SlideShare a Scribd company logo
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 85
ANALYSIS OF THREE DIMENSIONAL COUETTE FLOW AND HEAT
TRANSFER IN POROUS MEDIUM BETWEEN TWO PERMEABLE
PLATES WITH SINUSOIDAL TEMPERATURE AND MAGNETIC FIELD
V.P.Rathod1
, Ravi.M2
1
CNCS, Department of Mathematics, Haramaya University
2
Asst.Professor, Department of Mathematics, Govt First Grade College, Raichur, Karnataka State, India
Abstract
This paper constitutes the analysis of three dimensional couette flow and heat transfer through porous medium under magnetic field.
There are two permeable plates in the porous medium, viz., stationery plate and moving plate. The stationery plate is maintained at
sinusoidal surface temperature while the moving plate is kept at uniform injection velocity under isothermal condition. The
expressions for velocity and temperature fields are obtained. With this, skin-friction components and Nusselt number at both the plates
will be derived and are plotted against Reynolds number.
Keywords: Three dimensional, Heat transfer, porous medium, Permeable plates, Sinusoidal, Magnetic field
--------------------------------------------------------------------***----------------------------------------------------------------------
1. INTRODUCTION
The unsteady laminar flow of an incompressible viscous
electrically conducting second order fluid between infinite
parallel plates subject to a transverse magnetic field is
investigated by Lalitha Jayaraman and Ramanaiah [9]. Raptis
et al, [5,4,2,13] have discussed the free convection flow
through a porous medium bounded by an infinite plate, when
there is no stream velocity. Raptis and Perdikis [12] have
studied the effect of free convection and mass transfer flow
through a porous medium bounded by infinite vertical porous
plates, when there is a free stream velocity. Analysis of three
dimensional couette flow and heat transfer in porous medium
between two permeable plates with sinusoidal temperature is
studied by Tak and Vyas [7]. Raptis and Perdikis [11] have
studied the combined free and forced convective flow through
a porous medium bounded by a semi-infinite vertical porous
plate. Gersten and Gross [6] have studied the effect of
transverse sinusoidal suction velocity on flow and heat
transfer along an infinite vertical porous wall. Raptis and
Takhar [1] have studied the forced flow of a viscous
incompressible fluid through the forced flow of a viscous
incompressible fluid through a highly porous medium
bounded by a semi-infinite vertical plate in the presence of
mass transfer. Oscillatory flow through a porous medium by
the presence of free convective flow is studied by Raptis,
Perdikis, and C.P. Magneto hydro dynamic free convective
effect for an incompressible viscous fluid past an infinite
limiting surface is studied by Raptis and Tzivandis[3]. The
MHD flow and heat transform in a channel with porous walls
of different permeability has been investigated by the method
of quasi linearization by Rama Bhargava and Meena Rani
[14]. Soundalgekar and Bhat[8] have studied an approximate
analysis of an oscillatory MHD channel flow and heat transfer
under transverse magnetic field.
In the present problem, by taking viscous dissipation in to
account, the three dimensional couette flow and heat transfer
in a porous medium under magnetic field are analysed .The
stationery plate is subjected to both sinusoidal temperature and
suction velocity while the moving plate is isothermal with
uniform injection velocity.
2. MATHEMATICAL ANALYSIS
Consider the three dimensional couette flow through porous
medium between two infinite porous plates under magnetic
field. So that, the stationery plate is kept along x-z plane and
the other plate is at a distance c from the stationery plate
which is moving with velocity U along x-direction. The
stationery plate is kept at sinusoidal temperature and suction
velocity, varying in z-direction while the moving plate is
subjected to the uniform injection velocity under isothermal
condition. Taking viscous dissipation in to account, the flow
and heat transfer are governed by the following equations:
0
v w
y z
 
 
 
 
 
(1)
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 86
2 2
2 2
2
0
v +w = ( )
u u u u
y z y z
Bu
u
K



   
 
   



   

   
 
(2)
2 2
2 2
2
0
1
w = - ( )
v v p v v
v
y z y y z
Bv
v
K




    
 
    



    
  
    
 
(3)
2 2
2 2
2
0
1
v +w ( )
w w p w w
y z z y z
Bw
w
K




    
 
    



    
   
    
 
(4)
2 2
2 2
[v +w ]= [ ]p
T T T T
C K
y z y z


   
 
   

   
 
   

(5)
Where
2 2 2
2 2
2 [( ) ( ) ] [( )
( ) ( ) ]
v w u
y z y
w w u
y z z
  
  

  
  
  
  
  
  
  
  
  
(6)
Where u*
,v*
,w*
are respectively the velocity components in the
directions of x, y and z axes. ,
K
,T
, p
,  , pC , K,  , and 0B are respectively the
kinematic viscosity, permeability of porous medium,
temperature, pressure, density, Specific heat of the fluid at
constant pressure, thermal conductivity, viscosity of the fluid,
electrical conductivity, uniform magnetic field of the fluid
concerned.
The boundary conditions:
0u
 , v =-V(1+ cos )
z
c




, 0w
 ,
1T =T (1+ cos )
z
c
 

, 0P
 at 0y

u U
 , v =-V
, 0w
 , 2T =T
, p =
V c
K


, T2>T1 at
y c
 (7)
Where 1 ,U, V are constants with dimension of velocity
and c,T1 are constants with dimensions of length and
temperature respectively.
Introducing the following non-dimensional quantities:
y=
y
c

, z=
z
c

, u=
u
U

, v=
v
U

, w=
w
U

, 2
p=
p
U

,
1
2 1
T T
T T





,
pC
P
K



, 2
K
K
c

 ,
V
U
  ,
2
2 1
E=
( )p
U
C T T
,
d
RK

 , 1
2 1
a=
T
T T
and
2
0
M=
B c
U


(8)
Where R, P, K, and E are respectively, Reynolds number,
Prandtl number, permeability parameter, suction parameter
and Eckert number
With this, the equations (1) to (5) reduce to
0
v w
y z
 
 
 
(9)
2 2
2 2
1
( ) -Mu
u u u u u
v w
y z R y z RK
   
   
   
(10)
Where
2 2
2 2
1
( )
Mv
v v P v v
v w
y z y R y z
v
RK
    
    
    
 
(11)
Uc
R


IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 87
2 2
2 2
1
( )
-Mw
w w P w w
v w
y z z R y z
w
RK
    
    
    

(12)
(13)
Where
2 2 2 2 2
2{( ) +( ) }+( ) +( ) +( )
v w u w w u
y z y y z z

     
 
     
with boundary conditions:
y=0: u=0, v=- (1+ cos )z   , w=0, p=0 and
za  cos (14)
y=1: u=1, v=- , w=0, p=d, 1
In order to solve above equations (10) to (13), it is assumed
that
0 1u(y,z)=u (y)+ ( , )u y z (15)
0 1v(y,z)=v (y)+ ( , )v y z
w(y, z)= w1(y, z)
0 1p(y,z)=p (y)+ (y,z)p
0 1( , ) ( ) ( , )y z y y z   
Since, amplitude )1( of sinusoidal suction velocity is
small compared to its wavelength.
Employing equations (15) in equations (9) to (14) and taking
0  , the unperturbed quantities satisfies the following
equations:
0v 0  (16)
0)( 0
0
00  Mu
K
u
uRu  (17)
MdP 0 (18)
0)(
2
000  uEPPR  (19)
with boundary conditions:
y=0: u 0 =0, 0v =- , 0 =0 , p0=0,
y=1: u 0 =1, 0v =- , 0 1  , p0=d (20)
Where prime denotes the derivatives with respect to y. The
solutions of equations (16) to (19) satisfying the boundary
conditions (20) can be expressed as follows:
0v = - (21)
1 2
1 2
0u =
m y m y
m m
e e
e e


(22)
0P =(d+M )y (23)
And
1
( )
1 2
2 1 2
2
1
0 1 2 2
1
2 ( )
2 1 2
2
2 1 2 1 2
e [
( ) 2(2 )
2
]
2(2 ) ( ) ( )
PR y
m y
m m
m y m m y
meEP
c c
e e m PR
m e m m e
m PR m m PR m m



 


   
 
 
   
(24)
Where
2 2
1
1 1
m = [-R + 4( )
2
R M
K
   
2 2
2
1 1
= [-R - 4( )
2
m R M
K
   
 1
1 2
2 2
2
1
1 1 2
1
2
2 1 2
2
2 1 2 1 2
1
[ {
( ) 2(2 )
( ) 2 ( )
}-1]
2(2 ) ( ) ( )
mPR
m mPR
m m mPR PR
m e eEP
c
e e e m PR
m e e m m e e
m PR m m PR m m


 

 

 
 

 
 
 
 
   
2 2
2 2
1
( )
E
v w
y z PR y z R
   

   
   
   
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 88
1
1 2
2 1 2
2
1
2 2
1
2
2 1 2
2
2 1 2 1 2
( 1)1
[ {
1 ( ) 2(2 )
( 1) 2 ( 1)
}+1]}
2(2 ) ( ) ( )
m
m mPR
m m m
m eEP
c
e e e m PR
m e m m e
m PR m m PR m m


 



 
  
 
 
   
Also, the perturbed quantities satisfies the following.
1 1
0
v w
y z
 
 
 
(25)
2 2
0 1 1 1 1
1 12 2
1
[ ]
u u u u u
v Mu
y y R y z RK

   
    
   
(26)
2 2
1 1 1 1 1
12 2
1
[ ]
v p v v v
Mv
y y R y z RK

   
      
