SlideShare a Scribd company logo
Lateral load Resisting Systems
Dr. Ahmed Tarabia
High rise concrete building, 3rd Civil
Spring 2015
‫الجانبية‬ ‫لالحمال‬ ‫المقاومة‬ ‫االنظمة‬ ‫انواع‬
•‫المقاومة‬ ‫االطارات‬‫للعزوم‬:
‫الكمرات‬ ‫و‬ ‫األعمدة‬ ‫من‬ ‫تتكون‬‫الخرسانية‬.
•‫حوائط‬‫الحوائط‬ ‫أو‬ ‫القص‬‫االنشائية‬.
•‫المركبة‬ ‫االنظمة‬:
‫االطارات‬ ‫من‬ ‫مجموعة‬ ‫من‬ ‫تتكون‬+‫القص‬ ‫حوائط‬.
OBJECTIVES
• 1- Rigidity center definition, how to locate it?
• 2- Lateral Load Resisting Systems In Each Direction.
• 3-How To Distribute Lateral Loads Between Lateral
Load Resisting Systems In Each Lateral Direction.
(Relative rigidity method)
General rules
• A system or more should be provided in each
direction of the principal directions.
• These systems should be able to resist the
lateral loads.
Check: (Drift-moment-Shear-Stability)
Moment resisting frames
Moment resisting frames
Shear wall system
Shear wall system
   
Dual system:(Shear walls + Frames)
‫الجساءة‬ ‫مركز‬Center of Rigidity
•‫المستوي‬ ‫في‬ ‫جسئ‬ ‫كسطح‬ ‫تتحرك‬ ‫دور‬ ‫كل‬ ‫بالطة‬ ‫أن‬ ‫افتراض‬
•‫مركز‬‫أثر‬ ‫اذا‬ ‫الدور‬ ‫مستوى‬ ‫فى‬ ‫افتراضية‬ ‫نقطة‬ ‫هو‬ ‫الجساءة‬
‫انتقالية‬ ‫حركة‬ ‫جسئ‬ ‫كجسم‬ ‫المستوي‬ ‫يتحرك‬ ‫فيها‬ ‫الجانبية‬ ‫القوة‬
‫المؤثرة‬ ‫القوة‬ ‫اتجاه‬ ‫في‬‫بدون‬‫حدوث‬‫دوران‬.
•‫انتقالية‬ ‫حركة‬ ‫يحدث‬ ‫آخر‬ ‫مكان‬ ‫اي‬ ‫في‬ ‫القوة‬ ‫أثرت‬ ‫اذا‬ ‫و‬
‫التواء‬ ‫عزم‬ ‫لوجود‬ ‫نتيجة‬ ‫دوران‬ ‫حدوث‬ ‫مع‬ ‫للمستوي‬.
‫األولي‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫في‬ ‫تؤثر‬ ‫القوة‬
‫الثانية‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫خارج‬ ‫تؤثر‬ ‫القوة‬
‫الجساءة‬ ‫مركز‬ ‫تحديد‬Xo , Yo
•‫اتجاه‬ ‫لكل‬ ‫المقاومة‬ ‫عناصر‬ ‫تحديد‬ ‫يتم‬.
•‫حساب‬ ‫يتم‬Ieffective‫ألخذ‬‫بالقطاعات‬ ‫التشريخ‬ ‫تاثير‬‫الخرسانية‬:
How to find the inertia of the lateral resisting system
•‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬ ‫الجساءة‬ ‫مركز‬ ‫تحديد‬ ‫يتم‬X &Y
‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬ ‫مكان‬ ‫أس‬ ‫في‬ ‫فرضهم‬ ‫يتم‬ ‫و‬:
‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬X &Y‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬:
‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬X:
‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬Y:
nx Number of lateral load resisting systems in X direction
ny Number of lateral load resisting systems in X direction
Y
C.R.Xo
Yo
Simple examples: #1
Simple examples: #2
In the case of symmetry of lateral load resisting system
Ey=0.0
Force 3C
C.R.
1C1C C2
Y
X
A B C
1
2
3 3
2
1
CBA
B12C 2C
2CC1 C1
Step 2:
• Transfer axes systems to the rigidity center.
Y
C.R.
Distribution of lateral forces
•-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y:
• For each Y-direction resisting elements:
• For each X-direction resisting elements:
)y*(I)x*(I
.XI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
ixi
xy
1
xj
xi
yyi



