SlideShare a Scribd company logo
4
Most read
7
Most read
11
Most read
ENGINEERING MECHANICS
STATCS
For all Engineering Departments
of the First Stage
MOHAMMED KADHIM
TABLE OF CONTENTS
UNITS CONVERT …………………………………………….…………….……………...,
INTRODUCTION ABOUT MECHANICS …………………………….…………..………..
TYPES OF LOADS ……………………………………………………….………………….
FORCES ANALYSIS ……………………..………………………………...………………..
MOMENT …………………………………………………………………………………….
FORCES RESULTANT ……………..………………………………………………………..
Forces Analysis for Three Dimensions:
(1) When given force within a known coordinate or cube dimension:
‫يع‬ ‫عندما‬
‫ثالثي‬ ‫قوة‬ ‫طي‬
‫األ‬ ‫ة‬
‫مث‬ ‫داخل‬ ‫بعاد‬
‫لث‬
To analyze the forces in three directions, you must find two basic things: the length (L)of the
force direction and scale factor (SF)
:‫مالحظة‬
‫أتج‬
‫دائ‬ ‫المركبات‬ ‫اه‬
‫ما‬
‫ي‬
‫االس‬ ‫من‬ ‫وليس‬ ‫القوة‬ ‫بداية‬ ‫مم‬ ‫حدد‬
‫بأتج‬ ‫تكون‬ ‫المركبات‬ ‫ودائما‬ ‫هم‬
‫ا‬ ‫اه‬
‫المثلث‬ ‫ضالع‬
𝑳 = √(∆𝒙)𝟐 + (∆𝒚)𝟐 + (∆𝒛)𝟐
∆𝒙 = 𝒙𝒇 − 𝒙𝒔 , ∆𝒚 = 𝒚𝒇 − 𝒚𝒔 , ∆𝒛 = 𝒛𝒇 − 𝒛𝒔
𝒙𝒇, 𝒚𝒇, 𝒛𝒇 = ‫قوة‬ ‫نهاية‬ ‫أحداثيات‬
𝒙𝒔, 𝒚𝒔, 𝒚𝒔 = ‫قوة‬ ‫بداية‬ ‫أحداثيات‬
𝑺𝒄𝒂𝒍𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 (𝑺𝑭) =
𝑭
𝑳
𝑭𝒙 = 𝑺𝑭 ∗ ∆𝒙
𝑭𝒚 = 𝑺𝑭 ∗ ∆𝒚
𝑭𝒛 = 𝑺𝑭 ∗ ∆𝒛
Examples
1- Determine a rectangular components of the force 400 Ib in the fig blew?
Solution:
𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √72 + 42 + 52 = 9.5𝑓𝑡
𝑆𝐹 =
𝐹
𝐿
=
400
9.5
= 42.105 𝐼𝑏 𝑝𝑒𝑟 𝑓𝑡
𝐹𝑥 = 𝑆𝐹 ∗ ∆𝑥 = 42.105 ∗ 5 = 210.525 𝐼𝑏
𝐹𝑦 = 𝑆𝐹 ∗ ∆𝑦 = 42.105 ∗ 4 = 168.42 𝐼𝑏
𝐹𝑧 = 𝑆𝐹 ∗ ∆𝑧 = 42.105 ∗ 7 = 294.735 𝐼𝑏
2- The tension in the rope attached to the eyebolt in fig is 275 Ib as shown. Determine a three
rectangular component?
Solution:
𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √62 + 112 + 82 = 14.87𝑓𝑡
𝑆𝐹 =
𝐹
𝐿
=
275
14.87
= 18.5 𝐼𝑏 𝑝𝑒𝑟 𝑓𝑡
𝐹𝑥 = 𝑆𝐹 ∗ ∆𝑥 = 18.5 ∗ 6 = 111 𝐼𝑏
𝐹𝑦 = 𝑆𝐹 ∗ ∆𝑦 = 18.5 ∗ 11 = 203.5 𝐼𝑏
𝐹𝑧 = 𝑆𝐹 ∗ ∆𝑧 = 18.5 ∗ 8 = 148 𝐼𝑏
(2) When it gives coordinates or cube unknown dimensions and gives two angles:
‫وزاويتين‬ ‫االبعاد‬ ‫معلوم‬ ‫غير‬ ‫مكعب‬ ‫يعطي‬ ‫عندما‬
1- Resolve the force 1000 N into three rectangular components?