   
(27)
2 2
1 1 1 1 1
12 2
1
[ ]
w p w w w
Mw
y z R y z RK

   
      
   
(28)
And
2 2
0 01 1 1 1
1 2 2
1 2
[ ] . .
u uE
v
y y PR y z R y y
  

    
    
     
(29)
with boundary conditions:
y=0;
1 0u  , 1 cosv z   , 1 0w  , 1 cosa z  , 1 0p 
y=1 ; 1 0u  1 0v  1 0w  , 1 0  , 1 0p  (30)
Equations (25) to (29) are linear partial differential equations,
which describes perturbed three dimentional flow due to
variation of suction velocity stationery surface temperature
along z-direction. The form of suction velocity and surface
temperature suggests the following forms of 1u , 1v , 1w , 1P and
1 :
1 2( )cosu u y z (31)
(32)
(33)
1 2( )cosp p y z (34)
1 2( )cosy z   (35)
The expression for 1v and 1w have been chosen so that the
equation of continuity (25) is satisfied. The equations (27) and
(28) , being independent of the main flow and the temperature
field, can be solved first. Therefore, substituting (32), (33)
and (34) in equations (27) and (28), the following ordinary
simultaneous differential equations are obtained:
2 2
2 2 2 2( ) ( 1 ) ( )kv RK v k RKM v RK P         (36)
2
2 2 2 2( ) ( 1 )kv RK v k RKM v RKP        (37)
With corresponding boundary conditions:
2 2
2 2
0: , 0,
1: 0, 0
y v v
y v v
    
  
(38)
Where a prime denotes derivative with respect to y.
The solution of system of equations (36) and (37) is
substituted in equations (32) to (34) to obtain the values of 1v
, 1w and 1p :
1 2
1 1 2 3 4[ ]cosm y m y y y
v c e c e c e c e z 

  
    (39)
1 2
1 1 1 2 2 3 4
1
[ ]sinm y m y y y
w c m e c m e c e c e z 
  

   
     (40)
1 2
1 1 22
3 4
1
[
]cos
m y m y
y y
P A e A e
RK
A e A e z 


 

  
  
(41)
Where
2 2 2
1
1
4( )
2
R R RM
Km
      
 
And
1 2( ) sv v y co z
1 2
1
( )sinw v y z

 
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 89
2 2 2
2
1
4( )
2
R R RM
Km
      
 
31 2 4
1 2 3 4, , ,
dd d d
c c c c
d d d d
   
1 2
1 2
1 2
1 2
1 1 1 1
d=
m m
m m
e e e e
m m
m e m e e e
 
 
 
 
  
  
  
  
;
2
2
1
2
2
1 1 1
0
d =
0
0
m
m
e e e
m
m e e e
 
 

 
 
 
 

 
 
;
1
1
2
1
1
1 1 1
0
d =
0
0
m
m
e e e
m
m e e e
 
 

 
 
 
 

 
 
;
1 2
1 2
3
1 2
1 2
1 1 1
0
d =
0
0
m m
m m
e e e
m m
m e m e e





  
  

  
  
;
1 2
1 2
4
1 2
1 2
1 1 1
0
d =
0
0
m m
m m
e e e
m m
m e m e e





 
 

 
 
3 2 2
1 1 1 1 1 1 1= ( 1 )A Kc m RK c m k RKM c m        ,
3 2 2
2 2 2 2 2 2 2( 1 )A Kc m RK c m k RKM c m        
,
3 2 2
3 3 3 3( 1 )A Kc RK c k RKM c          ,
3 2 2
4 4 4 4( 1 )A Kc RK c k RKM c          
Now, for the main flow and the temperature field, Substitute
the expressions (31) and (35) in equations (26) & (29), we get,
2
2 2 2 2 0( ) ( 1 )Ku RK u k RKM u RKv u        (42)







20022
2
22 2)( uPEuPRvPR  (43)
With boundary conditions.
2 2
2 2
0: 0,
1: 0, 0
y u a
y u


  
  
(44)
Solving (42) & (43) with boundary conditions (44) &
substituting the solutions in equations (31) & (35), the
expressions for 1 1u and can be given as:
1 2 1 1
1 2
1 2 1 1
2 1 2 2 2
2
( )
1 5 6 1
( ) ( ) ( )
2 3 4
( ) ( ) ( )
5 6 7
( )
8
[ {
}]cos
m y m y m m y
m m
m m y m y m y
m m y m m y m y
m y
R
u D e D e B e
e e
B e B e B e
B e B e B e
B e z
 



  
  
   

  

  
  

(45)
2
1
2 1
1
2
1 2
1
( )
[( )
( )
( ) +f(y)]cos
a
a y
a a
a
a y
a a
G e F a
e
e e
G e F a
e z
e e


 


 


(46)
Where
)1()()( 2
11
2
11
11
1
RKMKmmRKmmK
mKc
B







)1()()( 2
21
2
21
12
2
RKMKmmRKmmK
mKc
B







IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 90
)1()()( 2
1
2
1
13
3
RKMKmRKmK
mKc
B



)1()()( 2
1
2
1
14
4
RKMKmRKmK
mKc
B



1 2
5
2 2
2 1 2 1( ) ( ) ( 1 )
Kc m
B
K m m RK m m K RKM 

      
)1()()( 2
22
2
22
22
6
RKMKmmRKmmK
mKc
B







)1()()( 2
2
2
2
23
7
RKMKmRKmK
mKc
B



)1()()( 2
2
2
2
24
8
RKMKmRKmK
mKc
B



))((
)(
2112
2
5 mmmm
m
eeee
AeBR
D


 

;
))((
)(
2121
1
6 mmmm
m
eeee
AeBR
D


 

87654321 BBBBBBBBA 
1 1 1 2 1 1
2 1 2 2 2 2
( ) ( ) ( ) ( )
1 2 3 4
( ) ( ) ( ) ( )
5 6 7 8
m m m m m m
m m m m m m
B B e B e B e B e
B e B e B e B e
 
 
    
    
   
   
2 2
2
1
1
( ) ( )
2 4
R R
m RM
K
 

      ,
)
1
(
4
)
2
( 2
22
2 RM
K
RR
m 



1 2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
F A A A A A A A A A A
A A A A A A A A A A
          
         
1 2
1 1 1 2
2 1 2 2 1
2 1 2
1 2 1 1 2 2
( ) ( ) ( )
1 2 3
( 2 ) ( 2 )( )
4 5 6
( 2 ) ( 2 ) ( 2 )
7 8 9
( 2 ) ( 2 ) ( 2 )
10 11 12
( ) ( )
13 14
( ) m PR y m PR y PR y
m m y m m yPR y
m m y m m y m y
m y m y m y
m m m y m m m
f y Ae A e A e
A e A e A e
A e A e A e
A e A e A e
A e A e
   
 

  
   
   
   
    
    
   
  
  
  
  1 2
1 2 1 1 1 2
2 1 2 2
( )
15
( ) ( ) ( )
16 17 18
( ) ( )
19 20
y m m y
m m y m m y m m y
m m y m m y
A e
A e A e A e
A e A e


 
     
   

  
 
1 2
1 1 1 2 2 1 2 2
1 2 1 2
1 2 1 1 2 2 1 2
( ) ( ) ( ) ( )
1 2 3 4
( 2 ) ( 2 ) ( 2 ) ( 2 )
5 6 7 8
( 2 ) ( 2 ) ( 2 ) ( 2 )
9 10 11 12
( ) ( ) ( )
13 14 15
G= m PR m PR PR PR
m m m m m m m m
m m m m
m m m m m m m m
Ae A e A e A e
A e A e A e A e
A e A e A e A e
A e A e A e
A
     
   

     
      
     
      
   
   
   
  
 1 2 1 1 1 2
2 1 2 2
( ) ( ) ( )
16 17 18
( ) ( )
19 20
m m m m m m
m m m m
e A e A e
A e A e
     
   
 
 
2
4)( 2222
1
 

RPPR
a ;
2
4)( 2222
2
 

RPPR
a
2
1
2
1
21
22
1
)()( 







PRmPRPRm
ccRP
A ;
2
2
2
2
22
22
2
)()( 







PRmPRPRm
ccRP
A ;
22
23
22
3
)()( 




PRPRPR
ccRP
A ;
2 2
4 2
4 2 2
( ) ( )
P R c c
A
PR PR PR

     


   
;
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 91
1 2
1 1 1
5 2
1
1 1 1 2 2
1 1 1 1
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m m
m m PR m m

 

 
 
    
;
1 2
2 1 2
6 2
2
5 2 1 2 2
1 2 1 2
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m m
m m PR m m

 

 
 
    
;
1 2
1 2 1
7 2
1
2 1 2 2 2
2 1 2 1
(
( ) 2
1
2 ( ))(
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m m
m m PR m m

 

 
 
    
1 2
2 2 2
8 2
2
6 2 2 2 2
2 2 2 2
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m m
m m PR m m

 

 
 
    
1 2
3 11
9 2
1
3 1 2 2
1 1
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
Pc mEPRm
A
e e m PR
B m
m PR m


   

 
 
   
1 2
3 22
10 2
2
7 2 2 2
2 2
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
Pc mEPRm
A
e e m PR
B m
m PR m


   

 
 
   
1 2
1 4 1
11 2
1
4 1 2 2
1 1
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m
m PR m


   

 
 
     
1 2
2 4 2
12 2
2
8 2 2 2
2 2
(
( ) 2
1
2 ( ))( )
( 2 ) ( 2 )
m m
EPRm Pc m
A
e e m PR
B m
m PR m