 nx
j
ny
j
ny
j
)y*(I)x*(I
.yI
.eF=F
2
j
1
yj
2
j
1
xj
iyi
xyxi



 nx
j
ny
j
-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y:
Then, For Y-direction resisting elements:


ny
1j
xj
xi
yyi
I
I
.F=F
0.0eif y 
•-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬X:
• For X-direction resisting elements:
• For Y-direction resisting elements:
)y*(I)x*(I
.YI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
iyi
yx
1
yj
yi
xxi



 nx
j
ny
j
nx
j
)y*(I)x*(I
.xI
.eF=F
2
j
1
yj
2
j
1
xj
ixi
yxyi



 nx
j
ny
j
-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬:X
For X-direction resisting elements:


nx
j
yj
1
yi
xxi
I
I
.F=F
0.0eif x

Example #1
Force 3C
C.R.
1C1C C2
Y
X
A B C
1
2
3 3
2
1
CBA
B12C 2C
2CC1 C1
Lateral load resisting systems
• X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
• a- The frames on axis (1-1), (2-2) and (3-3).
• Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬
• a- The frames on axis (A-A), (B-B) and (C-C).
• ‫تأثير‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬.
The sections of C1 600mm x800mm
The sections of C2 800mm x1000mm and
The section of C3 is 1000mm x 1000mm.
4
3
y:1 0179.0
12
0.8x0.6
x0.7ICfor m
Find effective inertia-1
4
3
y 0467.0
12
1.0x0.8
x0.7I:C2For m
4
3
y3 0583.0
12
1.0x1.0
x0.7I:CFor m
2-Find the Centre of Rigidity:
Because the lateral load resisting systems
are symmetric in X and Y directions, the
center of rigidity is located in the center of
the two systems.
- Transfer axes system to the center of rigidity
1C
A
3
Fx
2
2C
1
A
C1
X
3
2
1
23C
C.R.
C2
Y
B
B
B1
2C
1C
C
C
C
C1
3 - Load distribution:
In this example, a load in X-direction =Fx is acting at the mid-point of the floor.
We need to find the share of each resisting system of this load
using the following equations. Because ey=0.0, then:
"For X-dir. resisting element"


nx
j 1
yj
yi
xxi
I
I
F=F
System in Section Iy Yi
Fx Fx/frame
X-direction (m x m) (m4) (m)
Frame (1-1)
.8*.6 0.0179 3 0.05652
0.2601.0*0.80
0.0467
3 0.147458
.8*.6 0.0179 3 0.05652
Frame (2-2)
1.0*0.80
0.0467
0 0.147458
0.481.0*1.0
0.0583
0 0.184086
1.0*0.80
0.0467
0 0.147458
Frame (3-3)
.8*.6 0.0179 -3 0.05652
0.2601.0*0.80
0.0467
-3 0.147458
.8*.6 0.0179 -3 0.05652
SUM 0.3167 1 1
Distribution of lateral loads on frames
Frame#3
Frame #2
Frame #1
C1 1C1C
C2C2 B1
A B C
1
2
33
2
1
CBA
X
Y
2CC1 C1
C3Fx
Frame#4
Example #2
Data of the problem:
The sections of C1 600mm x800mm
The sections of C2 800mm x1000mm and
The section of C3 1000mm x 1000mm.
X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
a- The frames on axis (2-2) and (3-3).
Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬
a- The frames on axis (A-A), and (C-C).
FX kN ‫تأث‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬ ‫ير‬.
Find effective inertia-1
4
3
x
:
4
3
y:1
010.0
12
0.6x0.8
x0.7I
0179.0
12
0.8x0.6
x0.7ICfor
m
m


4
3
x
4
3
y
029.0
12
0.8x1.0
x0.7I
0467.0
12
1.0x0.8
x0.7I:C2For
m
m


4
3
x
4
3
y3
0583.0
12
1.0x1.0
x0.7I
0583.0
12
1.0x1.0
x0.7I:CFor
m
m


Frame #2
Frame #1
C2C2 B1
X
Y
2CC1 C1
C3Force
Frame#4
Frame#3
1C1C
C2C2
X
Y
C1 C1
Fx
X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ Y‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
Find the Centre of Rigidity:-2
System in
Col.
Section
Ix Xi
Ix . Xi
Y-direction (m x m) (m4) (m)
Frame (A-A)
0.8x0.60 0.01 0 0
1.0x0.80 0.03 0 0
0.8x0.60 0.0583 0 0
Frame (C-C)
0.8x0.60 0.01 6 0.06
1.0x0.80 0.03 6 0.18
0.8x0.60 0.0583 6 0.3498
SUM 0.1966 0.5898
A- Find Xo
m
I
XI
y
y
n
i
ix
n
i
ixi
0.3
1966.0
5898.
=X
1
1
o 




