ2I for i = j Q ∈ {DT}  (i,j) ΣQ (Θ) =   0 for i < j Q ∈ {TP, DT} V(ti )Φ(ti , tj )T for i < j Q ∈ {TS}  Michał Komorowski Stochastic biochemical reactions Fisher Information 21/03/11 21 / 31
  • 95. Example: expression of a gene Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 22 / 31
  • 96. Response to parameter perturbations: stochastic vs deterministic case Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 97. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein Stochastic Deterministic correlation=0.24218 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 98. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein correlation=0.53838 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 99. Response to parameter perturbations: stochastic vs deterministic case Influence of correlation between RNA and protein correlation=0.92828 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 23 / 31
  • 100. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 101. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations =30 0.1 0.1 0.1 0.1 Stochastic 0.05 0.05 0.05 0.05 Deterministic 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 102. Response to parameter perturbations: stochastic vs deterministic case Influence of temporal correlations =3 0.1 0.1 0.1 0.1 Stochastic Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 103. Response to parameter perturbations: stochastic vs deterministic case Influance of temporal correlations =0.3 Stochastic 0.1 0.1 0.1 0.1 Deterministic 0.05 0.05 0.05 0.05 0 0 0 0 kr 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 kp 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 0 0 0 0 r 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05 p 0 0 0 0 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 0.1 0.05 0 0.05 0.1 k k r p r p Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 24 / 31
  • 104. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 105. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 106. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 107. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 108. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 109. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) Type TS TP DT Stationary 4 2 1 Perturbation 4 4 3 Perturbation: 5-fold increased initial conditions Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 110. Amount of information in the data Only protein level is measured Measurements are taken from a stationary state # of identifiable parameters optimal sampling frequency (non-zero eigenvalues) 80 set 1 set 2 70 set 3 set 4 60 Type TS TP DT 50 Stationary 4 2 1 det( FIM ) 40 Perturbation 4 4 3 30 20 Perturbation: 5-fold increased initial conditions 10 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 25 / 31
  • 111. p53 system p53 protein regulates cell cycle, response to DNA damage and it is a tumour repressor. x = (p, y0 , y). y0 - mdm2 precursor p - p53 y - mdm2 Deterministic version: ˙ φp φp = βx − αx φp − αk φy φp + k ˙ y = β y φp − α0 φy φ0 0 ˙ φy = α 0 φy0 − α y φy . Parameter vector Θ = (βx , αx , αk , k, βy , α0 , αy ). Role of parameters: which parameters control stochastic effects in the model? Fluorescent microscopy or flow cytometry? Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31
  • 112. p53 system p53 protein regulates cell cycle, response to DNA damage and it is a tumour repressor. x = (p, y0 , y). y0 - mdm2 precursor p - p53 y - mdm2 Deterministic version: ˙ φp φp = βx − αx φp − αk φy φp + k ˙ y = β y φp − α0 φy φ0 0 ˙ φy = α 0 φy0 − α y φy . Parameter vector Θ = (βx , αx , αk , k, βy , α0 , αy ). Role of parameters: which parameters control stochastic effects in the model? Fluorescent microscopy or flow cytometry? Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31
  • 113. p53 system p53 protein regulates cell cycle, response to DNA damage and it is a tumour repressor. x = (p, y0 , y). y0 - mdm2 precursor p - p53 y - mdm2 Deterministic version: ˙ φp φp = βx − αx φp − αk φy φp + k ˙ y = β y φp − α0 φy φ0 0 ˙ φy = α 0 φy0 − α y φy . Parameter vector Θ = (βx , αx , αk , k, βy , α0 , αy ). Role of parameters: which parameters control stochastic effects in the model? Fluorescent microscopy or flow cytometry? Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31
  • 114. p53 system p53 protein regulates cell cycle, response to DNA damage and it is a tumour repressor. x = (p, y0 , y). y0 - mdm2 precursor p - p53 y - mdm2 Deterministic version: ˙ φp φp = βx − αx φp − αk φy φp + k ˙ y = β y φp − α0 φy φ0 0 ˙ φy = α 0 φy0 − α y φy . Parameter vector Θ = (βx , αx , αk , k, βy , α0 , αy ). Role of parameters: which parameters control stochastic effects in the model? Fluorescent microscopy or flow cytometry? Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31
  • 115. p53 system p53 protein regulates cell cycle, response to DNA damage and it is a tumour repressor. x = (p, y0 , y). y0 - mdm2 precursor p - p53 y - mdm2 Deterministic version: ˙ φp φp = βx − αx φp − αk φy φp + k ˙ y = β y φp − α0 φy φ0 0 ˙ φy = α 0 φy0 − α y φy . Parameter vector Θ = (βx , αx , αk , k, βy , α0 , αy ). Role of parameters: which parameters control stochastic effects in the model? Fluorescent microscopy or flow cytometry? Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 26 / 31