   

 
 
     
1 2
1 1 2
13 1 5 2 12
1 2
2 1 1 1
2 2
1 2 1 1 2 1
2
( ( )
( ) ( )
( ))
1
( )
( ) ( )
m m
Pc m mEPR
A m B m m
e e m m PR
m B m m
m m m PR m m m

 
  
  
 
      
1 2
2 1 2
14 1 6 2 22
1 2
2 2 1 2
2 2
1 2 2 1 2 2
2
( ( )
( ) ( )
( ))
1
( )
( ) ( )
m m
Pc m mEPR
A m B m m
e e m m PR
m B m m
m m m PR m m m

 
  
  
 
      
1 2
3 1 2
15 1 7 22
1 2
2 3 1
2 2
1 2 1 2
2
( ( )
( ) ( )
( ))
1
( )
( ) ( )
m m
Pc m mEPR
A m B m
e e m m PR
m B m
m m PR m m



   
  
  
 
     
1 2
4 1 2
16 1 8 22
1 2
2 4 1
2 2
1 2 1 2
2
( ( )
( ) ( )
( ))
1
( )
( ) ( )
m m
Pc m mEPR
A m B m
e e m m PR
m B m
m m PR m m



   
  
  
 
     
1 2
1 1 5
17 2 2
1 1 1 1
2 1
( )
( ) ( )m m
EPm m D
A
e e m m PR m m 

 

    
1 2
1 2 6
18 2 2
1 2 1 2
2 1
( )
( ) ( )m m
EPm m D
A
e e m m PR m m 

 

    
1 2
2 1 5
19 2 2
2 1 2 1
2 1
( )
( ) ( )m m
EPm m D
A
e e m m PR m m 

 

    
1 2
2 2 6
20 2 2
2 2 2 2
2 1
( )
( ) ( )m m
EPm m D
A
e e m m PR m m 

 

    
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 92
3. RESULTS AND DISCUSSION
Knowing velocity and temperature fields, the important
characteristic parameters namely, skin-friction components
x and z along main flow and transverse direction, non-
dimensional rate of heat transfer (Nusselt number) at both the
plates can be calculated.
1 2
1 2
1 2
1 5 2 6
1 1 1 1 2 2
1 3 1 4 2 1 5
2 2 6 2 7 2 8
[
{( ) ( )
( ) ( ) ( )
( ) ( ) ( ) }]cos
x m m
m m
m m
m D m D
e e
R
m m B m m B
e e
m B m B m m B
m m B m B m B z
 
 
  
 
 



  

   

     
     
(47)
2 21
1 1 2 2
2 2
3 4
( ) [
]sin
z
z
d dw
c m c m
v dy
c c z
 
 
 
  

     
 
(48)
3.1 Nusselts Number at the Stationary Plate:
*
*
* 0
2 1
( )y
c T
Nu
T T y

 



1 2
2 1
2 1 1 2
2 2
1 2
2 2
1 2
1 2
1 2
1 2
Nu=-[ ( ) (
( ) 2 2
2
( )
( ) ( )
{( ) ( ) (0)}cos ]
m m
a a
a a a a
m mEP
PR c
e e m PR m PR
m m
m m PR
G e F a G e F a
a a f z
e e e e

 



  
  
 
 
   
 
 
(49)
3.2 Nusselt Number at the Moving Plate
*
*
2 1
( )
* y c
c T
Nu
T T y 

 
 
[
1
1 2
2 1 2
2 1
1 2
2 1 1 2
22
( ) 1
2 2
1
2 ( )2
2 1 2
2 1 2
1 2
Nu = - [ ( ) (
( ) 2
2
2 ( )
( ) ( )
{( ) ( )
(1)}cos ]
m
PR
m m
m m m
a a
a a
a a a a
m eEP
PR c e
e e m PR
m e mm e
m PR m m PR
G e F a G e F a
ae a e
e e e e
f z



 




 
 
 
  
   
 
 

(50)
The velocity components u, v and w in representative plane
z=0 and z=1/2,are plotted against y in figures 1,2 and 3
respectively, for various values of Reynolds number R,
Suction parameters  and permeability parameters K at
constant magnetic field M. It is observed from these figures,
that u and w both increase as R,  or K. Also , when R or K
increase v increases.
In figure4, the temperature distribution function  is plotted
against y, in representative plane z=0 at constant magnetic
field. From the fig, temperature increases as Eckert number E
or Prandtl number P increases but the same decreases as
 increases.
The absolute values of the skin friction components x in plane
z=0 and z in plane z=1/2are plotted against Reynolds number
R at constant magnetic field M in figures 5 and 6 respectively,
for various values of  and K. It is noted that both x and
z increase as Reynolds number R increases or  increases.
Further, permeability parameter K increases x increases
whereas z decreases.
Fig7.shows the variation of Nusselt number lNul, at the plate
y=1, against R at constant magnetic field M. Here, lNul
decreases significantly with R. Also when  increases lNul
increases.
The velocity components u, v and w in representative plane
z=0 and z=1/2,are plotted against y in figures 8,9 and 10
respectively, for the fixed values of Reynolds number R,
Suction parameters  and permeability parameters K at
different magnetic fields. It is observed from these figures,
that if Magnetic field parameter M increases, both u and v
decreases, but w increases. As R increases, u, v and w
increases.
In figure11, the temperature distribution function  is plotted
against y, in representative plane z=0 for different magnetic
0 2
0 0( ) ( ) cosx
x
d du du
z
u dy dy

  


  
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 93
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0 M=0.2;
R  K
B 50 0.01 50
C 50 0.02 50
D 50 0.03 50
E 50 0.04 50
F 60 0.05 1000
G 300 0.01 50
H 400 0.01 50
I 1000 0.01 50
Fig1.velocity component u against y in plane z=0 for 
I
H
G
F
E
D
C
B
u
y
0.0 0.2 0.4 0.6 0.8 1.0
0.000
-0.005
-0.010
-0.015
-0.020
-0.025
-0.030
M=0.2;
R  K
B 50 0.01 50
C 50 0.02 50
D 50 0.03 50
E 50 0.04 50
F 300 0.01 50
G 300 0.01 50
H 400 0.01 50
I 1000 0.01 50
Fig.3.Velocity component w against y in plane z=1/2 for 
I
H
G
F
E
D
C
B
w*10
y
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
M=0.2;
Fig.4.Temperature  against y in plane z=0 for
R=50,,K=10,and a=0.78
I
H
G
F
E
D C
B
P E
B 1.51 0.1
C 2.00 0.1
D 2.50 0.1
E 3.00 0.1
F 3.00 0.05
G 4.00 0.05
H 5.00 0.05
I 6.00 0.05

y
0 20 40 60 80 100
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Fig.5.Skin-friction coeffecient x
against Reynolds-
number R in plane z=0 for =0.1
M=0.2;
G
F
E
D C
B
 K
B 0.05 1
C 0.05 5
D 0.05 100
E 0.02 100
F 0.03 100
G 0.04 100
x
R
0.0 0.2 0.4 0.6 0.8 1.0
-0.210
-0.208
-0.206
-0.204
-0.202
-0.200
Fig2.Velocity component v against y in plane z=0
for ,
D
C
B
M=0.2;
R K
B 50 10
C 100 50
D 500 100
v
y
fields. As y and M increases  also increases for fixed Eckert
number E, Prandtl number P, Reynolds number R, Suction
parameters  and permeability parameters K.
The absolute values of the skin friction components x in plane
z=0 and z in plane z=1/2 are plotted against Reynolds
number R in figures 12 and 13 respectively, for fixed values of
 and K at different magnetic fields. It is noted that x
increases and z decreases as Reynolds number R increases,
while x and z decreases, as M increases for fixed  , K.
Figure14.shows the variation of Nusselt number |Nu|, at the
plate y=1, against R. Here, |Nu| increases significantly with R.
Also, |Nu| increases as M increases.
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 94
0 20 40 60 80 100
-0.005
-0.010
-0.015
-0.020
-0.025
-0.030
-0.035
-0.040
-0.045
F
E
G
D
C
BM=0.2; K
B 0.05 1
C 0.05 6
D 0.05 100
E 0.02 100
F 0.03 100
G 0.04 100
Fig.6.Skin-friction coeffecient z
against Reynolds-
number R in plane z=1/2 for =0.1
z
R
0 20 40 60 80 100
-0.35
-0.30
-0.25
-0.20
-0.15
-0.10
-0.05
0.00
0.05
0.10
Sl.No.  K P E
I 0.02 10 0.44 0.01
II 0.04 10 0.44 0.01
III 0.01 50 0.71 0.01
IV 0.02 50 0.71 0.01
V 0.05 10 0.78 0.05
VI 0.05 100 0.78 0.05
M=0.2;
Fig.7.Nusselt number |Nu| against Reynolds-
number R inplane z=0 for =0.1
VI
V
IV
III
II
I
|Nu|
R
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
M=0
M=0.4
M=0.2
M=0.0
M=0.2
M=0.4
Fig.8.Velocity component u against y in
plane z=0 for =0.1,R=50,=0.01,k=50
u
y
0.0 0.2 0.4 0.6 0.8 1.0
-0.210
-0.208
-0.206
-0.204
-0.202
-0.200
M=0.0
M=0.2
M=0.4
Fig.9.velocity component v against y in plane z=0
for =0.2,=0.05,R=500,K=100
M=0.2
M=0.4
M=0
v
y
0.0 0.2 0.4 0.6 0.8 1.0
0.000
-0.001
-0.002
-0.003
-0.004
-0.005
M=0.0
M=0.2
M=0.4
M=0
M=0.4
M=0.2
Fig.10.Velocity component w against y in
plae z=1/2 for =0.1,R=50,=0.02,K=50
w*10
y
0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
Fig.11.Temperature function against y in
plane z=0 R=50,=0.05,K=10,,a=0.78, P=1.51,E=0.1
M=0.0
M=0.2
M=0.4
M=0.4
M=0.2
M=0