Assume that the X axis is axis (3-3) and the Y axis is axis (A-A)
System in
Col.
Section
Iy Yi
Iy . Yi
X-direction (m x m) (m4) (m)
Frame (1-1)
0.8x0.60 0.0179 0 0
1.0x0.80 0.0467 0 0
0.8x0.60 0.0179 0 0
Frame (2-2)
1.0x0.80 0.0467 3 0.1401
1.0x1.00 0.0583 3 0.1749
1.0x0.80 0.0467 3 0.1401
SUM 0.2342 0.4551
m
I
YI
x
x
n
i
yi
n
i
iyi
1.94
233.0
455.0
=Y
1
1
o 




B- Find Yo
3C
1C1C C2
B12C 2C
C1 C11C
Frame #1
Frame #2Frame#3
Frame#3
C.R.
Force
Y
X
ex=0.0 and ey = 3.0 – 1.94 = 1.06 m
- M = Fx . ey = Fx . (1.06)
•-‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬X‫و‬F x
• For X-direction resisting elements:
• For Y-direction resisting elements:
)y*(I)x*(I
.YI
.eF
I
I
F=F
2
j
1
yj
2
j
1
xj
iyi
yx
1
yj
yi
xxi



 nx
j
ny
j
nx
j
)y*(I)x*(I
.xI
.eF=F
2
j
1
yj
2
j
1
xj
ixi
yxyi



 nx
j
ny
j
System
in
Section Iy Yi
Iy . Yi
2 Iy . Yi Fx' Fx"
Fx/
column
Fx/
frameX-
directio
n
(m x m) (m4) (m)
Frame
(1-1)
0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050
0.231.0x0.80 0.0467 -1.94 0.1758 -0.0906 0.1994 -0.070 0.130
0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050
Frame
(2-2)
1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237
0.771.0x1.00 0.0583 1.06 0.0655 0.0618 0.2489 0.047 0.296
1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237
SUM 0.2342 0.4809 1.0000 0.00 1.00 1.00
3 – find the values of [Iy. Yi
2 ] in the X - direction
System in Section Ix Xi
Ix. Xi
2 Ix. Xi Fy' Fy"
Fy/
column
Fy/
Frame
Y-direction (m x m) (m4) (m)
Frame
(A-A)
0.8x0.60 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023
0.121.0x0.8 0.02987 -3 0.2688 -0.0896 0.0000 0.069 0.069
0.8x0.6 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023
Frame
(C-C)
0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023
-0.121.0x0.8 0.02987 3 0.2688 0.0896 0.0000 -0.069 -0.069
0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023
SUM 0.1001 0.9005 0.0000 0.0000 0.0000 0.0000 0.0000
4– Calculate the values of [Ix. Xi
2 ] in the Y - direction
- The share of Frame (1-1) = 0.23 Fx
- The share of Frame (2-2) = 0.77 Fx
- The share of Frame (A-A) = 0.12 Fx
- The share of Frame (C-C = -0.12 Fx
.12Fx
.12Fx
C1
.23 Fx
.77 Fx
Fx
3C
1C1C C2
Y
X
B12C 2C
Frame #1
Frame #2
Distribution of lateral loads on frames

More Related Content

PPTX
Flat slab
PPT
basic structural system in architecture
PPTX
Rigid frame systems
PPTX
High-rise structural systems
PPTX
Roofs and truss
PPTX
Shells
PPTX
Folded plate structure
PPTX
Design of RCC Column footing
Flat slab
basic structural system in architecture
Rigid frame systems
High-rise structural systems
Roofs and truss
Shells
Folded plate structure
Design of RCC Column footing

What's hot (20)

