SlideShare a Scribd company logo
2
Most read
16
Most read
17
Most read
Stiffness Method Problem
Dr. Kasi Rekha
B.Tech., M.Tech., Ph.D., MIE
1
Presented by
• Analyze the continuous beam shown in figure
using Stiffness method.
2
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
80 kN-m
• Step1:
– Degree of Freedom or Kinematic Indeterminacy : 3
3
B C
D
4m 2m4m 4m
2 I 1.5 I
θb θc θd
4
• Step 2:
– Assign Coordinate Numbers in the direction of degrees of
Freedom
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
5
• Step 3:
– Restrain the structure at all coordinates
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
6
• Step 4:
– Determination of Fixed End Moments
60 kN 80 kN
B C
D
4m 2m4m 4m
2 I 1.5 I
• 𝑀 𝐹
𝑏𝑐
= −
𝑤𝑎𝑏2
𝑙2 = −
60×4×42
82 = −60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑏
=
𝑤𝑎2 𝑏
𝑙2 =
60×4×42
82 = 60 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑐𝑑
= −
𝑤𝑎𝑏2
𝑙2 = −
80×4×22
62 = −35.55 𝑘𝑁 − 𝑚
• 𝑀 𝐹
𝑑𝑐
=
𝑤𝑎2 𝑏
𝑙2 =
80×22×4
62 = 71.11𝑘𝑁 − 𝑚
7
• Step 5:
– Calculation of forces in co ordinate numbers
𝑃1𝑙 = 𝑀 𝐹
𝑏𝑐
= - 60 kN-m
𝑃2𝑙 = 𝑀 𝐹
𝑐𝑏
+ 𝑀 𝐹
𝑐𝑑
= 60-35.55= 24.45 kN-m
𝑃3𝑙 = 𝑀 𝐹
𝑑𝑐
= 71.11 kN-m
8
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
• Step 6:
– Assembly of Stiffness Matrix
i. Applying Unit Rotation in co ordinate direction 1
9
B C
D
4m 2m4m 4m
2 I 1.5 I
1 2 3
θb = 1 θc = 0 θd = 0
10
𝐾11 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 1 + 0 =EI
𝐾21 = 𝐾𝑐𝑏 =
2𝐸𝐼
𝐿
[2𝜃𝑐 + 𝜃 𝑏] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5 EI
𝐾31 = 0
11
• Step 6:
– Assembly of Stiffness Matrix
ii. Applying Unit Rotation in co ordinate direction 2
8m 6m
θb = 0
1
2 3
2 I 1.5 I
θc = 1 θd = 0
12
𝐾12 = 𝐾𝑏𝑐 =
2𝐸𝐼
𝐿
[2𝜃 𝑏 + 𝜃𝑐] =
2𝐸(2𝐼)
8
2 × 0 + 1 = 0.5EI
3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑐𝑏
[2𝜃𝑐 + 𝜃 𝑏] +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(2𝐼)