y
IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308
__________________________________________________________________________________________
Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 95
0 20 40 60 80 100
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
M=0.0
M=0.2
M=0.4
Fig.12.Skin-friction coefficient x
against
Reynolds number R in plane z=0 for =0.1,,K=1
M=0.4
M=0.2
M=0
x
R
0 20 40 60 80 100
-0.054
-0.052
-0.050
-0.048
-0.046
-0.044
-0.042
-0.040
-0.038
-0.036
-0.034
-0.032
-0.030
-0.028
-0.026
-0.024
-0.022
-0.020
-0.018
-0.016
M=0.4
M=0.2
M=0
Fig.13.Skin-friction coefficient z
against Reynolds number
in plane z=1/2 for ,=0.05,K=100
M=0.0
M=0.2
M=0.4
z
R
0 20 40 60 80 100
-0.38
-0.37
-0.36
-0.35
-0.34
-0.33
-0.32
-0.31
M=0.0
M=0.2
M=0.4
M=0.0
M=0.4
M=0.2
Fig.14.Nusselt number |Nu|against Reynolds
number R in plane z=0 for ,,
K=10,P=0.44,E=0.01,y=1,a=0.78
|Nu|
R
REFERENCES
[1]. A. A. Raptis and H. S. Takhar, 1986, Combined mass
transfer and forced flow through a porous medium, Int.
Comm. Heat and Mass Transfer, 13, pp. 599-603.
[2]. A. A. Raptis, N. G. Kafousias and C. V. Massalas, 1982,
Free convection and mass transfer flow through a porous
medium bounded by an infinite vertical porous plate with
constant heat flux, ZAMM, 62, pp. 489-491.
[3]. A. Raptis and G. Tzivanidis, 1983, Magnetohydrodynamic
free convective effect for an incompressible viscous fluid past
an infinite limiting surface, Astro Physics and Space Science,
94(2), pp. 311-317.
[4]. A. Raptis, C. Perdikis and G. Tzivanidis, 1976, Free
convection flow through a porous medium bounded by a
vertical surface, Journal of Physics D:Applied Physics,
14(7)L99.
[5]. A. Raptis, G.Tzivanidis and N. G. Kafousias, 1981, Free
convection and mass transfer flow through a porous medium
bounded by an infinite vertical limiting surface with constant
suction, Letters in Heat and Mass Transfer, 8, pp. 417-424.
[6]. K. Gersten and J. F. Gross, 1974, Three dimensional flow
and heat transfer, ZAMP, 25, pp. 399-408.
[7]. S. S. Tak and M. K. Vyas, 2006, Analysis of three
dimensional couette flow and heat transfer in porous medium
between two permeable plates with sinusoidal temperature,
Ultra Science, 18(3)M, pp. 489-500.
[8]. V. M. Soundalgekar and J. P. Bhat, 1971, Oscillatory
MHD channel flow and heat transfer, Ind. J. Pure. Appl.
Math., 15, pp. 819-828.
[9]. Lalitha Jayaraman and G. Ramanaiah, 1984, Second-order
fluid-transient MHD couette flow with constant stress at upper
plate, Indian Journal of Pure and Applied Mathematics, 15(8),
pp. 927-934.
[10]. Raptis, A.A., Perdikis, C.P., 1985 Oscillatory flow
through a porous medium by the presence of free convective
flow, Int. J. Engng. Sci., pp. 23, 51-55.
[11]. A. A. Raptis and C. P. Pfrdikis, 1988, Combined free and
forced convection flow through a porous medium,
International Journal of Energy Research, 12(3), pp. 557-560.
[12]. A. A. Raptis and C. Perdikis, 1987, Mass transfer and
free convection flow through a porous medium, Energy
Research, 11, pp. 423-428.
[13]. A. A. Raptis, 1983, Unsteady free convective flow
through a porous medium, International Journal of
Engineering Science, 21(4), pp. 345-348.
[14]. Rama Bhargava and Meena Rani, 1984, MHD flow and
heat transfer in a channel with porous walls of different
permeability(eng), Indian Journal of Pure and Applied
Mathematics, 15 (4), pp. 397-408.

More Related Content

PDF
Analysis of mhd non darcian boundary layer flow and heat transfer over an exp...
PDF
Numerical simulation on laminar convection flow and heat transfer over a non ...
PDF
Numerical study of mhd boundary layer stagnation point flow and heat transfer...
PDF
Numerical simulation on laminar convection flow and heat transfer over an iso...
PDF
Mhd and heat transfer in a thin film over an unsteady stretching surface with
PDF
Flow and heat transfer of micro polar and viscous
PDF
Effect of viscous dissipation on mhd flow and heat transfer of a non newtonia...
PDF
Magneto convective flowand heat transfer of two immiscible fluids between ver...
Analysis of mhd non darcian boundary layer flow and heat transfer over an exp...
Numerical simulation on laminar convection flow and heat transfer over a non ...
Numerical study of mhd boundary layer stagnation point flow and heat transfer...
Numerical simulation on laminar convection flow and heat transfer over an iso...
Mhd and heat transfer in a thin film over an unsteady stretching surface with
Flow and heat transfer of micro polar and viscous
Effect of viscous dissipation on mhd flow and heat transfer of a non newtonia...
Magneto convective flowand heat transfer of two immiscible fluids between ver...

What's hot (19)

PDF
G04414658
PDF
Ir3515031508
PDF
O0131492100
PDF
The effect of magnetic field on the boundary layer flow over a stretching she...
PDF
Heat transfer in viscous free convective fluctuating mhd flow through porous ...
PDF
A numerical solution of mhd heat transfer in a laminar liquid film on an unstead
PDF
International Journal of Computational Engineering Research(IJCER)
PDF
EFFECT OF SLIP PARAMETER OF A BOUNDARY-LAYER FLOW FOR NANOFLUID OVER A VERTIC...
PDF
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
PDF
Effects of Variable Viscosity and Thermal Conductivity on MHD free Convection...
PDF
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
PDF
Couette type mhd flow with suction and injection under constant pressure grad...
PDF
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
PDF
Non-NewtonianFluid Flow and Heat Transfer over a Non- Linearly Stretching Sur...
PDF
20320130406011 2
PDF
TWO FLUID ELECTROMAGNETO CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN VERTICAL W...
PDF
Unsteady Mhd free Convective flow in a Rotating System with Dufour and Soret ...
PDF
Radiation Effects on MHD Free Convective Rotating Flow with Hall Effects
PDF
Chemical Reaction on Heat and Mass TransferFlow through an Infinite Inclined ...
G04414658
Ir3515031508
O0131492100
The effect of magnetic field on the boundary layer flow over a stretching she...
Heat transfer in viscous free convective fluctuating mhd flow through porous ...
A numerical solution of mhd heat transfer in a laminar liquid film on an unstead
International Journal of Computational Engineering Research(IJCER)
EFFECT OF SLIP PARAMETER OF A BOUNDARY-LAYER FLOW FOR NANOFLUID OVER A VERTIC...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Effects of Variable Viscosity and Thermal Conductivity on MHD free Convection...
Boundry Layer Flow and Heat Transfer along an Infinite Porous Hot Horizontal ...
Couette type mhd flow with suction and injection under constant pressure grad...
Effects Of Heat Source And Thermal Diffusion On An Unsteady Free Convection F...
Non-NewtonianFluid Flow and Heat Transfer over a Non- Linearly Stretching Sur...
20320130406011 2
TWO FLUID ELECTROMAGNETO CONVECTIVE FLOW AND HEAT TRANSFER BETWEEN VERTICAL W...
Unsteady Mhd free Convective flow in a Rotating System with Dufour and Soret ...
Radiation Effects on MHD Free Convective Rotating Flow with Hall Effects
Chemical Reaction on Heat and Mass TransferFlow through an Infinite Inclined ...
Ad

Viewers also liked (20)

PDF
Ontology based clustering in research project
PDF
Comparative experimental study of simple absorber
PDF
Novel fpga design and implementation of digital up
PDF
Cloud based security threats with present challenges and opportunities for ma...
PDF
Statistical optimization of adsorption variables for biosorption of chromium ...
PDF
Reverse logistics a review of literature
PDF
Barriers in green supply chain management an indian
PDF
Coastal zones – seismic vulnerability an analysis from east coast of india
PDF
Smart missile navigation in defence system using rc4 algorithm to detect target
PDF
Designing towards a fire resistant neighborhood in
PDF
Constructive concepts for reducing wear caused by the
PDF
Bearing fault detection using acoustic emission signals analyzed by empirical...
PDF
Invalidating vulnerable broadcaster nodes using
PDF
Benefits derived by sm es through implementation of tqm
PDF
Analysis of factors for enhancing energy conservation in indian railway works...
PDF
Numerical study of natural convection in an enclosed
PDF
An effective adaptive approach for joining data in data
PDF
Performance evaluation of adaptive receivers for uwb
PDF
Fractals for complexity analysis of diabetic retinopathy in retinal vasculatu...
PDF
Behaviour of interfaces between carbon fibre reinforced polymer and gravel soils
Ontology based clustering in research project
Comparative experimental study of simple absorber
Novel fpga design and implementation of digital up
Cloud based security threats with present challenges and opportunities for ma...
Statistical optimization of adsorption variables for biosorption of chromium ...
Reverse logistics a review of literature
Barriers in green supply chain management an indian
Coastal zones – seismic vulnerability an analysis from east coast of india
Smart missile navigation in defence system using rc4 algorithm to detect target
Designing towards a fire resistant neighborhood in
Constructive concepts for reducing wear caused by the
Bearing fault detection using acoustic emission signals analyzed by empirical...
Invalidating vulnerable broadcaster nodes using
Benefits derived by sm es through implementation of tqm
Analysis of factors for enhancing energy conservation in indian railway works...
Numerical study of natural convection in an enclosed
An effective adaptive approach for joining data in data
Performance evaluation of adaptive receivers for uwb
Fractals for complexity analysis of diabetic retinopathy in retinal vasculatu...
Behaviour of interfaces between carbon fibre reinforced polymer and gravel soils
Ad