PDF
The cables structure system
PPTX
High Rise Building Structure Systems Types
PPT
Analysis and design of building
PPTX
Shear walls
PPTX
Large span structures
PDF
Basic design criteria for high rise buildings
PPTX
Space frame
PPTX
Seismic Analysis of regular & Irregular RCC frame structures
PDF
Folded plates and space truss structures
PPTX
PORTAL FRAMES BUILDING CONSTRUCTION B.ARCH
PDF
Introduction to vierendeel structure system
PPTX
Effect of wind Load On High Rise Building
PPTX
Prefabrication - building construction
PDF
Base isolation
PPTX
Analysis and comparison of High rise building with lateral load resisting sys...
PDF
Flat slab design
PPTX
Wind load
PPTX
Tensile structures for architects
PPTX
Wind loading
PPTX
Basic Structural System
The cables structure system
High Rise Building Structure Systems Types
Analysis and design of building
Shear walls
Large span structures
Basic design criteria for high rise buildings
Space frame
Seismic Analysis of regular & Irregular RCC frame structures
Folded plates and space truss structures
PORTAL FRAMES BUILDING CONSTRUCTION B.ARCH
Introduction to vierendeel structure system
Effect of wind Load On High Rise Building
Prefabrication - building construction
Base isolation
Analysis and comparison of High rise building with lateral load resisting sys...
Flat slab design
Wind load
Tensile structures for architects
Wind loading
Basic Structural System
Ad

Viewers also liked (6)

PPTX
Horizontal Vessel Loading Calculation
PPTX
Stability of High-Rise Buildings
PPTX
PDF
Lateral stability of building structures
PPTX
Tall buildings
PPTX
Civil Engineering (Beams,Columns)
Horizontal Vessel Loading Calculation
Stability of High-Rise Buildings
Lateral stability of building structures
Tall buildings
Civil Engineering (Beams,Columns)
Ad

Similar to Lateral load resisting systems (10)

PDF
Design and Check stability of Gravity Retaining wall
PDF
SEISMIC DESIGN OF COMPOSITE SHEAR WALLS & FRAMES - مقاومة الرياح والزلازل جد...
PDF
Outrigger belt trusses design - الجائز الشبكي المركزي والحزام المحيطي مع جد...
PDF
Tube structural systemsHigh-rise Building & tubular structures الأبنية البرجي...
PDF
Mechanics engineering statics forces analysis 3D
PDF
Special shear walls + ordinary shear walls ACI - 318 - جدران القص الخاصة - P...
PDF
Topics and articles_in_structural_engine - موضوعات وبرامج تصميم انشائية
PDF
Topics and articles in structural engineering
PDF
core shear walls to resist the full shear forces base without the participat...
PDF
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...
Design and Check stability of Gravity Retaining wall
SEISMIC DESIGN OF COMPOSITE SHEAR WALLS & FRAMES - مقاومة الرياح والزلازل جد...
Outrigger belt trusses design - الجائز الشبكي المركزي والحزام المحيطي مع جد...
Tube structural systemsHigh-rise Building & tubular structures الأبنية البرجي...
Mechanics engineering statics forces analysis 3D
Special shear walls + ordinary shear walls ACI - 318 - جدران القص الخاصة - P...
Topics and articles_in_structural_engine - موضوعات وبرامج تصميم انشائية
Topics and articles in structural engineering
core shear walls to resist the full shear forces base without the participat...
Dual Systems Design Shear wall-Frame InterAction تصميم الجملة القصية الثنائية...

Recently uploaded (20)

PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
PDF
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PDF
Well-logging-methods_new................
PPT
Mechanical Engineering MATERIALS Selection
PPTX
Welding lecture in detail for understanding
PDF
Automation-in-Manufacturing-Chapter-Introduction.pdf
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PPTX
Foundation to blockchain - A guide to Blockchain Tech
PDF
Digital Logic Computer Design lecture notes
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Internet of Things (IOT) - A guide to understanding
Recipes for Real Time Voice AI WebRTC, SLMs and Open Source Software.pptx
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
FINAL REVIEW FOR COPD DIANOSIS FOR PULMONARY DISEASE.pptx
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Embodied AI: Ushering in the Next Era of Intelligent Systems
MCN 401 KTU-2019-PPE KITS-MODULE 2.pptx
SM_6th-Sem__Cse_Internet-of-Things.pdf IOT
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
Well-logging-methods_new................
Mechanical Engineering MATERIALS Selection
Welding lecture in detail for understanding
Automation-in-Manufacturing-Chapter-Introduction.pdf
Operating System & Kernel Study Guide-1 - converted.pdf
CYBER-CRIMES AND SECURITY A guide to understanding
Foundation to blockchain - A guide to Blockchain Tech
Digital Logic Computer Design lecture notes
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx

Lateral load resisting systems

  • 1. Lateral load Resisting Systems Dr. Ahmed Tarabia High rise concrete building, 3rd Civil Spring 2015
  • 2. ‫الجانبية‬ ‫لالحمال‬ ‫المقاومة‬ ‫االنظمة‬ ‫انواع‬ •‫المقاومة‬ ‫االطارات‬‫للعزوم‬: ‫الكمرات‬ ‫و‬ ‫األعمدة‬ ‫من‬ ‫تتكون‬‫الخرسانية‬. •‫حوائط‬‫الحوائط‬ ‫أو‬ ‫القص‬‫االنشائية‬. •‫المركبة‬ ‫االنظمة‬: ‫االطارات‬ ‫من‬ ‫مجموعة‬ ‫من‬ ‫تتكون‬+‫القص‬ ‫حوائط‬.
  • 3. OBJECTIVES • 1- Rigidity center definition, how to locate it? • 2- Lateral Load Resisting Systems In Each Direction. • 3-How To Distribute Lateral Loads Between Lateral Load Resisting Systems In Each Lateral Direction. (Relative rigidity method)
  • 4. General rules • A system or more should be provided in each direction of the principal directions. • These systems should be able to resist the lateral loads. Check: (Drift-moment-Shear-Stability)
  • 8. Shear wall system    
  • 10. ‫الجساءة‬ ‫مركز‬Center of Rigidity •‫المستوي‬ ‫في‬ ‫جسئ‬ ‫كسطح‬ ‫تتحرك‬ ‫دور‬ ‫كل‬ ‫بالطة‬ ‫أن‬ ‫افتراض‬ •‫مركز‬‫أثر‬ ‫اذا‬ ‫الدور‬ ‫مستوى‬ ‫فى‬ ‫افتراضية‬ ‫نقطة‬ ‫هو‬ ‫الجساءة‬ ‫انتقالية‬ ‫حركة‬ ‫جسئ‬ ‫كجسم‬ ‫المستوي‬ ‫يتحرك‬ ‫فيها‬ ‫الجانبية‬ ‫القوة‬ ‫المؤثرة‬ ‫القوة‬ ‫اتجاه‬ ‫في‬‫بدون‬‫حدوث‬‫دوران‬. •‫انتقالية‬ ‫حركة‬ ‫يحدث‬ ‫آخر‬ ‫مكان‬ ‫اي‬ ‫في‬ ‫القوة‬ ‫أثرت‬ ‫اذا‬ ‫و‬ ‫التواء‬ ‫عزم‬ ‫لوجود‬ ‫نتيجة‬ ‫دوران‬ ‫حدوث‬ ‫مع‬ ‫للمستوي‬.
  • 12. ‫الثانية‬ ‫الحالة‬:‫الجساءة‬ ‫مركز‬ ‫خارج‬ ‫تؤثر‬ ‫القوة‬
  • 13. ‫الجساءة‬ ‫مركز‬ ‫تحديد‬Xo , Yo •‫اتجاه‬ ‫لكل‬ ‫المقاومة‬ ‫عناصر‬ ‫تحديد‬ ‫يتم‬. •‫حساب‬ ‫يتم‬Ieffective‫ألخذ‬‫بالقطاعات‬ ‫التشريخ‬ ‫تاثير‬‫الخرسانية‬: How to find the inertia of the lateral resisting system •‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬ ‫الجساءة‬ ‫مركز‬ ‫تحديد‬ ‫يتم‬X &Y ‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬ ‫مكان‬ ‫أس‬ ‫في‬ ‫فرضهم‬ ‫يتم‬ ‫و‬:
  • 14. ‫محور‬ ‫حول‬ ‫الجساءات‬ ‫عزوم‬ ‫باستخدام‬X &Y‫اآلتية‬ ‫المعادالت‬ ‫طريق‬ ‫عن‬: ‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬X: ‫محور‬ ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫المقاومة‬ ‫لعناصر‬Y: nx Number of lateral load resisting systems in X direction ny Number of lateral load resisting systems in X direction
  • 18. In the case of symmetry of lateral load resisting system Ey=0.0 Force 3C C.R. 1C1C C2 Y X A B C 1 2 3 3 2 1 CBA B12C 2C 2CC1 C1
  • 19. Step 2: • Transfer axes systems to the rigidity center. Y C.R.
  • 20. Distribution of lateral forces •-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y: • For each Y-direction resisting elements: • For each X-direction resisting elements: )y*(I)x*(I .XI .eF I I F=F 2 j 1 yj 2 j 1 xj ixi xy 1 xj xi yyi     nx j ny j ny j )y*(I)x*(I .yI .eF=F 2 j 1 yj 2 j 1 xj iyi xyxi     nx j ny j