8
2 × 1 + 0 +
2𝐸(1.5𝐼)
6
2 × 1 + 0 = 2𝐸𝐼
𝐾32 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5EI
13
• Step 6:
– Assembly of Stiffness Matrix
iii. Applying Unit Rotation in co ordinate direction 3
2 I 1.5 I
8m 6m
1
2 3
θb = 0
θc = 0 θd = 1
14
0𝐾13 = 𝐾𝑏𝑐 = 0
3𝐾23 = 𝐾𝑐𝑑
=
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑑
0 =
2𝐸(1.5𝐼)
6
2 × 0 + 1 = 0.5𝐸𝐼
𝐾33 = 𝐾 𝑑𝑐 =
2𝐸𝐼
𝐿 𝑏𝑐
[2𝜃 𝑑 + 𝜃𝑐] =
2𝐸(1.5𝐼)
6
2 × 1 + 0 = EI
• GLOBAL STIFFNESS MATRIX
𝐾 =
𝐾11 𝐾12 𝐾13
𝐾21 𝐾22 𝐾23
𝐾31 𝐾32 𝐾33
= EI
1 0.5 0
0.5 2 0.5
0 0.5 1
15
• STEP7:
– Calculation of Actual Forces
𝑃 − 𝑃𝐿 =
𝑃1 − 𝑃1𝐿
𝑃2 − 𝑃2𝐿
𝑃3 − 𝑃3𝐿
=
−80 − (−60)
0 − 24.45
0 − 71.11
=
−20
−24.45
−71.11
16
17
• GLOBAL STIFFNESS MATRIX
K Δ = P-𝑃𝐿
EI
1 0.5 0
0.5 2 0.5
0 0.5 1
Δ1
Δ2
Δ3
=
−20
−24.45
−71.11
Δ1 + 0.5 Δ2 = -20
0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45
0.5Δ2 + Δ3 = -71.11
−
27.035
𝐸𝐼
Δ1 = 𝜃 𝑏 =
14.07
𝐸𝐼
Δ2 = 𝜃𝑐 =
−
78.145
𝐸𝐼
Δ3 = 𝜃 𝑑 =
• Step 8:
– Final Moments
𝑀 𝑎𝑏 = ̶ 80 kN-m
𝑀 𝑏𝑐 = 𝑀 𝐹
𝑏𝑐 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃 𝑏 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= -60+
2𝐸(2𝐼)
8
(
2×(−27.035)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = -80 kN-m
18
𝑀𝑐𝑏 = 𝑀 𝐹
𝑐𝑏 +
2𝐸𝐼
𝐿 𝑏𝑐
2𝜃𝑐 + 𝜃 𝑏 −
3𝐸𝐼∆
𝐿 𝑏𝑐
= 60+
2𝐸(2𝐼)
8
(
2×(14.07)
𝐸𝐼
+
(−27.035
𝐸𝐼
) = 60.55kN-m
𝑀𝑐𝑑 = 𝑀 𝐹
𝑐𝑑 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃𝑐 + 𝜃 𝑑 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= -35.55+
2𝐸(1.5𝐼)
6
(
2×(14.07)
𝐸𝐼
+
(−78.145)
𝐸𝐼
) = -60.55 kN-m
𝑀 𝑑𝑐 = 𝑀 𝐹
𝑑𝑐 +
2𝐸𝐼
𝐿 𝑐𝑑
2𝜃 𝑑 + 𝜃𝑐 −
3𝐸𝐼∆
𝐿 𝑐𝑑
= 71.11+
2𝐸(1.5𝐼)
6
(
2×(−78.145)
𝐸𝐼
+
(14.07)
𝐸𝐼
) = 0
19
20
40 kN 60 kN 80 kN
A B C
D
2m 4m 2m4m 4m
2 I 1.5 I
80 kN-m
60.55 kN-m
120 kN-m
106.66kN-m
• Assessment question:
• Analyze the continuous beam shown in figure using stiffness
matrix method.
21
70kN
A
B C
6m3m 5m
80kN/
m
100kN
2m
D
2 I 1.5 I I
THANK YOU
22