Similar to Analysis of three dimensional couette flow and heat (20)

PDF
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
PDF
Slow steady motion of a thermo viscous fluid between two parallel plates with...
PDF
A0350300108
PDF
Numerical study of natural convection in an enclosed square cavity using cons...
PDF
The numerical solution of helmholtz equation via multivariate padé approximation
PDF
MHD Free Convection from an Isothermal Truncated Cone with Variable Viscosity...
PDF
MHD Free Convection from an Isothermal Truncated Cone with Variable Viscosity...
PDF
Soret Effect And Effect Of Radiation On Transient Mhd Free Convective Flow Ov...
PDF
Soret Effect And Effect Of Radiation On Transient Mhd Free Convective Flow Ov...
PDF
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
PDF
International Journal of Engineering and Science Invention (IJESI)
PDF
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
PDF
Thermal Effects in Stokes’ Second Problem for Unsteady Second Grade Fluid Flo...
PDF
Natural convection heat transfer oscillatory flow of an elastico viscous flui...
PDF
Natural convection heat transfer oscillatory flow of an elastico viscous flui...
PDF
The International Journal of Engineering and Science (The IJES)
PDF
I24056076
PDF
C012630913
PDF
C012630913
PDF
International Journal of Computational Engineering Research(IJCER)
Numerical simulation of marangoni driven boundary layer flow over a flat plat...
Slow steady motion of a thermo viscous fluid between two parallel plates with...
A0350300108
Numerical study of natural convection in an enclosed square cavity using cons...
The numerical solution of helmholtz equation via multivariate padé approximation
MHD Free Convection from an Isothermal Truncated Cone with Variable Viscosity...
MHD Free Convection from an Isothermal Truncated Cone with Variable Viscosity...
Soret Effect And Effect Of Radiation On Transient Mhd Free Convective Flow Ov...
Soret Effect And Effect Of Radiation On Transient Mhd Free Convective Flow Ov...
Unsteady Free Convection MHD Flow of an Incompressible Electrically Conductin...
International Journal of Engineering and Science Invention (IJESI)
A study on mhd boundary layer flow over a nonlinear stretching sheet using im...
Thermal Effects in Stokes’ Second Problem for Unsteady Second Grade Fluid Flo...
Natural convection heat transfer oscillatory flow of an elastico viscous flui...
Natural convection heat transfer oscillatory flow of an elastico viscous flui...
The International Journal of Engineering and Science (The IJES)
I24056076
C012630913
C012630913
International Journal of Computational Engineering Research(IJCER)

More from eSAT Publishing House (20)

PDF
Likely impacts of hudhud on the environment of visakhapatnam
PDF
Impact of flood disaster in a drought prone area – case study of alampur vill...
PDF
Hudhud cyclone – a severe disaster in visakhapatnam
PDF
Groundwater investigation using geophysical methods a case study of pydibhim...
PDF
Flood related disasters concerned to urban flooding in bangalore, india
PDF
Enhancing post disaster recovery by optimal infrastructure capacity building
PDF
Effect of lintel and lintel band on the global performance of reinforced conc...
PDF
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
PDF
Wind damage to buildings, infrastrucuture and landscape elements along the be...
PDF
Shear strength of rc deep beam panels – a review
PDF
Role of voluntary teams of professional engineers in dissater management – ex...
PDF
Risk analysis and environmental hazard management
PDF
Review study on performance of seismically tested repaired shear walls
PDF
Monitoring and assessment of air quality with reference to dust particles (pm...
PDF
Low cost wireless sensor networks and smartphone applications for disaster ma...
PDF
Can fracture mechanics predict damage due disaster of structures
PDF
Assessment of seismic susceptibility of rc buildings
PDF
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
PDF
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
PDF
Disaster recovery sustainable housing
Likely impacts of hudhud on the environment of visakhapatnam
Impact of flood disaster in a drought prone area – case study of alampur vill...
Hudhud cyclone – a severe disaster in visakhapatnam
Groundwater investigation using geophysical methods a case study of pydibhim...
Flood related disasters concerned to urban flooding in bangalore, india
Enhancing post disaster recovery by optimal infrastructure capacity building
Effect of lintel and lintel band on the global performance of reinforced conc...
Wind damage to trees in the gitam university campus at visakhapatnam by cyclo...
Wind damage to buildings, infrastrucuture and landscape elements along the be...
Shear strength of rc deep beam panels – a review
Role of voluntary teams of professional engineers in dissater management – ex...
Risk analysis and environmental hazard management
Review study on performance of seismically tested repaired shear walls
Monitoring and assessment of air quality with reference to dust particles (pm...
Low cost wireless sensor networks and smartphone applications for disaster ma...
Can fracture mechanics predict damage due disaster of structures
Assessment of seismic susceptibility of rc buildings
A geophysical insight of earthquake occurred on 21 st may 2014 off paradip, b...
Effect of hudhud cyclone on the development of visakhapatnam as smart and gre...
Disaster recovery sustainable housing

Recently uploaded (20)

PPTX
OOP with Java - Java Introduction (Basics)
PDF
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
PDF
Structs to JSON How Go Powers REST APIs.pdf
PDF
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
PPTX
Construction Project Organization Group 2.pptx
PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PDF
Digital Logic Computer Design lecture notes
PDF
Operating System & Kernel Study Guide-1 - converted.pdf
PDF
Model Code of Practice - Construction Work - 21102022 .pdf
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
PDF
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
PPT
Mechanical Engineering MATERIALS Selection
PPTX
bas. eng. economics group 4 presentation 1.pptx
PDF
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
web development for engineering and engineering
PDF
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
PDF
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PPTX
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd
OOP with Java - Java Introduction (Basics)
Evaluating the Democratization of the Turkish Armed Forces from a Normative P...
Structs to JSON How Go Powers REST APIs.pdf
Mitigating Risks through Effective Management for Enhancing Organizational Pe...
Construction Project Organization Group 2.pptx
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Digital Logic Computer Design lecture notes
Operating System & Kernel Study Guide-1 - converted.pdf
Model Code of Practice - Construction Work - 21102022 .pdf
CYBER-CRIMES AND SECURITY A guide to understanding
BMEC211 - INTRODUCTION TO MECHATRONICS-1.pdf
Mechanical Engineering MATERIALS Selection
bas. eng. economics group 4 presentation 1.pptx
July 2025 - Top 10 Read Articles in International Journal of Software Enginee...
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
web development for engineering and engineering
keyrequirementskkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
Mohammad Mahdi Farshadian CV - Prospective PhD Student 2026
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
IOT PPTs Week 10 Lecture Material.pptx of NPTEL Smart Cities contd

