SlideShare a Scribd company logo
2
Most read
7
Most read
8
Most read
By
Dr. K. Rekha
B.Tech., M.Tech., Ph.D., MIE
ANALYSIS OF SWAY TYPE PORTAL FRAME
USING
DIRECT STIFFNESS MATRIX METHOD
• Analyze the portal frame shown in figure using
displacement (stiffness) method.
A
B
C
D
20 kN/m
4 m
3m
50 kN
3m
• Step 1: Determination of Degrees of Freedom
• The given portal frame is sway type portal frame.
• The joints (B& C) are to be considered as internal hinges
• The degrees of freedom at each Joint is one, i.e., rotations
θb and θc.
• The frame also have sway Δ in the direction of Horizontal
force.
• At supports A & D , the degrees of freedom is equal to
zero, since these are fixed supports.
• Hence, the total degree of freedom of the given frame is
THREE (θb , θc & Δ).
A
B C
D
4 m
3m
θb θc
Δ
• Step 2: Assign coordinate numbers in the direction of
DoF
A
B C
D
2 3
1
Step 3: Determination of fixed end Moments
• 𝑀 𝐹
𝑎𝑏
= 𝑀 𝐹
𝑏𝑎
= 𝑀 𝐹
𝑐𝑑
= 𝑀 𝐹
𝑑𝑐
= 0
• 𝑀 𝐹
𝑏𝑐
= −
𝑤𝑙2
12
= −
20×42
12
= −26.67𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑏
=
𝑤𝑙2
12
=
20×42
12
= 26.67𝑘𝑁 − 𝑚
A
B C
D
20 kN/m
4 m
3m
50 kN
7
A
B C
D
4m
𝑴 𝑭
𝒃𝒄
𝑴 𝑭
𝒄𝒃
𝑴 𝑭
𝒃a
𝑴 𝑭
ab
𝑴 𝑭
𝒅𝒄
𝑴 𝑭
𝒄𝒅
P1L
P2L
P3L
Step 5: Assembly of Stiffness Matrix
1. Applying Unit rotation in Coordinate Direction 1
𝐾11 =
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑 +
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑
=
𝟏𝟐𝑬𝑰
𝟑 𝟑 +
𝟏𝟐𝑬𝑰
𝟑 𝟑 = 0.888 EI (Since Δ = 1)
𝐾21 = -
𝟔𝑬𝑰Δ
𝑳 𝟐 = -
𝟔𝑬𝑰
𝟑 𝟐 = - 0.667 EI
𝐾31 = -
𝟔𝑬𝑰Δ
𝑳 𝟐 = -
𝟔𝑬𝑰
𝟑 𝟐 = - 0.667 EI
Δ= 1 Δ= 1
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑
𝟏𝟐𝑬𝑰Δ
𝑳 𝟑
𝟔𝑬𝑰Δ
𝑳 𝟐
𝟔𝑬𝑰Δ
𝑳 𝟐
𝟔𝑬𝑰Δ
𝑳 𝟐 𝟔𝑬𝑰Δ
𝑳 𝟐
9
θc= 0
A
B C
D
θb= 1
𝐾12 = -
𝟔𝑬𝑰Δ
𝑳 𝟐 = -
𝟔𝑬𝑰
𝟑 𝟐 = - 0.667 EI
𝐾22 = 𝐾𝑏𝑎 + 𝐾𝑏𝑐
=
2𝐸𝐼
𝐿 𝑏𝑎
[2𝜃 𝑏 + 𝜃 𝑎] +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐
=
2𝐸𝐼
3
2 × 1 + 0 +
2𝐸𝐼
4
2 × 1 + 0 = 2.33EI
𝐾32 = 𝐾𝑐𝑏 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃𝑐 + 𝜃 𝑏]
– =
2𝐸𝐼
4
2 × 0 + 1 = 0.5EI
𝟔𝑬𝑰Δ
𝑳 𝟐
𝐾13 = -
𝟔𝑬𝑰Δ
𝑳 𝟐 = -
𝟔𝑬𝑰
𝟑 𝟐 = - 0.667 EI
𝐾23 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐
– =
2𝐸𝐼
4
2 × 0 + 1 = 0.5EI
𝐾33 = 𝐾𝑐𝑏 +𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃𝑐 + 𝜃 𝑏] +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑
=
2𝐸𝐼
4
2 × 1 + 0 +
2𝐸𝐼
3
2 × 1 + 0 = 2.33EI
10
θc= 1
A
B C
D
θb= 0
𝟔𝑬𝑰Δ
𝑳 𝟐
K =
𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33
K = EI
0.888 −0.667 −0.667
−0.667 2.33 0.5
−0.667 0.5 2.33
• STEP 6: Calculation of Actual Forces
𝑃 − 𝑃𝐿 =
𝑃1 − 𝑃1𝐿
𝑃2 − 𝑃2𝐿
𝑃3 − 𝑃3𝐿
=
50 − 0
0 − (−26.66)
0 − 26.66
=
50
26.66
−26.66
12
13
• STEP 6: Application Stiffness Equation
Δ1 = Δ = 87.17/EI
Δ2 = 𝜃 𝑏 = 35.11/𝐸𝐼
Δ3 = 𝜃𝑐 = 5.976/𝐸𝐼
EI
0.888 −0.667 −0.667
−0.667 2.33 0.5
−0.667 0.5 2.33
Δ1
Δ2
Δ3
=
50
26.66
− 26.66
K Δ = P-𝑃𝐿
• Step 8: Final Moments
𝑀 𝑎𝑏 = 𝑀 𝐹
𝑎𝑏 +
2𝐸𝐼
𝐿 𝑎𝑏
2𝜃 𝑎 + 𝜃 𝑏 −
3∆
𝐿 𝑎𝑏
= 0+
2𝐸𝐼
3
0 +
35.11
𝐸𝐼
−
3(
87.17
𝐸𝐼
)
3
= -34.70 kN-m
𝑀 𝑏𝑎 = 𝑀 𝐹
𝑏𝑎 +
2𝐸𝐼
𝐿 𝑏𝑎
2𝜃 𝑏 + 𝜃 𝑎 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= 0+
2𝐸𝐼
3
2
35.11
𝐸𝐼
+ 0 −
3(
87.17
𝐸𝐼
)
3
=-11.3 kN-m
𝑀 𝑏𝑐 = 𝑀 𝐹
𝑏𝑐 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= -26.66+
2𝐸𝐼
4
2
35.11
𝐸𝐼
+
5.97
𝐸𝐼
+ 0 = 11.4 kN-m
• Step 8: Final Moments
𝑀𝑐𝑏 = 𝑀 𝐹
𝑐𝑏 +
2𝐸𝐼
𝐿 𝑐𝑏
2𝜃𝑐 + 𝜃 𝑏 −
3∆
𝐿 𝑐𝑏
= 26.66+
2𝐸𝐼
4
2
5.97
𝐸𝐼
+
35.11
𝐸𝐼
− 0 = 50.18 kN-m
𝑀𝑐𝑑 = 𝑀 𝐹
𝑐𝑑 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= 0+
2𝐸𝐼
3
2
5.976
𝐸𝐼
+ 0 −
3(
87.17
𝐸𝐼
)
3
= -50.15 kN-m
𝑀 𝑑𝑐 = 𝑀 𝐹
𝑑𝑐 +
2𝐸𝐼
𝐿 𝑑𝑐
2𝜃 𝑑 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑑𝑐
= 0+
2𝐸𝐼
3
0 +
5.976
𝐸𝐼
−
3(
87.17
𝐸𝐼
)
3
= -54.12 kN-m
Thank You