More Related Content

PPT
Shear force and bending moment diagram
PPTX
G12 Economics lecture notes.pptx
PPTX
Structural Health Monitoring
PPTX
Structural health monitoring
PPTX
Design Of Continuous Beams 30_8.pptx
PPTX
Stiffness method of structural analysis
DOCX
engineering survey 1 report levelling
PPT
Gauss sediel
Shear force and bending moment diagram
G12 Economics lecture notes.pptx
Structural Health Monitoring
Structural health monitoring
Design Of Continuous Beams 30_8.pptx
Stiffness method of structural analysis
engineering survey 1 report levelling
Gauss sediel

What's hot (20)

PPTX
Balanced section,under reinforced,over reinforced section
PPTX
Analysis of portal frame by direct stiffness method
PPSX
Geotechnical Engineering-II [Lec #26: Slope Stability]
PDF
Gravity dam stability analysis
PDF
Load carrying capacity of piles
PPT
Non Destructive Test
PPTX
Earth pressure( soil mechanics)
PPTX
pre consolidation pressure
PPTX
Jacketing
PPSX
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
PPTX
Consolidation settlement
PPTX
Stress distribution of the soil
PDF
Calulation of deflection and crack width according to is 456 2000
PPTX
Self compacting concrete
PDF
Redistribution of moments-Part-1
PPSX
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
PDF
Plate load test
PPTX
Study of Prefabricated Vertical Drains
PPTX
Workability of Concrete
Balanced section,under reinforced,over reinforced section
Analysis of portal frame by direct stiffness method
Geotechnical Engineering-II [Lec #26: Slope Stability]
Gravity dam stability analysis
Load carrying capacity of piles
Non Destructive Test
Earth pressure( soil mechanics)
pre consolidation pressure
Jacketing
Geotechnical Engineering-II [Lec #25: Coulomb EP Theory - Numericals]
Consolidation settlement
Stress distribution of the soil
Calulation of deflection and crack width according to is 456 2000
Self compacting concrete
Redistribution of moments-Part-1
Geotechnical Engineering-II [Lec #23: Rankine Earth Pressure Theory]
Plate load test
Study of Prefabricated Vertical Drains
Workability of Concrete
Ad

Similar to ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD (20)

PDF
Consistence deformation of trusses
PDF
Analysis of sway type portal frame using direct stiffness method
PDF
130 problemas dispositivos electronicos lopez meza brayan
PPTX
Power_flow..نظم_قدرة.pptx
PDF
Module 6.pdf
PPTX
complete-Slope-Deflection-Methodology.pptx
PDF
STRENGTH OF MATERIALS SOLUTION MANUAL-6.pdf
PDF
Ejercicio viga
PDF
Influence linebeams (ce 311)
PDF
Influence linebeams (ce 311)
PDF
Mechanics engineering statics forces analysis 3D
PDF
Module4 s dynamics- rajesh sir
PDF
Module4 s dynamics- rajesh sir
DOCX
project designa.docx
PPTX
analysisofnonswayportalframeusingstiffness-200504074206.pptx
DOCX
EJERCICIOS RESUELTOS DE LOGARITMOS
DOCX
Tarea 1 vectores, matrices y determinantes laura montes
DOCX
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
PPTX
Curved motion
PDF
William hyatt-7th-edition-drill-problems-solution
Consistence deformation of trusses
Analysis of sway type portal frame using direct stiffness method
130 problemas dispositivos electronicos lopez meza brayan
Power_flow..نظم_قدرة.pptx
Module 6.pdf
complete-Slope-Deflection-Methodology.pptx
STRENGTH OF MATERIALS SOLUTION MANUAL-6.pdf
Ejercicio viga
Influence linebeams (ce 311)
Influence linebeams (ce 311)
Mechanics engineering statics forces analysis 3D
Module4 s dynamics- rajesh sir
Module4 s dynamics- rajesh sir
project designa.docx
analysisofnonswayportalframeusingstiffness-200504074206.pptx
EJERCICIOS RESUELTOS DE LOGARITMOS
Tarea 1 vectores, matrices y determinantes laura montes
Ejercicios resueltos en clase de fundaciones ayudante CALCULO DE ZAPATAS
Curved motion
William hyatt-7th-edition-drill-problems-solution
Ad

Recently uploaded (20)

PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
Internet of Things (IOT) - A guide to understanding
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPT
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
PDF
Well-logging-methods_new................
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
Construction Project Organization Group 2.pptx
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Digital Logic Computer Design lecture notes
PPTX
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
PPTX
Sustainable Sites - Green Building Construction
PDF
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
Internet of Things (IOT) - A guide to understanding
Model Code of Practice - Construction Work - 21102022 .pdf
CRASH COURSE IN ALTERNATIVE PLUMBING CLASS
Well-logging-methods_new................
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PRIZ Academy - 9 Windows Thinking Where to Invest Today to Win Tomorrow.pdf
Embodied AI: Ushering in the Next Era of Intelligent Systems
Construction Project Organization Group 2.pptx
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Enhancing Cyber Defense Against Zero-Day Attacks using Ensemble Neural Networks
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Digital Logic Computer Design lecture notes
KTU 2019 -S7-MCN 401 MODULE 2-VINAY.pptx
Sustainable Sites - Green Building Construction
TFEC-4-2020-Design-Guide-for-Timber-Roof-Trusses.pdf