  • 21. -‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬FY‫اتجاه‬ ‫في‬Y: Then, For Y-direction resisting elements:   ny 1j xj xi yyi I I .F=F 0.0eif y 
  • 22. •-‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬X: • For X-direction resisting elements: • For Y-direction resisting elements: )y*(I)x*(I .YI .eF I I F=F 2 j 1 yj 2 j 1 xj iyi yx 1 yj yi xxi     nx j ny j nx j )y*(I)x*(I .xI .eF=F 2 j 1 yj 2 j 1 xj ixi yxyi     nx j ny j
  • 23. -‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬F x‫اتجاه‬ ‫في‬:X For X-direction resisting elements:   nx j yj 1 yi xxi I I .F=F 0.0eif x 
  • 24. Example #1 Force 3C C.R. 1C1C C2 Y X A B C 1 2 3 3 2 1 CBA B12C 2C 2CC1 C1
  • 25. Lateral load resisting systems • X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ • a- The frames on axis (1-1), (2-2) and (3-3). • Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬ • a- The frames on axis (A-A), (B-B) and (C-C). • ‫تأثير‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬.
  • 26. The sections of C1 600mm x800mm The sections of C2 800mm x1000mm and The section of C3 is 1000mm x 1000mm. 4 3 y:1 0179.0 12 0.8x0.6 x0.7ICfor m Find effective inertia-1 4 3 y 0467.0 12 1.0x0.8 x0.7I:C2For m 4 3 y3 0583.0 12 1.0x1.0 x0.7I:CFor m
  • 27. 2-Find the Centre of Rigidity: Because the lateral load resisting systems are symmetric in X and Y directions, the center of rigidity is located in the center of the two systems. - Transfer axes system to the center of rigidity
  • 29. 3 - Load distribution: In this example, a load in X-direction =Fx is acting at the mid-point of the floor. We need to find the share of each resisting system of this load using the following equations. Because ey=0.0, then: "For X-dir. resisting element"   nx j 1 yj yi xxi I I F=F
  • 30. System in Section Iy Yi Fx Fx/frame X-direction (m x m) (m4) (m) Frame (1-1) .8*.6 0.0179 3 0.05652 0.2601.0*0.80 0.0467 3 0.147458 .8*.6 0.0179 3 0.05652 Frame (2-2) 1.0*0.80 0.0467 0 0.147458 0.481.0*1.0 0.0583 0 0.184086 1.0*0.80 0.0467 0 0.147458 Frame (3-3) .8*.6 0.0179 -3 0.05652 0.2601.0*0.80 0.0467 -3 0.147458 .8*.6 0.0179 -3 0.05652 SUM 0.3167 1 1
  • 31. Distribution of lateral loads on frames
  • 32. Frame#3 Frame #2 Frame #1 C1 1C1C C2C2 B1 A B C 1 2 33 2 1 CBA X Y 2CC1 C1 C3Fx Frame#4 Example #2
  • 33. Data of the problem: The sections of C1 600mm x800mm The sections of C2 800mm x1000mm and The section of C3 1000mm x 1000mm. X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ a- The frames on axis (2-2) and (3-3). Y ‫اتجاه‬ ‫فى‬ ‫االنشائي‬ ‫النظام‬ ‫يتكون‬ ‫و‬ a- The frames on axis (A-A), and (C-C). FX kN ‫تأث‬ ‫نتيجة‬ ‫االنشائية‬ ‫العناصر‬ ‫جميع‬ ‫نصيب‬ ‫احسب‬‫الحمل‬ ‫هذا‬ ‫ير‬.