More Related Content

PPTX
Analysis of portal frame by direct stiffness method
PPTX
G12 Economics lecture notes.pptx
PPTX
PPTX
Advanced construction materials
PDF
Moment Distribution Method
PPTX
Silica fume concrete
PPTX
Projet routier
PDF
1-D_Cours_Chaussees.pdf
Analysis of portal frame by direct stiffness method
G12 Economics lecture notes.pptx
Advanced construction materials
Moment Distribution Method
Silica fume concrete
Projet routier
1-D_Cours_Chaussees.pdf

What's hot (20)

PPTX
Principle of virtual work and unit load method
PDF
Portal and cantilever method
PDF
Chapter 6-influence lines for statically determinate structures
PPTX
Direct integration method
PPT
Basic principles of design for rcc building
PDF
Settlement of shallow foundation
PPTX
Geotech2.pptx
PDF
Unit 3 flexibility-anujajape
PDF
Basement wall design
PPT
PDF
Combined bending and direct stresses
PDF
Lecture 5 castigliono's theorem
PDF
Lecture 2 bearing capacity
PPTX
shear centre
DOC
Examples on total consolidation
PPTX
Design of RCC Column footing
PDF
Lecture-3-Column-Design.pdf
PPSX
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
PPTX
Consolidation settlement
PDF
Rcc design handbook
Principle of virtual work and unit load method
Portal and cantilever method
Chapter 6-influence lines for statically determinate structures
Direct integration method
Basic principles of design for rcc building
Settlement of shallow foundation
Geotech2.pptx
Unit 3 flexibility-anujajape
Basement wall design
Combined bending and direct stresses
Lecture 5 castigliono's theorem
Lecture 2 bearing capacity
shear centre
Examples on total consolidation
Design of RCC Column footing
Lecture-3-Column-Design.pdf
Geotechnical Engineering-II [Lec #7A: Boussinesq Method]
Consolidation settlement
Rcc design handbook
Ad

Similar to Analysis of sway type portal frame using direct stiffness method (20)

PPTX
analysisofnonswayportalframeusingstiffness-200504074206.pptx
PPTX
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
PPTX
presentation1_28.pptx
PPT
Top schools in delhi ncr
PPT
Mba admission in india
PDF
Module 6.pdf
PPTX
Seismic design of liquid storage tanks.pptx
PPTX
Problemas deflexiones en vigas
PPTX
Shear Force Diagram and its exampls
PDF
Lesson 2.3 Graphs of Circular Functions.pdf
PPTX
Analysis of non sway frame portal frames by slopeand deflection method
PPTX
ppt.pptx
PDF
4th Semester M Tech: Structural Engineering (June-2016) Question Papers
PDF
Module2 rajesh sir
PDF
Module4 s dynamics- rajesh sir
PDF
Module4 s dynamics- rajesh sir
PDF
Module 7.pdf
PDF
L04 5.pdf (trusses)
PPT
Beam buckling
PDF
Module1 1 introduction-tomatrixms - rajesh sir
analysisofnonswayportalframeusingstiffness-200504074206.pptx
ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD
presentation1_28.pptx
Top schools in delhi ncr
Mba admission in india
Module 6.pdf
Seismic design of liquid storage tanks.pptx
Problemas deflexiones en vigas
Shear Force Diagram and its exampls
Lesson 2.3 Graphs of Circular Functions.pdf
Analysis of non sway frame portal frames by slopeand deflection method
ppt.pptx
4th Semester M Tech: Structural Engineering (June-2016) Question Papers
Module2 rajesh sir
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
Module 7.pdf
L04 5.pdf (trusses)
Beam buckling
Module1 1 introduction-tomatrixms - rajesh sir
Ad

Recently uploaded (20)

PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
additive manufacturing of ss316l using mig welding
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
CH1 Production IntroductoryConcepts.pptx
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
Well-logging-methods_new................
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
web development for engineering and engineering
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PDF
PPT on Performance Review to get promotions
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PPT
Mechanical Engineering MATERIALS Selection
PPTX
OOP with Java - Java Introduction (Basics)
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
Geodesy 1.pptx...............................................
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
additive manufacturing of ss316l using mig welding
R24 SURVEYING LAB MANUAL for civil enggi
UNIT-1 - COAL BASED THERMAL POWER PLANTS
CH1 Production IntroductoryConcepts.pptx
bas. eng. economics group 4 presentation 1.pptx
Well-logging-methods_new................
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
web development for engineering and engineering
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
PPT on Performance Review to get promotions
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Mechanical Engineering MATERIALS Selection
OOP with Java - Java Introduction (Basics)
Model Code of Practice - Construction Work - 21102022 .pdf
Operating System & Kernel Study Guide-1 - converted.pdf
Geodesy 1.pptx...............................................