Analysis of three dimensional couette flow and heat

  • 1. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 85 ANALYSIS OF THREE DIMENSIONAL COUETTE FLOW AND HEAT TRANSFER IN POROUS MEDIUM BETWEEN TWO PERMEABLE PLATES WITH SINUSOIDAL TEMPERATURE AND MAGNETIC FIELD V.P.Rathod1 , Ravi.M2 1 CNCS, Department of Mathematics, Haramaya University 2 Asst.Professor, Department of Mathematics, Govt First Grade College, Raichur, Karnataka State, India Abstract This paper constitutes the analysis of three dimensional couette flow and heat transfer through porous medium under magnetic field. There are two permeable plates in the porous medium, viz., stationery plate and moving plate. The stationery plate is maintained at sinusoidal surface temperature while the moving plate is kept at uniform injection velocity under isothermal condition. The expressions for velocity and temperature fields are obtained. With this, skin-friction components and Nusselt number at both the plates will be derived and are plotted against Reynolds number. Keywords: Three dimensional, Heat transfer, porous medium, Permeable plates, Sinusoidal, Magnetic field --------------------------------------------------------------------***---------------------------------------------------------------------- 1. INTRODUCTION The unsteady laminar flow of an incompressible viscous electrically conducting second order fluid between infinite parallel plates subject to a transverse magnetic field is investigated by Lalitha Jayaraman and Ramanaiah [9]. Raptis et al, [5,4,2,13] have discussed the free convection flow through a porous medium bounded by an infinite plate, when there is no stream velocity. Raptis and Perdikis [12] have studied the effect of free convection and mass transfer flow through a porous medium bounded by infinite vertical porous plates, when there is a free stream velocity. Analysis of three dimensional couette flow and heat transfer in porous medium between two permeable plates with sinusoidal temperature is studied by Tak and Vyas [7]. Raptis and Perdikis [11] have studied the combined free and forced convective flow through a porous medium bounded by a semi-infinite vertical porous plate. Gersten and Gross [6] have studied the effect of transverse sinusoidal suction velocity on flow and heat transfer along an infinite vertical porous wall. Raptis and Takhar [1] have studied the forced flow of a viscous incompressible fluid through the forced flow of a viscous incompressible fluid through a highly porous medium bounded by a semi-infinite vertical plate in the presence of mass transfer. Oscillatory flow through a porous medium by the presence of free convective flow is studied by Raptis, Perdikis, and C.P. Magneto hydro dynamic free convective effect for an incompressible viscous fluid past an infinite limiting surface is studied by Raptis and Tzivandis[3]. The MHD flow and heat transform in a channel with porous walls of different permeability has been investigated by the method of quasi linearization by Rama Bhargava and Meena Rani [14]. Soundalgekar and Bhat[8] have studied an approximate analysis of an oscillatory MHD channel flow and heat transfer under transverse magnetic field. In the present problem, by taking viscous dissipation in to account, the three dimensional couette flow and heat transfer in a porous medium under magnetic field are analysed .The stationery plate is subjected to both sinusoidal temperature and suction velocity while the moving plate is isothermal with uniform injection velocity. 2. MATHEMATICAL ANALYSIS Consider the three dimensional couette flow through porous medium between two infinite porous plates under magnetic field. So that, the stationery plate is kept along x-z plane and the other plate is at a distance c from the stationery plate which is moving with velocity U along x-direction. The stationery plate is kept at sinusoidal temperature and suction velocity, varying in z-direction while the moving plate is subjected to the uniform injection velocity under isothermal condition. Taking viscous dissipation in to account, the flow and heat transfer are governed by the following equations: 0 v w y z           (1)
  • 2. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 86 2 2 2 2 2 0 v +w = ( ) u u u u y z y z Bu u K                            (2) 2 2 2 2 2 0 1 w = - ( ) v v p v v v y z y y z Bv v K                                   (3) 2 2 2 2 2 0 1 v +w ( ) w w p w w y z z y z Bw w K                                    (4) 2 2 2 2 [v +w ]= [ ]p T T T T C K y z y z                         (5) Where 2 2 2 2 2 2 [( ) ( ) ] [( ) ( ) ( ) ] v w u y z y w w u y z z                                   (6) Where u* ,v* ,w* are respectively the velocity components in the directions of x, y and z axes. , K ,T , p ,  , pC , K,  , and 0B are respectively the kinematic viscosity, permeability of porous medium, temperature, pressure, density, Specific heat of the fluid at constant pressure, thermal conductivity, viscosity of the fluid, electrical conductivity, uniform magnetic field of the fluid concerned. The boundary conditions: 0u  , v =-V(1+ cos ) z c     , 0w  , 1T =T (1+ cos ) z c    , 0P  at 0y  u U  , v =-V , 0w  , 2T =T , p = V c K   , T2>T1 at y c  (7) Where 1 ,U, V are constants with dimension of velocity and c,T1 are constants with dimensions of length and temperature respectively. Introducing the following non-dimensional quantities: y= y c  , z= z c  , u= u U  , v= v U  , w= w U  , 2 p= p U  , 1 2 1 T T T T      , pC P K    , 2 K K c   , V U   , 2 2 1 E= ( )p U C T T , d RK   , 1 2 1 a= T T T and 2 0 M= B c U   (8) Where R, P, K, and E are respectively, Reynolds number, Prandtl number, permeability parameter, suction parameter and Eckert number With this, the equations (1) to (5) reduce to 0 v w y z       (9) 2 2 2 2 1 ( ) -Mu u u u u u v w y z R y z RK             (10) Where 2 2 2 2 1 ( ) Mv v v P v v v w y z y R y z v RK                  (11) Uc R  
  • 3. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 87 2 2 2 2 1 ( ) -Mw w w P w w v w y z z R y z w RK                 (12) (13) Where 2 2 2 2 2 2{( ) +( ) }+( ) +( ) +( ) v w u w w u y z y y z z                with boundary conditions: y=0: u=0, v=- (1+ cos )z   , w=0, p=0 and za  cos (14) y=1: u=1, v=- , w=0, p=d, 1 In order to solve above equations (10) to (13), it is assumed that 0 1u(y,z)=u (y)+ ( , )u y z (15) 0 1v(y,z)=v (y)+ ( , )v y z w(y, z)= w1(y, z) 0 1p(y,z)=p (y)+ (y,z)p 0 1( , ) ( ) ( , )y z y y z    Since, amplitude )1( of sinusoidal suction velocity is small compared to its wavelength. Employing equations (15) in equations (9) to (14) and taking 0  , the unperturbed quantities satisfies the following equations: 0v 0  (16) 0)( 0 0 00  Mu K u uRu  (17) MdP 0 (18) 0)( 2 000  uEPPR  (19) with boundary conditions: y=0: u 0 =0, 0v =- , 0 =0 , p0=0, y=1: u 0 =1, 0v =- , 0 1  , p0=d (20) Where prime denotes the derivatives with respect to y. The solutions of equations (16) to (19) satisfying the boundary conditions (20) can be expressed as follows: 0v = - (21) 1 2 1 2 0u = m y m y m m e e e e   (22) 0P =(d+M )y (23) And 1 ( ) 1 2 2 1 2 2 1 0 1 2 2 1 2 ( ) 2 1 2 2 2 1 2 1 2 e [ ( ) 2(2 ) 2 ] 2(2 ) ( ) ( ) PR y m y m m m y m m y meEP c c e e m PR m e m m e m PR m m PR m m                    (24) Where 2 2 1 1 1 m = [-R + 4( ) 2 R M K     2 2 2 1 1 = [-R - 4( ) 2 m R M K      1 1 2 2 2 2 1 1 1 2 1 2 2 1 2 2 2 1 2 1 2 1 [ { ( ) 2(2 ) ( ) 2 ( ) }-1] 2(2 ) ( ) ( ) mPR m mPR m m mPR PR m e eEP c e e e m PR m e e m m e e m PR m m PR m m                          2 2 2 2 1 ( ) E v w y z PR y z R                 