Solution:
𝐹𝑧 = 1000 ∗ 𝑆𝑖𝑛 75 = 966 𝑁 𝑃 = 1000 ∗ 𝐶𝑜𝑠 75 = 258.8 𝑁
𝐹𝑥 = 258.8 ∗ 𝑆𝑖𝑛 45 = 183 𝑁
𝐹𝑦 = 258.8 ∗ 𝐶𝑜𝑠 45 = 183 𝑁
2- Resolve the force 785 N into three rectangular components?
Solution:
𝐹𝑦 = 785 𝐶𝑜𝑠 66 = 319.3 𝑁
𝑃 = 785 𝑆𝑖𝑛 66 = 717.13 𝑁
𝐹𝑥 = 717.13 ∗ 𝐶𝑜𝑠 12 = 701.46 𝑁
𝐹𝑧 = 717.13 ∗ 𝑆𝑖𝑛 12 = 149.1 𝑁
(3) When a force gives the coordinates of the starting points of the force and the finishing
of the force.
‫واحداثيات‬ ‫قوة‬ ‫يعطي‬ ‫عندما‬
‫القوة‬ ‫نهاية‬ ‫واحداثيات‬ ‫القوة‬ ‫بداية‬
∆𝒙 = 𝒙𝟐 − 𝒙𝟏 ∆𝒚 = 𝒚𝟐 − 𝒚𝟏 ∆𝒛 = 𝒛𝟐 − 𝒛𝟏
𝑳 = √(∆𝒙)𝟐 + (∆𝒚)𝟐 + (∆𝐳)𝟐
𝑺𝑭 =
𝑭
𝑳
𝑭𝒙 = 𝑺𝑭 ∗ ∆𝒙 𝑭𝒚 = 𝑺𝑭 ∗ ∆𝒚 𝑭𝒛 = 𝑺𝑭 ∗ ∆𝒛
Determine the coordinates of points:
1- If the point is located on one of the main axes:
‫كانت‬ ‫اذا‬
‫النقطة‬
‫الرئيسية‬ ‫النقاط‬ ‫احد‬ ‫على‬ ‫تقع‬
𝐴(7, 0, 0) , (𝑥, 0, 0) 𝑎𝑡 𝑥 − 𝑎𝑥𝑠𝑖𝑠
𝐵(0, 3, 0) , (0, 𝑦, 0) 𝑎𝑡 𝑦 − 𝑎𝑥𝑠𝑖𝑠
𝐶(0, 0, 11), (0, 0, 𝑧) 𝑎𝑡 𝑧 − 𝑎𝑥𝑠𝑖𝑠
2- If the point is not located on one of the main axes in this case we depend on the distances.
‫اذا‬
‫واقعه‬ ‫غير‬ ‫النقطة‬ ‫كانت‬
‫الرئ‬ ‫المحاور‬ ‫احد‬ ‫على‬
‫المسافات‬ ‫على‬ ‫نعتمد‬ ‫الحالة‬ ‫هذه‬ ‫في‬ ‫يسية‬
𝐴 (12, 4, 0), 𝐵 (0, 4, 3), 𝐶 (12, 0, 3), 𝐷 (12, 4, 3)
Examples:
1- Resolve the force 425 N into three components?