Analysis of sway type portal frame using direct stiffness method

  • 1. By Dr. K. Rekha B.Tech., M.Tech., Ph.D., MIE ANALYSIS OF SWAY TYPE PORTAL FRAME USING DIRECT STIFFNESS MATRIX METHOD
  • 2. • Analyze the portal frame shown in figure using displacement (stiffness) method. A B C D 20 kN/m 4 m 3m 50 kN 3m
  • 3. • Step 1: Determination of Degrees of Freedom • The given portal frame is sway type portal frame. • The joints (B& C) are to be considered as internal hinges • The degrees of freedom at each Joint is one, i.e., rotations θb and θc. • The frame also have sway Δ in the direction of Horizontal force. • At supports A & D , the degrees of freedom is equal to zero, since these are fixed supports. • Hence, the total degree of freedom of the given frame is THREE (θb , θc & Δ).
  • 5. • Step 2: Assign coordinate numbers in the direction of DoF A B C D 2 3 1
  • 6. Step 3: Determination of fixed end Moments • 𝑀 𝐹 𝑎𝑏 = 𝑀 𝐹 𝑏𝑎 = 𝑀 𝐹 𝑐𝑑 = 𝑀 𝐹 𝑑𝑐 = 0 • 𝑀 𝐹 𝑏𝑐 = − 𝑤𝑙2 12 = − 20×42 12 = −26.67𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑏 = 𝑤𝑙2 12 = 20×42 12 = 26.67𝑘𝑁 − 𝑚 A B C D 20 kN/m 4 m 3m 50 kN
  • 7. 7 A B C D 4m 𝑴 𝑭 𝒃𝒄 𝑴 𝑭 𝒄𝒃 𝑴 𝑭 𝒃a 𝑴 𝑭 ab 𝑴 𝑭 𝒅𝒄 𝑴 𝑭 𝒄𝒅 P1L P2L P3L
  • 8. Step 5: Assembly of Stiffness Matrix 1. Applying Unit rotation in Coordinate Direction 1 𝐾11 = 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 + 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 = 𝟏𝟐𝑬𝑰 𝟑 𝟑 + 𝟏𝟐𝑬𝑰 𝟑 𝟑 = 0.888 EI (Since Δ = 1) 𝐾21 = - 𝟔𝑬𝑰Δ 𝑳 𝟐 = - 𝟔𝑬𝑰 𝟑 𝟐 = - 0.667 EI 𝐾31 = - 𝟔𝑬𝑰Δ 𝑳 𝟐 = - 𝟔𝑬𝑰 𝟑 𝟐 = - 0.667 EI Δ= 1 Δ= 1 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 𝟏𝟐𝑬𝑰Δ 𝑳 𝟑 𝟔𝑬𝑰Δ 𝑳 𝟐 𝟔𝑬𝑰Δ 𝑳 𝟐 𝟔𝑬𝑰Δ 𝑳 𝟐 𝟔𝑬𝑰Δ 𝑳 𝟐