  • 35. Frame #2 Frame #1 C2C2 B1 X Y 2CC1 C1 C3Force Frame#4 Frame#3 1C1C C2C2 X Y C1 C1 Fx X ‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬ Y‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫األحمال‬ ‫لمقاومة‬ ‫االنشائي‬ ‫النظام‬
  • 36. Find the Centre of Rigidity:-2 System in Col. Section Ix Xi Ix . Xi Y-direction (m x m) (m4) (m) Frame (A-A) 0.8x0.60 0.01 0 0 1.0x0.80 0.03 0 0 0.8x0.60 0.0583 0 0 Frame (C-C) 0.8x0.60 0.01 6 0.06 1.0x0.80 0.03 6 0.18 0.8x0.60 0.0583 6 0.3498 SUM 0.1966 0.5898 A- Find Xo m I XI y y n i ix n i ixi 0.3 1966.0 5898. =X 1 1 o      Assume that the X axis is axis (3-3) and the Y axis is axis (A-A)
  • 37. System in Col. Section Iy Yi Iy . Yi X-direction (m x m) (m4) (m) Frame (1-1) 0.8x0.60 0.0179 0 0 1.0x0.80 0.0467 0 0 0.8x0.60 0.0179 0 0 Frame (2-2) 1.0x0.80 0.0467 3 0.1401 1.0x1.00 0.0583 3 0.1749 1.0x0.80 0.0467 3 0.1401 SUM 0.2342 0.4551 m I YI x x n i yi n i iyi 1.94 233.0 455.0 =Y 1 1 o      B- Find Yo
  • 38. 3C 1C1C C2 B12C 2C C1 C11C Frame #1 Frame #2Frame#3 Frame#3 C.R. Force Y X ex=0.0 and ey = 3.0 – 1.94 = 1.06 m - M = Fx . ey = Fx . (1.06)
  • 39. •-‫اتجاه‬ ‫في‬ ‫الجانبية‬ ‫القوة‬ ‫حالة‬ ‫في‬X‫و‬F x • For X-direction resisting elements: • For Y-direction resisting elements: )y*(I)x*(I .YI .eF I I F=F 2 j 1 yj 2 j 1 xj iyi yx 1 yj yi xxi     nx j ny j nx j )y*(I)x*(I .xI .eF=F 2 j 1 yj 2 j 1 xj ixi yxyi     nx j ny j
  • 40. System in Section Iy Yi Iy . Yi 2 Iy . Yi Fx' Fx" Fx/ column Fx/ frameX- directio n (m x m) (m4) (m) Frame (1-1) 0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050 0.231.0x0.80 0.0467 -1.94 0.1758 -0.0906 0.1994 -0.070 0.130 0.8x0.60 0.0179 -1.94 0.0674 -0.0347 0.0764 -0.027 0.050 Frame (2-2) 1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237 0.771.0x1.00 0.0583 1.06 0.0655 0.0618 0.2489 0.047 0.296 1.0x0.80 0.0467 1.06 0.0525 0.0495 0.1994 0.038 0.237 SUM 0.2342 0.4809 1.0000 0.00 1.00 1.00 3 – find the values of [Iy. Yi 2 ] in the X - direction
  • 41. System in Section Ix Xi Ix. Xi 2 Ix. Xi Fy' Fy" Fy/ column Fy/ Frame Y-direction (m x m) (m4) (m) Frame (A-A) 0.8x0.60 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023 0.121.0x0.8 0.02987 -3 0.2688 -0.0896 0.0000 0.069 0.069 0.8x0.6 0.01008 -3 0.0907 -0.0302 0.0000 0.023 0.023 Frame (C-C) 0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023 -0.121.0x0.8 0.02987 3 0.2688 0.0896 0.0000 -0.069 -0.069 0.8x0.6 0.01008 3 0.0907 0.0302 0.0000 -0.023 -0.023 SUM 0.1001 0.9005 0.0000 0.0000 0.0000 0.0000 0.0000 4– Calculate the values of [Ix. Xi 2 ] in the Y - direction
  • 42. - The share of Frame (1-1) = 0.23 Fx - The share of Frame (2-2) = 0.77 Fx - The share of Frame (A-A) = 0.12 Fx - The share of Frame (C-C = -0.12 Fx
  • 43. .12Fx .12Fx C1 .23 Fx .77 Fx Fx 3C 1C1C C2 Y X B12C 2C Frame #1 Frame #2 Distribution of lateral loads on frames