Solution:
𝐵 (6, 4, 0), 𝐶 (7, 6, −2)
∆𝑥 = 7 − 6 = 1 ∆𝑦 = 6 − 4 = 2 ∆𝑧 = −2 − 0 = −2
𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √12 + 22 + (−2)2 → 𝐿 = 3
𝑆𝐹 =
𝐹
𝐿
=
425
3
= 141.67 𝑁
𝐹𝑥 = ∆𝑥 ∗ 𝑆𝐹 = 1 ∗ 141.67 = 141.67 𝑁
𝐹𝑦 = ∆𝑦 ∗ 𝑆𝐹 = 2 ∗ 141.67 = 283.64 𝑁
𝐹𝑧 = ∆𝑧 ∗ 𝑆𝐹 = −2 ∗ 141.67 = −283.34 𝑁
2- Resolve the forces show in the fig 𝐹1 = 125 𝑘𝑁 , 𝐹2 = 235 𝑘𝑁 into three components?
Solution:
For analysis F1
Starting coordinate (0, 1.5, 5) Finishing coordinate (-3, 3.5, 2)
∆𝑥1 = 𝑥𝑓 − 𝑥𝑠 ∆𝑦1 = 𝑦𝑓 − 𝑦𝑠 ∆𝑧1 = 𝑧𝑓 − 𝑧𝑠
∆𝑥1 = −3 − 0 = −3, ∆𝑦1 = 3,5 − 1.5 = 2 , ∆𝑧1 = 2 − 5 = 3
𝐿1 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿1 = √(−3)2 + (2)2 + (3)2 → 𝐿 = 4.69𝑚
𝑆𝐹1 =
𝐹1
𝐿1
=
125
4.69
= 26.65
𝐹𝑥1 = 𝑆𝐹1 ∗ ∆𝑋1 = 26.65 ∗ −3 = −79.95 𝑘𝑁
𝐹𝑦1 = 𝑆𝐹1 ∗ ∆𝑦1 = 26.65 ∗ 2 = 53.3 𝑘𝑁
𝐹𝑧1 = 𝑆𝐹1 ∗ ∆𝑧1 = 26.65 ∗ 3 = 79.95 𝑘𝑁
For analysis F2
Starting coordinate (0, 0, 0) Finishing coordinate (2, 1.5, 5)
∆𝑥2 = 𝑥𝑓 − 𝑥𝑠 ∆𝑦2 = 𝑦𝑓 − 𝑦𝑠 ∆𝑧2 = 𝑧𝑓 − 𝑧𝑠
∆𝑥2 = 2 − 0 = 2, ∆𝑦2 = 1.5 − 0 = 1.5, ∆𝑧2 = 5 − 0 = 5
𝐿2 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿2 = √22 + 1.52 + 52 = 5.59𝑚
𝑆𝐹2 =
𝐹2
𝐿2
=
235
5.59
= 42.04
𝐹𝑥2 = 𝑆𝐹2 ∗ ∆𝑥2 = 42.04 ∗ 2 = 84.08 𝑘𝑁
𝐹𝑦2 = 𝑆𝐹2 ∗ ∆𝑦2 = 42.04 ∗ 1.5 = 63.06 𝑘𝑁
𝐹𝑧2 = 𝑆𝐹2 ∗ ∆𝑧2 = 42.04 ∗ 5 = 210.2 𝑘𝑁
Mechanics engineering statics forces analysis 3D

More Related Content

PDF
6161103 3.4 three dimensional force systems
PDF
engineering statics :force systems
PPT
Trusses The Method Of Sections
PDF
Force System-Engineering Mechanics
PDF
8. analysis of truss part ii, method of section, by-ghumare s m
PDF
3_hydrostatic-force_tutorial-solution(1)
PPTX
Overhanged Beam and Cantilever beam problems
PDF
cross sectional properties of structural members
6161103 3.4 three dimensional force systems
engineering statics :force systems
Trusses The Method Of Sections
Force System-Engineering Mechanics
8. analysis of truss part ii, method of section, by-ghumare s m
3_hydrostatic-force_tutorial-solution(1)
Overhanged Beam and Cantilever beam problems
cross sectional properties of structural members

What's hot (20)

PPTX
Equilibrium.pptx
DOCX
Truss examples
DOCX
CONSTRUCTION OF NATIONAL HIGHWAY
PPTX
Coplanar Non-concurrent Forces
PDF
Kinetics of particles impulse momentum method
DOCX
Closed Traverse Surveying - Report
PPTX
Lecture 1 Introduction to statics Engineering Mechanics hibbeler 14th edition
PDF
Method of joints
PPTX
Analysis of plane truss unit 5
PPT
Fundamentals of structural analysis
PPTX
Varignons principle of moments
PDF
13. kinematics of rigid bodies
PDF
Truss analysis by graphical method
PDF
6 friction fe
PDF
Chapter 6-structural-analysis-8th-edition-solution
PPTX
Trusses, frames & machines
PPTX
Coplanar concurrent forces
PPT
Concurrent Forces
DOCX
Mechanics of Solid experiments
PPTX
Lecture-3-1.pptx
Equilibrium.pptx
Truss examples
CONSTRUCTION OF NATIONAL HIGHWAY
Coplanar Non-concurrent Forces
Kinetics of particles impulse momentum method