  • 9. 9 θc= 0 A B C D θb= 1 𝐾12 = - 𝟔𝑬𝑰Δ 𝑳 𝟐 = - 𝟔𝑬𝑰 𝟑 𝟐 = - 0.667 EI 𝐾22 = 𝐾𝑏𝑎 + 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 𝑏𝑎 [2𝜃 𝑏 + 𝜃 𝑎] + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 = 2𝐸𝐼 3 2 × 1 + 0 + 2𝐸𝐼 4 2 × 1 + 0 = 2.33EI 𝐾32 = 𝐾𝑐𝑏 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃𝑐 + 𝜃 𝑏] – = 2𝐸𝐼 4 2 × 0 + 1 = 0.5EI 𝟔𝑬𝑰Δ 𝑳 𝟐
  • 10. 𝐾13 = - 𝟔𝑬𝑰Δ 𝑳 𝟐 = - 𝟔𝑬𝑰 𝟑 𝟐 = - 0.667 EI 𝐾23 = 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 – = 2𝐸𝐼 4 2 × 0 + 1 = 0.5EI 𝐾33 = 𝐾𝑐𝑏 +𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃𝑐 + 𝜃 𝑏] + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 = 2𝐸𝐼 4 2 × 1 + 0 + 2𝐸𝐼 3 2 × 1 + 0 = 2.33EI 10 θc= 1 A B C D θb= 0 𝟔𝑬𝑰Δ 𝑳 𝟐
  • 11. K = 𝐾11 𝐾12 𝐾13 𝐾21 𝐾22 𝐾23 𝐾31 𝐾32 𝐾33 K = EI 0.888 −0.667 −0.667 −0.667 2.33 0.5 −0.667 0.5 2.33
  • 12. • STEP 6: Calculation of Actual Forces 𝑃 − 𝑃𝐿 = 𝑃1 − 𝑃1𝐿 𝑃2 − 𝑃2𝐿 𝑃3 − 𝑃3𝐿 = 50 − 0 0 − (−26.66) 0 − 26.66 = 50 26.66 −26.66 12
  • 13. 13 • STEP 6: Application Stiffness Equation Δ1 = Δ = 87.17/EI Δ2 = 𝜃 𝑏 = 35.11/𝐸𝐼 Δ3 = 𝜃𝑐 = 5.976/𝐸𝐼 EI 0.888 −0.667 −0.667 −0.667 2.33 0.5 −0.667 0.5 2.33 Δ1 Δ2 Δ3 = 50 26.66 − 26.66 K Δ = P-𝑃𝐿
  • 14. • Step 8: Final Moments 𝑀 𝑎𝑏 = 𝑀 𝐹 𝑎𝑏 + 2𝐸𝐼 𝐿 𝑎𝑏 2𝜃 𝑎 + 𝜃 𝑏 − 3∆ 𝐿 𝑎𝑏 = 0+ 2𝐸𝐼 3 0 + 35.11 𝐸𝐼 − 3( 87.17 𝐸𝐼 ) 3 = -34.70 kN-m 𝑀 𝑏𝑎 = 𝑀 𝐹 𝑏𝑎 + 2𝐸𝐼 𝐿 𝑏𝑎 2𝜃 𝑏 + 𝜃 𝑎 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = 0+ 2𝐸𝐼 3 2 35.11 𝐸𝐼 + 0 − 3( 87.17 𝐸𝐼 ) 3 =-11.3 kN-m 𝑀 𝑏𝑐 = 𝑀 𝐹 𝑏𝑐 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = -26.66+ 2𝐸𝐼 4 2 35.11 𝐸𝐼 + 5.97 𝐸𝐼 + 0 = 11.4 kN-m
  • 15. • Step 8: Final Moments 𝑀𝑐𝑏 = 𝑀 𝐹 𝑐𝑏 + 2𝐸𝐼 𝐿 𝑐𝑏 2𝜃𝑐 + 𝜃 𝑏 − 3∆ 𝐿 𝑐𝑏 = 26.66+ 2𝐸𝐼 4 2 5.97 𝐸𝐼 + 35.11 𝐸𝐼 − 0 = 50.18 kN-m 𝑀𝑐𝑑 = 𝑀 𝐹 𝑐𝑑 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = 0+ 2𝐸𝐼 3 2 5.976 𝐸𝐼 + 0 − 3( 87.17 𝐸𝐼 ) 3 = -50.15 kN-m 𝑀 𝑑𝑐 = 𝑀 𝐹 𝑑𝑐 + 2𝐸𝐼 𝐿 𝑑𝑐 2𝜃 𝑑 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑑𝑐 = 0+ 2𝐸𝐼 3 0 + 5.976 𝐸𝐼 − 3( 87.17 𝐸𝐼 ) 3 = -54.12 kN-m