  • 4. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 88 1 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 1 2 1 2 ( 1)1 [ { 1 ( ) 2(2 ) ( 1) 2 ( 1) }+1]} 2(2 ) ( ) ( ) m m mPR m m m m eEP c e e e m PR m e m m e m PR m m PR m m                     Also, the perturbed quantities satisfies the following. 1 1 0 v w y z       (25) 2 2 0 1 1 1 1 1 12 2 1 [ ] u u u u u v Mu y y R y z RK               (26) 2 2 1 1 1 1 1 12 2 1 [ ] v p v v v Mv y y R y z RK                 (27) 2 2 1 1 1 1 1 12 2 1 [ ] w p w w w Mw y z R y z RK                 (28) And 2 2 0 01 1 1 1 1 2 2 1 2 [ ] . . u uE v y y PR y z R y y                     (29) with boundary conditions: y=0; 1 0u  , 1 cosv z   , 1 0w  , 1 cosa z  , 1 0p  y=1 ; 1 0u  1 0v  1 0w  , 1 0  , 1 0p  (30) Equations (25) to (29) are linear partial differential equations, which describes perturbed three dimentional flow due to variation of suction velocity stationery surface temperature along z-direction. The form of suction velocity and surface temperature suggests the following forms of 1u , 1v , 1w , 1P and 1 : 1 2( )cosu u y z (31) (32) (33) 1 2( )cosp p y z (34) 1 2( )cosy z   (35) The expression for 1v and 1w have been chosen so that the equation of continuity (25) is satisfied. The equations (27) and (28) , being independent of the main flow and the temperature field, can be solved first. Therefore, substituting (32), (33) and (34) in equations (27) and (28), the following ordinary simultaneous differential equations are obtained: 2 2 2 2 2 2( ) ( 1 ) ( )kv RK v k RKM v RK P         (36) 2 2 2 2 2( ) ( 1 )kv RK v k RKM v RKP        (37) With corresponding boundary conditions: 2 2 2 2 0: , 0, 1: 0, 0 y v v y v v         (38) Where a prime denotes derivative with respect to y. The solution of system of equations (36) and (37) is substituted in equations (32) to (34) to obtain the values of 1v , 1w and 1p : 1 2 1 1 2 3 4[ ]cosm y m y y y v c e c e c e c e z          (39) 1 2 1 1 1 2 2 3 4 1 [ ]sinm y m y y y w c m e c m e c e c e z               (40) 1 2 1 1 22 3 4 1 [ ]cos m y m y y y P A e A e RK A e A e z             (41) Where 2 2 2 1 1 4( ) 2 R R RM Km          And 1 2( ) sv v y co z 1 2 1 ( )sinw v y z   
  • 5. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 89 2 2 2 2 1 4( ) 2 R R RM Km          31 2 4 1 2 3 4, , , dd d d c c c c d d d d     1 2 1 2 1 2 1 2 1 1 1 1 d= m m m m e e e e m m m e m e e e                     ; 2 2 1 2 2 1 1 1 0 d = 0 0 m m e e e m m e e e                   ; 1 1 2 1 1 1 1 1 0 d = 0 0 m m e e e m m e e e                   ; 1 2 1 2 3 1 2 1 2 1 1 1 0 d = 0 0 m m m m e e e m m m e m e e                   ; 1 2 1 2 4 1 2 1 2 1 1 1 0 d = 0 0 m m m m e e e m m m e m e e               3 2 2 1 1 1 1 1 1 1= ( 1 )A Kc m RK c m k RKM c m        , 3 2 2 2 2 2 2 2 2 2( 1 )A Kc m RK c m k RKM c m         , 3 2 2 3 3 3 3( 1 )A Kc RK c k RKM c          , 3 2 2 4 4 4 4( 1 )A Kc RK c k RKM c           Now, for the main flow and the temperature field, Substitute the expressions (31) and (35) in equations (26) & (29), we get, 2 2 2 2 2 0( ) ( 1 )Ku RK u k RKM u RKv u        (42)        20022 2 22 2)( uPEuPRvPR  (43) With boundary conditions. 2 2 2 2 0: 0, 1: 0, 0 y u a y u         (44) Solving (42) & (43) with boundary conditions (44) & substituting the solutions in equations (31) & (35), the expressions for 1 1u and can be given as: 1 2 1 1 1 2 1 2 1 1 2 1 2 2 2 2 ( ) 1 5 6 1 ( ) ( ) ( ) 2 3 4 ( ) ( ) ( ) 5 6 7 ( ) 8 [ { }]cos m y m y m m y m m m m y m y m y m m y m m y m y m y R u D e D e B e e e B e B e B e B e B e B e B e z                            (45) 2 1 2 1 1 2 1 2 1 ( ) [( ) ( ) ( ) +f(y)]cos a a y a a a a y a a G e F a e e e G e F a e z e e           (46) Where )1()()( 2 11 2 11 11 1 RKMKmmRKmmK mKc B        )1()()( 2 21 2 21 12 2 RKMKmmRKmmK mKc B       
  • 6. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 90 )1()()( 2 1 2 1 13 3 RKMKmRKmK mKc B    )1()()( 2 1 2 1 14 4 RKMKmRKmK mKc B    1 2 5 2 2 2 1 2 1( ) ( ) ( 1 ) Kc m B K m m RK m m K RKM          )1()()( 2 22 2 22 22 6 RKMKmmRKmmK mKc B        )1()()( 2 2 2 2 23 7 RKMKmRKmK mKc B    )1()()( 2 2 2 2 24 8 RKMKmRKmK mKc B    ))(( )( 2112 2 5 mmmm m eeee AeBR D      ; ))(( )( 2121 1 6 mmmm m eeee AeBR D      87654321 BBBBBBBBA  1 1 1 2 1 1 2 1 2 2 2 2 ( ) ( ) ( ) ( ) 1 2 3 4 ( ) ( ) ( ) ( ) 5 6 7 8 m m m m m m m m m m m m B B e B e B e B e B e B e B e B e                       2 2 2 1 1 ( ) ( ) 2 4 R R m RM K          , ) 1 ( 4 ) 2 ( 2 22 2 RM K RR m     1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 F A A A A A A A A A A A A A A A A A A A A                      1 2 1 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 ( ) ( ) ( ) 1 2 3 ( 2 ) ( 2 )( ) 4 5 6 ( 2 ) ( 2 ) ( 2 ) 7 8 9 ( 2 ) ( 2 ) ( 2 ) 10 11 12 ( ) ( ) 13 14 ( ) m PR y m PR y PR y m m y m m yPR y m m y m m y m y m y m y m y m m m y m m m f y Ae A e A e A e A e A e A e A e A e A e A e A e A e A e                                                1 2 1 2 1 1 1 2 2 1 2 2 ( ) 15 ( ) ( ) ( ) 16 17 18 ( ) ( ) 19 20 y m m y m m y m m y m m y m m y m m y A e A e A e A e A e A e                     1 2 1 1 1 2 2 1 2 2 1 2 1 2 1 2 1 1 2 2 1 2 ( ) ( ) ( ) ( ) 1 2 3 4 ( 2 ) ( 2 ) ( 2 ) ( 2 ) 5 6 7 8 ( 2 ) ( 2 ) ( 2 ) ( 2 ) 9 10 11 12 ( ) ( ) ( ) 13 14 15 G= m PR m PR PR PR m m m m m m m m m m m m m m m m m m m m Ae A e A e A e A e A e A e A e A e A e A e A e A e A e A e A                                                      1 2 1 1 1 2 2 1 2 2 ( ) ( ) ( ) 16 17 18 ( ) ( ) 19 20 m m m m m m m m m m e A e A e A e A e               2 4)( 2222 1    RPPR a ; 2 4)( 2222 2    RPPR a 2 1 2 1 21 22 1 )()(         PRmPRPRm ccRP A ; 2 2 2 2 22 22 2 )()(         PRmPRPRm ccRP A ; 22 23 22 3 )()(      PRPRPR ccRP A ; 2 2 4 2 4 2 2 ( ) ( ) P R c c A PR PR PR              ;
  • 7. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 91 1 2 1 1 1 5 2 1 1 1 1 2 2 1 1 1 1 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m m m PR m m              ; 1 2 2 1 2 6 2 2 5 2 1 2 2 1 2 1 2 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m m m PR m m              ; 1 2 1 2 1 7 2 1 2 1 2 2 2 2 1 2 1 ( ( ) 2 1 2 ( ))( ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m m m PR m m              1 2 2 2 2 8 2 2 6 2 2 2 2 2 2 2 2 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m m m PR m m              1 2 3 11 9 2 1 3 1 2 2 1 1 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m Pc mEPRm A e e m PR B m m PR m                1 2 3 22 10 2 2 7 2 2 2 2 2 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m Pc mEPRm A e e m PR B m m PR m                1 2 1 4 1 11 2 1 4 1 2 2 1 1 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m PR m                  1 2 2 4 2 12 2 2 8 2 2 2 2 2 ( ( ) 2 1 2 ( ))( ) ( 2 ) ( 2 ) m m EPRm Pc m A e e m PR B m m PR m                  1 2 1 1 2 13 1 5 2 12 1 2 2 1 1 1 2 2 1 2 1 1 2 1 2 ( ( ) ( ) ( ) ( )) 1 ( ) ( ) ( ) m m Pc m mEPR A m B m m e e m m PR m B m m m m m PR m m m                   1 2 2 1 2 14 1 6 2 22 1 2 2 2 1 2 2 2 1 2 2 1 2 2 2 ( ( ) ( ) ( ) ( )) 1 ( ) ( ) ( ) m m Pc m mEPR A m B m m e e m m PR m B m m m m m PR m m m                   1 2 3 1 2 15 1 7 22 1 2 2 3 1 2 2 1 2 1 2 2 ( ( ) ( ) ( ) ( )) 1 ( ) ( ) ( ) m m Pc m mEPR A m B m e e m m PR m B m m m PR m m                      1 2 4 1 2 16 1 8 22 1 2 2 4 1 2 2 1 2 1 2 2 ( ( ) ( ) ( ) ( )) 1 ( ) ( ) ( ) m m Pc m mEPR A m B m e e m m PR m B m m m PR m m                      1 2 1 1 5 17 2 2 1 1 1 1 2 1 ( ) ( ) ( )m m EPm m D A e e m m PR m m           1 2 1 2 6 18 2 2 1 2 1 2 2 1 ( ) ( ) ( )m m EPm m D A e e m m PR m m           1 2 2 1 5 19 2 2 2 1 2 1 2 1 ( ) ( ) ( )m m EPm m D A e e m m PR m m           1 2 2 2 6 20 2 2 2 2 2 2 2 1 ( ) ( ) ( )m m EPm m D A e e m m PR m m          
  • 8. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 92 3. RESULTS AND DISCUSSION Knowing velocity and temperature fields, the important characteristic parameters namely, skin-friction components x and z along main flow and transverse direction, non- dimensional rate of heat transfer (Nusselt number) at both the plates can be calculated. 