Closed Traverse Surveying - Report
Lecture 1 Introduction to statics Engineering Mechanics hibbeler 14th edition
Method of joints
Analysis of plane truss unit 5
Fundamentals of structural analysis
Varignons principle of moments
13. kinematics of rigid bodies
Truss analysis by graphical method
6 friction fe
Chapter 6-structural-analysis-8th-edition-solution
Trusses, frames & machines
Coplanar concurrent forces
Concurrent Forces
Mechanics of Solid experiments
Lecture-3-1.pptx
Ad

Similar to Mechanics engineering statics forces analysis 3D (20)

PDF
Mechanics engineering statics force analysis 2D
PPTX
Physmed11 u1 2
PPTX
1.4 - Forces in Space.pptx
PPT
chapter1and2.ppt
PDF
Fem class notes
PDF
Lateral load resisting systems
PDF
Chapter 2 basic structure concepts
PPT
Resultant of linear forces - Engineering Statics
PPT
Mekanika Teknik Kuliah perdana nomor 1.ppt
PPTX
Unit 2 AR Equilibrium of Force Systems.pptx
PPTX
Forces in and on the body(2).pptx.......
PDF
Electro-magnetics Lecture1; Dr. Kamal Ramadan
PDF
L2-3 Resolution of a Force into Components (Space).pdf
PPT
Engineering Mechanics- Sttatics - Concurrent Forces
PDF
Me202 engineering mechanics l3
PPT
intro.ppt
PPT
Unit 1-staticforceanalysis of slider crank and four bar mechanism
PPT
Unit 1-staticforceanalysis of slider crank and four bar mechanism
PPTX
Free body diagram of mechanics _ppt.pptx
Mechanics engineering statics force analysis 2D
Physmed11 u1 2
1.4 - Forces in Space.pptx
chapter1and2.ppt
Fem class notes
Lateral load resisting systems
Chapter 2 basic structure concepts
Resultant of linear forces - Engineering Statics
Mekanika Teknik Kuliah perdana nomor 1.ppt
Unit 2 AR Equilibrium of Force Systems.pptx
Forces in and on the body(2).pptx.......
Electro-magnetics Lecture1; Dr. Kamal Ramadan
L2-3 Resolution of a Force into Components (Space).pdf
Engineering Mechanics- Sttatics - Concurrent Forces
Me202 engineering mechanics l3
intro.ppt
Unit 1-staticforceanalysis of slider crank and four bar mechanism
Unit 1-staticforceanalysis of slider crank and four bar mechanism
Free body diagram of mechanics _ppt.pptx
Ad

Recently uploaded (20)

PDF
What if we spent less time fighting change, and more time building what’s rig...
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PPTX
Share_Module_2_Power_conflict_and_negotiation.pptx
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
Weekly quiz Compilation Jan -July 25.pdf
PDF
FORM 1 BIOLOGY MIND MAPS and their schemes
PDF
Hazard Identification & Risk Assessment .pdf
PDF
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
IGGE1 Understanding the Self1234567891011
PDF
My India Quiz Book_20210205121199924.pdf
PPTX
A powerpoint presentation on the Revised K-10 Science Shaping Paper
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
PPTX
Virtual and Augmented Reality in Current Scenario
What if we spent less time fighting change, and more time building what’s rig...