ANALYSIS OF CONTINUOUS BEAM USING STIFFNESS METHOD

  • 1. Stiffness Method Problem Dr. Kasi Rekha B.Tech., M.Tech., Ph.D., MIE 1 Presented by
  • 2. • Analyze the continuous beam shown in figure using Stiffness method. 2 40 kN 60 kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I 80 kN-m
  • 3. • Step1: – Degree of Freedom or Kinematic Indeterminacy : 3 3 B C D 4m 2m4m 4m 2 I 1.5 I θb θc θd
  • 4. 4 • Step 2: – Assign Coordinate Numbers in the direction of degrees of Freedom B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 5. 5 • Step 3: – Restrain the structure at all coordinates B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 6. 6 • Step 4: – Determination of Fixed End Moments 60 kN 80 kN B C D 4m 2m4m 4m 2 I 1.5 I
  • 7. • 𝑀 𝐹 𝑏𝑐 = − 𝑤𝑎𝑏2 𝑙2 = − 60×4×42 82 = −60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑏 = 𝑤𝑎2 𝑏 𝑙2 = 60×4×42 82 = 60 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑐𝑑 = − 𝑤𝑎𝑏2 𝑙2 = − 80×4×22 62 = −35.55 𝑘𝑁 − 𝑚 • 𝑀 𝐹 𝑑𝑐 = 𝑤𝑎2 𝑏 𝑙2 = 80×22×4 62 = 71.11𝑘𝑁 − 𝑚 7
  • 8. • Step 5: – Calculation of forces in co ordinate numbers 𝑃1𝑙 = 𝑀 𝐹 𝑏𝑐 = - 60 kN-m 𝑃2𝑙 = 𝑀 𝐹 𝑐𝑏 + 𝑀 𝐹 𝑐𝑑 = 60-35.55= 24.45 kN-m 𝑃3𝑙 = 𝑀 𝐹 𝑑𝑐 = 71.11 kN-m 8 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3
  • 9. • Step 6: – Assembly of Stiffness Matrix i. Applying Unit Rotation in co ordinate direction 1 9 B C D 4m 2m4m 4m 2 I 1.5 I 1 2 3 θb = 1 θc = 0 θd = 0
  • 10. 10 𝐾11 = 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 1 + 0 =EI 𝐾21 = 𝐾𝑐𝑏 = 2𝐸𝐼 𝐿 [2𝜃𝑐 + 𝜃 𝑏] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5 EI 𝐾31 = 0
  • 11. 11 • Step 6: – Assembly of Stiffness Matrix ii. Applying Unit Rotation in co ordinate direction 2 8m 6m θb = 0 1 2 3 2 I 1.5 I θc = 1 θd = 0
  • 12. 12 𝐾12 = 𝐾𝑏𝑐 = 2𝐸𝐼 𝐿 [2𝜃 𝑏 + 𝜃𝑐] = 2𝐸(2𝐼) 8 2 × 0 + 1 = 0.5EI 3𝐾22 = 𝐾𝑐𝑏 + 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑐𝑏 [2𝜃𝑐 + 𝜃 𝑏] + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(2𝐼) 8 2 × 1 + 0 + 2𝐸(1.5𝐼) 6 2 × 1 + 0 = 2𝐸𝐼 𝐾32 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5EI