  • 116. Role of parameters Eigen values normalized against model maximum 1 TS TP 0.8 DT 0.6 0.4 0.2 0 1 2 3 4 5 6 7 Eigen values normalized against total maximum 1 TS TP 0.8 DT 0.6 0.4 0.2 0 1 2 3 4 5 6 7 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 27 / 31
  • 117. Which parameters are involved in controlling stochastic effects? TS - heatmap, DT - contour plot Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 28 / 31
  • 118. Fluorescent microscopy vs flow cytometry 23 x 10 12 TP TS 10 8 det( FIM ) 6 4 2 0 0 1 2 3 4 5 6 7 8 9 10 Number of TP measurements per time point 4 x 10 Michał Komorowski Stochastic biochemical reactions Examples 21/03/11 29 / 31
  • 119. Summary Efficient and simple inference framework for stochastic systems Fisher Information Matrix for stochastic models can be represented as solutions of ODEs Substantial differences is sensitivities between stochastic and deterministic models may exist Applicability experimental design Matlab package for sensitivity of stochastic systems available www.theosysbio.bio.ic.ac.uk/resources/stns/ Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical kinetics models, PNAS in press, 2011. ¨ Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophysical J., 98, 2010. ¨ Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the linear noise approximation, BMC Bioinformatics, 10, 2009; Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31
  • 120. Summary Efficient and simple inference framework for stochastic systems Fisher Information Matrix for stochastic models can be represented as solutions of ODEs Substantial differences is sensitivities between stochastic and deterministic models may exist Applicability experimental design Matlab package for sensitivity of stochastic systems available www.theosysbio.bio.ic.ac.uk/resources/stns/ Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical kinetics models, PNAS in press, 2011. ¨ Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophysical J., 98, 2010. ¨ Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the linear noise approximation, BMC Bioinformatics, 10, 2009; Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31
  • 121. Summary Efficient and simple inference framework for stochastic systems Fisher Information Matrix for stochastic models can be represented as solutions of ODEs Substantial differences is sensitivities between stochastic and deterministic models may exist Applicability experimental design Matlab package for sensitivity of stochastic systems available www.theosysbio.bio.ic.ac.uk/resources/stns/ Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical kinetics models, PNAS in press, 2011. ¨ Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophysical J., 98, 2010. ¨ Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the linear noise approximation, BMC Bioinformatics, 10, 2009; Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31
  • 122. Summary Efficient and simple inference framework for stochastic systems Fisher Information Matrix for stochastic models can be represented as solutions of ODEs Substantial differences is sensitivities between stochastic and deterministic models may exist Applicability experimental design Matlab package for sensitivity of stochastic systems available www.theosysbio.bio.ic.ac.uk/resources/stns/ Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical kinetics models, PNAS in press, 2011. ¨ Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophysical J., 98, 2010. ¨ Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the linear noise approximation, BMC Bioinformatics, 10, 2009; Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31
  • 123. Summary Efficient and simple inference framework for stochastic systems Fisher Information Matrix for stochastic models can be represented as solutions of ODEs Substantial differences is sensitivities between stochastic and deterministic models may exist Applicability experimental design Matlab package for sensitivity of stochastic systems available www.theosysbio.bio.ic.ac.uk/resources/stns/ Komorowski M.,Costa M.J., Rand D., Stumpf M.P.H. Sensitivity, robustness and identifiability in stochastic chemical kinetics models, PNAS in press, 2011. ¨ Komorowski M.,Finkenstadt B., Rand D. Using single fluorescent reporter gene to infer half-life of extrinsic noise and other parameters of gene expression, Biophysical J., 98, 2010. ¨ Komorowski M.,Finkenstadt B., Harper C., Rand D. Bayesian estimation of the biochemical kinetics parameters using the linear noise approximation, BMC Bioinformatics, 10, 2009; Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 30 / 31
  • 124. Acknowledgement Michael Stumpf Imperial College London ¨ ¨ Barbel Finkenstad Warwick University Dan Woodcock Warwick University David Rand Warwick University Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31
  • 125. Thank you! Michał Komorowski Stochastic biochemical reactions Summary 21/03/11 31 / 31