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
Share_Module_2_Power_conflict_and_negotiation.pptx
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
Weekly quiz Compilation Jan -July 25.pdf
FORM 1 BIOLOGY MIND MAPS and their schemes
Hazard Identification & Risk Assessment .pdf
ChatGPT for Dummies - Pam Baker Ccesa007.pdf
Computer Architecture Input Output Memory.pptx
202450812 BayCHI UCSC-SV 20250812 v17.pptx
HVAC Specification 2024 according to central public works department
IGGE1 Understanding the Self1234567891011
My India Quiz Book_20210205121199924.pdf
A powerpoint presentation on the Revised K-10 Science Shaping Paper
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Black Hat USA 2025 - Micro ICS Summit - ICS/OT Threat Landscape
Virtual and Augmented Reality in Current Scenario

Mechanics engineering statics forces analysis 3D

  • 1. ENGINEERING MECHANICS STATCS For all Engineering Departments of the First Stage MOHAMMED KADHIM
  • 2. TABLE OF CONTENTS UNITS CONVERT …………………………………………….…………….……………..., INTRODUCTION ABOUT MECHANICS …………………………….…………..……….. TYPES OF LOADS ……………………………………………………….…………………. FORCES ANALYSIS ……………………..………………………………...……………….. MOMENT ……………………………………………………………………………………. FORCES RESULTANT ……………..………………………………………………………..
  • 3. Forces Analysis for Three Dimensions: (1) When given force within a known coordinate or cube dimension: ‫يع‬ ‫عندما‬ ‫ثالثي‬ ‫قوة‬ ‫طي‬ ‫األ‬ ‫ة‬ ‫مث‬ ‫داخل‬ ‫بعاد‬ ‫لث‬ To analyze the forces in three directions, you must find two basic things: the length (L)of the force direction and scale factor (SF) :‫مالحظة‬ ‫أتج‬ ‫دائ‬ ‫المركبات‬ ‫اه‬ ‫ما‬ ‫ي‬ ‫االس‬ ‫من‬ ‫وليس‬ ‫القوة‬ ‫بداية‬ ‫مم‬ ‫حدد‬ ‫بأتج‬ ‫تكون‬ ‫المركبات‬ ‫ودائما‬ ‫هم‬ ‫ا‬ ‫اه‬ ‫المثلث‬ ‫ضالع‬ 𝑳 = √(∆𝒙)𝟐 + (∆𝒚)𝟐 + (∆𝒛)𝟐 ∆𝒙 = 𝒙𝒇 − 𝒙𝒔 , ∆𝒚 = 𝒚𝒇 − 𝒚𝒔 , ∆𝒛 = 𝒛𝒇 − 𝒛𝒔 𝒙𝒇, 𝒚𝒇, 𝒛𝒇 = ‫قوة‬ ‫نهاية‬ ‫أحداثيات‬ 𝒙𝒔, 𝒚𝒔, 𝒚𝒔 = ‫قوة‬ ‫بداية‬ ‫أحداثيات‬ 𝑺𝒄𝒂𝒍𝒆 𝑭𝒂𝒄𝒕𝒐𝒓 (𝑺𝑭) = 𝑭 𝑳 𝑭𝒙 = 𝑺𝑭 ∗ ∆𝒙 𝑭𝒚 = 𝑺𝑭 ∗ ∆𝒚 𝑭𝒛 = 𝑺𝑭 ∗ ∆𝒛
  • 4. Examples 1- Determine a rectangular components of the force 400 Ib in the fig blew? Solution: 𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √72 + 42 + 52 = 9.5𝑓𝑡 𝑆𝐹 = 𝐹 𝐿 = 400 9.5 = 42.105 𝐼𝑏 𝑝𝑒𝑟 𝑓𝑡 𝐹𝑥 = 𝑆𝐹 ∗ ∆𝑥 = 42.105 ∗ 5 = 210.525 𝐼𝑏 𝐹𝑦 = 𝑆𝐹 ∗ ∆𝑦 = 42.105 ∗ 4 = 168.42 𝐼𝑏 𝐹𝑧 = 𝑆𝐹 ∗ ∆𝑧 = 42.105 ∗ 7 = 294.735 𝐼𝑏 2- The tension in the rope attached to the eyebolt in fig is 275 Ib as shown. Determine a three rectangular component?