  • 13. 13 • Step 6: – Assembly of Stiffness Matrix iii. Applying Unit Rotation in co ordinate direction 3 2 I 1.5 I 8m 6m 1 2 3 θb = 0 θc = 0 θd = 1
  • 14. 14 0𝐾13 = 𝐾𝑏𝑐 = 0 3𝐾23 = 𝐾𝑐𝑑 = 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑑 0 = 2𝐸(1.5𝐼) 6 2 × 0 + 1 = 0.5𝐸𝐼 𝐾33 = 𝐾 𝑑𝑐 = 2𝐸𝐼 𝐿 𝑏𝑐 [2𝜃 𝑑 + 𝜃𝑐] = 2𝐸(1.5𝐼) 6 2 × 1 + 0 = EI
  • 15. • GLOBAL STIFFNESS MATRIX 𝐾 = 𝐾11 𝐾12 𝐾13 𝐾21 𝐾22 𝐾23 𝐾31 𝐾32 𝐾33 = EI 1 0.5 0 0.5 2 0.5 0 0.5 1 15
  • 16. • STEP7: – Calculation of Actual Forces 𝑃 − 𝑃𝐿 = 𝑃1 − 𝑃1𝐿 𝑃2 − 𝑃2𝐿 𝑃3 − 𝑃3𝐿 = −80 − (−60) 0 − 24.45 0 − 71.11 = −20 −24.45 −71.11 16
  • 17. 17 • GLOBAL STIFFNESS MATRIX K Δ = P-𝑃𝐿 EI 1 0.5 0 0.5 2 0.5 0 0.5 1 Δ1 Δ2 Δ3 = −20 −24.45 −71.11 Δ1 + 0.5 Δ2 = -20 0.5 Δ1 + 2 Δ2 + 0.5 Δ3 = -24.45 0.5Δ2 + Δ3 = -71.11 − 27.035 𝐸𝐼 Δ1 = 𝜃 𝑏 = 14.07 𝐸𝐼 Δ2 = 𝜃𝑐 = − 78.145 𝐸𝐼 Δ3 = 𝜃 𝑑 =
  • 18. • Step 8: – Final Moments 𝑀 𝑎𝑏 = ̶ 80 kN-m 𝑀 𝑏𝑐 = 𝑀 𝐹 𝑏𝑐 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃 𝑏 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = -60+ 2𝐸(2𝐼) 8 ( 2×(−27.035) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = -80 kN-m 18
  • 19. 𝑀𝑐𝑏 = 𝑀 𝐹 𝑐𝑏 + 2𝐸𝐼 𝐿 𝑏𝑐 2𝜃𝑐 + 𝜃 𝑏 − 3𝐸𝐼∆ 𝐿 𝑏𝑐 = 60+ 2𝐸(2𝐼) 8 ( 2×(14.07) 𝐸𝐼 + (−27.035 𝐸𝐼 ) = 60.55kN-m 𝑀𝑐𝑑 = 𝑀 𝐹 𝑐𝑑 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃𝑐 + 𝜃 𝑑 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = -35.55+ 2𝐸(1.5𝐼) 6 ( 2×(14.07) 𝐸𝐼 + (−78.145) 𝐸𝐼 ) = -60.55 kN-m 𝑀 𝑑𝑐 = 𝑀 𝐹 𝑑𝑐 + 2𝐸𝐼 𝐿 𝑐𝑑 2𝜃 𝑑 + 𝜃𝑐 − 3𝐸𝐼∆ 𝐿 𝑐𝑑 = 71.11+ 2𝐸(1.5𝐼) 6 ( 2×(−78.145) 𝐸𝐼 + (14.07) 𝐸𝐼 ) = 0 19
  • 20. 20 40 kN 60 kN 80 kN A B C D 2m 4m 2m4m 4m 2 I 1.5 I 80 kN-m 60.55 kN-m 120 kN-m 106.66kN-m
  • 21. • Assessment question: • Analyze the continuous beam shown in figure using stiffness matrix method. 21 70kN A B C 6m3m 5m 80kN/ m 100kN 2m D 2 I 1.5 I I