1 2 1 2 1 2 1 5 2 6 1 1 1 1 2 2 1 3 1 4 2 1 5 2 2 6 2 7 2 8 [ {( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) }]cos x m m m m m m m D m D e e R m m B m m B e e m B m B m m B m m B m B m B z                                    (47) 2 21 1 1 2 2 2 2 3 4 ( ) [ ]sin z z d dw c m c m v dy c c z                   (48) 3.1 Nusselts Number at the Stationary Plate: * * * 0 2 1 ( )y c T Nu T T y       1 2 2 1 2 1 1 2 2 2 1 2 2 2 1 2 1 2 1 2 1 2 Nu=-[ ( ) ( ( ) 2 2 2 ( ) ( ) ( ) {( ) ( ) (0)}cos ] m m a a a a a a m mEP PR c e e m PR m PR m m m m PR G e F a G e F a a a f z e e e e                         (49) 3.2 Nusselt Number at the Moving Plate * * 2 1 ( ) * y c c T Nu T T y       [ 1 1 2 2 1 2 2 1 1 2 2 1 1 2 22 ( ) 1 2 2 1 2 ( )2 2 1 2 2 1 2 1 2 Nu = - [ ( ) ( ( ) 2 2 2 ( ) ( ) ( ) {( ) ( ) (1)}cos ] m PR m m m m m a a a a a a a a m eEP PR c e e e m PR m e mm e m PR m m PR G e F a G e F a ae a e e e e e f z                            (50) The velocity components u, v and w in representative plane z=0 and z=1/2,are plotted against y in figures 1,2 and 3 respectively, for various values of Reynolds number R, Suction parameters  and permeability parameters K at constant magnetic field M. It is observed from these figures, that u and w both increase as R,  or K. Also , when R or K increase v increases. In figure4, the temperature distribution function  is plotted against y, in representative plane z=0 at constant magnetic field. From the fig, temperature increases as Eckert number E or Prandtl number P increases but the same decreases as  increases. The absolute values of the skin friction components x in plane z=0 and z in plane z=1/2are plotted against Reynolds number R at constant magnetic field M in figures 5 and 6 respectively, for various values of  and K. It is noted that both x and z increase as Reynolds number R increases or  increases. Further, permeability parameter K increases x increases whereas z decreases. Fig7.shows the variation of Nusselt number lNul, at the plate y=1, against R at constant magnetic field M. Here, lNul decreases significantly with R. Also when  increases lNul increases. The velocity components u, v and w in representative plane z=0 and z=1/2,are plotted against y in figures 8,9 and 10 respectively, for the fixed values of Reynolds number R, Suction parameters  and permeability parameters K at different magnetic fields. It is observed from these figures, that if Magnetic field parameter M increases, both u and v decreases, but w increases. As R increases, u, v and w increases. In figure11, the temperature distribution function  is plotted against y, in representative plane z=0 for different magnetic 0 2 0 0( ) ( ) cosx x d du du z u dy dy         
  • 9. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 93 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 M=0.2; R  K B 50 0.01 50 C 50 0.02 50 D 50 0.03 50 E 50 0.04 50 F 60 0.05 1000 G 300 0.01 50 H 400 0.01 50 I 1000 0.01 50 Fig1.velocity component u against y in plane z=0 for  I H G F E D C B u y 0.0 0.2 0.4 0.6 0.8 1.0 0.000 -0.005 -0.010 -0.015 -0.020 -0.025 -0.030 M=0.2; R  K B 50 0.01 50 C 50 0.02 50 D 50 0.03 50 E 50 0.04 50 F 300 0.01 50 G 300 0.01 50 H 400 0.01 50 I 1000 0.01 50 Fig.3.Velocity component w against y in plane z=1/2 for  I H G F E D C B w*10 y 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 M=0.2; Fig.4.Temperature  against y in plane z=0 for R=50,,K=10,and a=0.78 I H G F E D C B P E B 1.51 0.1 C 2.00 0.1 D 2.50 0.1 E 3.00 0.1 F 3.00 0.05 G 4.00 0.05 H 5.00 0.05 I 6.00 0.05  y 0 20 40 60 80 100 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Fig.5.Skin-friction coeffecient x against Reynolds- number R in plane z=0 for =0.1 M=0.2; G F E D C B  K B 0.05 1 C 0.05 5 D 0.05 100 E 0.02 100 F 0.03 100 G 0.04 100 x R 0.0 0.2 0.4 0.6 0.8 1.0 -0.210 -0.208 -0.206 -0.204 -0.202 -0.200 Fig2.Velocity component v against y in plane z=0 for , D C B M=0.2; R K B 50 10 C 100 50 D 500 100 v y fields. As y and M increases  also increases for fixed Eckert number E, Prandtl number P, Reynolds number R, Suction parameters  and permeability parameters K. The absolute values of the skin friction components x in plane z=0 and z in plane z=1/2 are plotted against Reynolds number R in figures 12 and 13 respectively, for fixed values of  and K at different magnetic fields. It is noted that x increases and z decreases as Reynolds number R increases, while x and z decreases, as M increases for fixed  , K. Figure14.shows the variation of Nusselt number |Nu|, at the plate y=1, against R. Here, |Nu| increases significantly with R. Also, |Nu| increases as M increases.
  • 10. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 94 0 20 40 60 80 100 -0.005 -0.010 -0.015 -0.020 -0.025 -0.030 -0.035 -0.040 -0.045 F E G D C BM=0.2; K B 0.05 1 C 0.05 6 D 0.05 100 E 0.02 100 F 0.03 100 G 0.04 100 Fig.6.Skin-friction coeffecient z against Reynolds- number R in plane z=1/2 for =0.1 z R 0 20 40 60 80 100 -0.35 -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 Sl.No.  K P E I 0.02 10 0.44 0.01 II 0.04 10 0.44 0.01 III 0.01 50 0.71 0.01 IV 0.02 50 0.71 0.01 V 0.05 10 0.78 0.05 VI 0.05 100 0.78 0.05 M=0.2; Fig.7.Nusselt number |Nu| against Reynolds- number R inplane z=0 for =0.1 VI V IV III II I |Nu| R 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 M=0 M=0.4 M=0.2 M=0.0 M=0.2 M=0.4 Fig.8.Velocity component u against y in plane z=0 for =0.1,R=50,=0.01,k=50 u y 0.0 0.2 0.4 0.6 0.8 1.0 -0.210 -0.208 -0.206 -0.204 -0.202 -0.200 M=0.0 M=0.2 M=0.4 Fig.9.velocity component v against y in plane z=0 for =0.2,=0.05,R=500,K=100 M=0.2 M=0.4 M=0 v y 0.0 0.2 0.4 0.6 0.8 1.0 0.000 -0.001 -0.002 -0.003 -0.004 -0.005 M=0.0 M=0.2 M=0.4 M=0 M=0.4 M=0.2 Fig.10.Velocity component w against y in plae z=1/2 for =0.1,R=50,=0.02,K=50 w*10 y 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Fig.11.Temperature function against y in plane z=0 R=50,=0.05,K=10,,a=0.78, P=1.51,E=0.1 M=0.0 M=0.2 M=0.4 M=0.4 M=0.2 M=0  y
  • 11. IJRET: International Journal of Research in Engineering and Technology eISSN: 2319-1163 | pISSN: 2321-7308 __________________________________________________________________________________________ Volume: 03 Special Issue: 03 | May-2014 | NCRIET-2014, Available @ http://www.ijret.org 95 0 20 40 60 80 100 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 M=0.0 M=0.2 M=0.4 Fig.12.Skin-friction coefficient x against Reynolds number R in plane z=0 for =0.1,,K=1 M=0.4 M=0.2 M=0 x R 0 20 40 60 80 100 -0.054 -0.052 -0.050 -0.048 -0.046 -0.044 -0.042 -0.040 -0.038 -0.036 -0.034 -0.032 -0.030 -0.028 -0.026 -0.024 -0.022 -0.020 -0.018 -0.016 M=0.4 M=0.2 M=0 Fig.13.Skin-friction coefficient z against Reynolds number in plane z=1/2 for ,=0.05,K=100 M=0.0 M=0.2 M=0.4 z R 0 20 40 60 80 100 -0.38 -0.37 -0.36 -0.35 -0.34 -0.33 -0.32 -0.31 M=0.0 M=0.2 M=0.4 M=0.0 M=0.4 M=0.2 Fig.14.Nusselt number |Nu|against Reynolds number R in plane z=0 for ,, K=10,P=0.44,E=0.01,y=1,a=0.78 |Nu| R REFERENCES [1]. A. A. Raptis and H. S. Takhar, 1986, Combined mass transfer and forced flow through a porous medium, Int. Comm. Heat and Mass Transfer, 13, pp. 599-603. [2]. A. A. Raptis, N. G. Kafousias and C. V. Massalas, 1982, Free convection and mass transfer flow through a porous medium bounded by an infinite vertical porous plate with constant heat flux, ZAMM, 62, pp. 489-491. [3]. A. Raptis and G. Tzivanidis, 1983, Magnetohydrodynamic free convective effect for an incompressible viscous fluid past an infinite limiting surface, Astro Physics and Space Science, 94(2), pp. 311-317. [4]. A. Raptis, C. Perdikis and G. Tzivanidis, 1976, Free convection flow through a porous medium bounded by a vertical surface, Journal of Physics D:Applied Physics, 14(7)L99. [5]. A. Raptis, G.Tzivanidis and N. G. Kafousias, 1981, Free convection and mass transfer flow through a porous medium bounded by an infinite vertical limiting surface with constant suction, Letters in Heat and Mass Transfer, 8, pp. 417-424. [6]. K. Gersten and J. F. Gross, 1974, Three dimensional flow and heat transfer, ZAMP, 25, pp. 399-408. [7]. S. S. Tak and M. K. Vyas, 2006, Analysis of three dimensional couette flow and heat transfer in porous medium between two permeable plates with sinusoidal temperature, Ultra Science, 18(3)M, pp. 489-500. [8]. V. M. Soundalgekar and J. P. Bhat, 1971, Oscillatory MHD channel flow and heat transfer, Ind. J. Pure. Appl. Math., 15, pp. 819-828. [9]. Lalitha Jayaraman and G. Ramanaiah, 1984, Second-order fluid-transient MHD couette flow with constant stress at upper plate, Indian Journal of Pure and Applied Mathematics, 15(8), pp. 927-934. [10]. Raptis, A.A., Perdikis, C.P., 1985 Oscillatory flow through a porous medium by the presence of free convective flow, Int. J. Engng. Sci., pp. 23, 51-55. [11]. A. A. Raptis and C. P. Pfrdikis, 1988, Combined free and forced convection flow through a porous medium, International Journal of Energy Research, 12(3), pp. 557-560. [12]. A. A. Raptis and C. Perdikis, 1987, Mass transfer and free convection flow through a porous medium, Energy Research, 11, pp. 423-428. [13]. A. A. Raptis, 1983, Unsteady free convective flow through a porous medium, International Journal of Engineering Science, 21(4), pp. 345-348. [14]. Rama Bhargava and Meena Rani, 1984, MHD flow and heat transfer in a channel with porous walls of different permeability(eng), Indian Journal of Pure and Applied Mathematics, 15 (4), pp. 397-408.