  • 5. Solution: 𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √62 + 112 + 82 = 14.87𝑓𝑡 𝑆𝐹 = 𝐹 𝐿 = 275 14.87 = 18.5 𝐼𝑏 𝑝𝑒𝑟 𝑓𝑡 𝐹𝑥 = 𝑆𝐹 ∗ ∆𝑥 = 18.5 ∗ 6 = 111 𝐼𝑏 𝐹𝑦 = 𝑆𝐹 ∗ ∆𝑦 = 18.5 ∗ 11 = 203.5 𝐼𝑏 𝐹𝑧 = 𝑆𝐹 ∗ ∆𝑧 = 18.5 ∗ 8 = 148 𝐼𝑏 (2) When it gives coordinates or cube unknown dimensions and gives two angles: ‫وزاويتين‬ ‫االبعاد‬ ‫معلوم‬ ‫غير‬ ‫مكعب‬ ‫يعطي‬ ‫عندما‬
  • 6. 1- Resolve the force 1000 N into three rectangular components? Solution: 𝐹𝑧 = 1000 ∗ 𝑆𝑖𝑛 75 = 966 𝑁 𝑃 = 1000 ∗ 𝐶𝑜𝑠 75 = 258.8 𝑁 𝐹𝑥 = 258.8 ∗ 𝑆𝑖𝑛 45 = 183 𝑁 𝐹𝑦 = 258.8 ∗ 𝐶𝑜𝑠 45 = 183 𝑁
  • 7. 2- Resolve the force 785 N into three rectangular components? Solution: 𝐹𝑦 = 785 𝐶𝑜𝑠 66 = 319.3 𝑁 𝑃 = 785 𝑆𝑖𝑛 66 = 717.13 𝑁 𝐹𝑥 = 717.13 ∗ 𝐶𝑜𝑠 12 = 701.46 𝑁 𝐹𝑧 = 717.13 ∗ 𝑆𝑖𝑛 12 = 149.1 𝑁
  • 8. (3) When a force gives the coordinates of the starting points of the force and the finishing of the force. ‫واحداثيات‬ ‫قوة‬ ‫يعطي‬ ‫عندما‬ ‫القوة‬ ‫نهاية‬ ‫واحداثيات‬ ‫القوة‬ ‫بداية‬ ∆𝒙 = 𝒙𝟐 − 𝒙𝟏 ∆𝒚 = 𝒚𝟐 − 𝒚𝟏 ∆𝒛 = 𝒛𝟐 − 𝒛𝟏 𝑳 = √(∆𝒙)𝟐 + (∆𝒚)𝟐 + (∆𝐳)𝟐 𝑺𝑭 = 𝑭 𝑳 𝑭𝒙 = 𝑺𝑭 ∗ ∆𝒙 𝑭𝒚 = 𝑺𝑭 ∗ ∆𝒚 𝑭𝒛 = 𝑺𝑭 ∗ ∆𝒛 Determine the coordinates of points: 1- If the point is located on one of the main axes: ‫كانت‬ ‫اذا‬ ‫النقطة‬ ‫الرئيسية‬ ‫النقاط‬ ‫احد‬ ‫على‬ ‫تقع‬ 𝐴(7, 0, 0) , (𝑥, 0, 0) 𝑎𝑡 𝑥 − 𝑎𝑥𝑠𝑖𝑠 𝐵(0, 3, 0) , (0, 𝑦, 0) 𝑎𝑡 𝑦 − 𝑎𝑥𝑠𝑖𝑠 𝐶(0, 0, 11), (0, 0, 𝑧) 𝑎𝑡 𝑧 − 𝑎𝑥𝑠𝑖𝑠 2- If the point is not located on one of the main axes in this case we depend on the distances. ‫اذا‬ ‫واقعه‬ ‫غير‬ ‫النقطة‬ ‫كانت‬ ‫الرئ‬ ‫المحاور‬ ‫احد‬ ‫على‬ ‫المسافات‬ ‫على‬ ‫نعتمد‬ ‫الحالة‬ ‫هذه‬ ‫في‬ ‫يسية‬ 𝐴 (12, 4, 0), 𝐵 (0, 4, 3), 𝐶 (12, 0, 3), 𝐷 (12, 4, 3)
  • 9. Examples: 1- Resolve the force 425 N into three components? Solution: 𝐵 (6, 4, 0), 𝐶 (7, 6, −2) ∆𝑥 = 7 − 6 = 1 ∆𝑦 = 6 − 4 = 2 ∆𝑧 = −2 − 0 = −2 𝐿 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿 = √12 + 22 + (−2)2 → 𝐿 = 3 𝑆𝐹 = 𝐹 𝐿 = 425 3 = 141.67 𝑁 𝐹𝑥 = ∆𝑥 ∗ 𝑆𝐹 = 1 ∗ 141.67 = 141.67 𝑁 𝐹𝑦 = ∆𝑦 ∗ 𝑆𝐹 = 2 ∗ 141.67 = 283.64 𝑁 𝐹𝑧 = ∆𝑧 ∗ 𝑆𝐹 = −2 ∗ 141.67 = −283.34 𝑁
  • 10. 2- Resolve the forces show in the fig 𝐹1 = 125 𝑘𝑁 , 𝐹2 = 235 𝑘𝑁 into three components? Solution: For analysis F1 Starting coordinate (0, 1.5, 5) Finishing coordinate (-3, 3.5, 2) ∆𝑥1 = 𝑥𝑓 − 𝑥𝑠 ∆𝑦1 = 𝑦𝑓 − 𝑦𝑠 ∆𝑧1 = 𝑧𝑓 − 𝑧𝑠 ∆𝑥1 = −3 − 0 = −3, ∆𝑦1 = 3,5 − 1.5 = 2 , ∆𝑧1 = 2 − 5 = 3 𝐿1 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿1 = √(−3)2 + (2)2 + (3)2 → 𝐿 = 4.69𝑚 𝑆𝐹1 = 𝐹1 𝐿1 = 125 4.69 = 26.65 𝐹𝑥1 = 𝑆𝐹1 ∗ ∆𝑋1 = 26.65 ∗ −3 = −79.95 𝑘𝑁 𝐹𝑦1 = 𝑆𝐹1 ∗ ∆𝑦1 = 26.65 ∗ 2 = 53.3 𝑘𝑁 𝐹𝑧1 = 𝑆𝐹1 ∗ ∆𝑧1 = 26.65 ∗ 3 = 79.95 𝑘𝑁 For analysis F2 Starting coordinate (0, 0, 0) Finishing coordinate (2, 1.5, 5) ∆𝑥2 = 𝑥𝑓 − 𝑥𝑠 ∆𝑦2 = 𝑦𝑓 − 𝑦𝑠 ∆𝑧2 = 𝑧𝑓 − 𝑧𝑠
  • 11. ∆𝑥2 = 2 − 0 = 2, ∆𝑦2 = 1.5 − 0 = 1.5, ∆𝑧2 = 5 − 0 = 5 𝐿2 = √(∆𝑥)2 + (∆𝑦)2 + (∆𝑧)2 → 𝐿2 = √22 + 1.52 + 52 = 5.59𝑚 𝑆𝐹2 = 𝐹2 𝐿2 = 235 5.59 = 42.04 𝐹𝑥2 = 𝑆𝐹2 ∗ ∆𝑥2 = 42.04 ∗ 2 = 84.08 𝑘𝑁 𝐹𝑦2 = 𝑆𝐹2 ∗ ∆𝑦2 = 42.04 ∗ 1.5 = 63.06 𝑘𝑁 𝐹𝑧2 = 𝑆𝐹2 ∗ ∆𝑧2 = 42.04 ∗ 5 = 210.2 𝑘𝑁