Chapter 2
Discrete-Time Signals and Systems
1. (i)
x(n) =

3n n  0
0.7n n ≥ 0
⇒ X(z) =
−1
X
n=−∞
3n
z−n
+
∞
X
n=0
0.7n
z−n
=
∞
X
n=1
(3−1
z)n
+
∞
X
n=0
(0.7z−1
)n
=
z
3 − z
+
z
z − 0.7
And region of convergence is
0.7  |z|  3
(ii)
x(n) =



2n n  0
0.7n 0 ≤ n  5
0.5n n ≥ 5
and thus
X(z) =
∞
X
n=−∞
x(n)z−n
=
−1
X
n=−∞
2n
z−n
+
4
X
n=0
0.7n
z−n
+
∞
X
n=5
0.5n
z−n
=
∞
X
n=1
(2−1
z)n
+
4
X
n=0
(0.7z−1
)n
+
∞
X
n=5
(0.5z−1
)n
=
z
2 − z
+
1 − (0.7z−1)5
1 − 0.7z−1
+
(0.5z−1)5
1 − 0.5z−1
for
0.5  |z|  2
3
s
m
t
b
9
8
@
g
m
a
i
l
.
c
o
m
You can access complete document on following URL. Contact me if site not loaded
https://unihelp.xyz/
Contact me in order to access the whole complete document - Email: smtb98@gmail.com
WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
4 Contents Chap. 2
2. By method of partial fraction,
H(z) =
1
(1 − 0.5z−1)(1 − 2z−1)
=
A
1 − 0.5z−1
+
B
1 − 2z−1
,
where A = −1
3 and B = 4
3.
(i) When the region of convergence is I, both terms on the right hand side are z-transform of
a left-sided sequence. We thus get
A
1 − 0.5z−1
= −A
−1
X
n=−∞
0.5n
z−n
,
B
1 − 2z−1
= −B
−1
X
n=−∞
2n
z−n
and
h(n) =

0 n ≥ 0
1
3 × 0.5n − 4
3 × 2n n  0.
(ii) When the region of convergence is II, the first corresponds to a right-sided sequence and
the second term to a left-sided sequence. We thus get
A
1 − 0.5z−1
= A
∞
X
n=0
0.5n
z−n
,
B
1 − 2z−1
=
−B × 0.5z
1 − 0.5z
= −B × 0.5z
∞
X
n=0
0.5n
zn
= −B
∞
X
n=1
0.5n
zn
= −B
−1
X
n=−∞
0.5−n
z−n
= −B
−1
X
n=−∞
2n
z−n
and
h(n) =

−1
3 × 0.5n n ≥ 0
4
3 × 2n n  0.
(iii) When the region of the convergence is III, both terms corresponds to a right sided sequence.
We thus get
A
1 − 0.5z−1
= A
∞
X
n=0
0.5n
z−n
,
B
1 − 2z−1
= B
∞
X
n=0
2n
z−n
and
h(n) =

−1
3 × 0.5n + 4
3 × 2n n ≥ 0
0 n  0.
Sec. 2.0 Contents 5
3. From (2.43),
φxx(k) = rxx(k) + |mx|2
.
Taking z-transform from both sides,
Φxx(z) =
∞
X
k=−∞
rxx(k)z−k
+ |mx|2
∞
X
k=−∞
z−k
.
We note that
∞
X
k=−∞
z−k
=
−1
X
k=−∞
z−k
+
∞
X
k=0
z−k
and for this to be convergent, |z|  1 for the first term on the right side, and |z|  1 for the
second term. Clearly there is no region of z for which
∞
P
k=−∞
z−k is convergent.
4. Applying (2.38),
φxx(k) = φvv(k) + E[sin(ω0n + θ) sin(ω0(n − k) + θ)]
= σ2
vδ(k) + E[
1
2
cos(ω0k) −
1
2
cos(ω0(2n − k) + 2θ)] = σ2
vδ(k) +
1
2
cos ω0k
where σ2
v = E[|v(n)|2] Hence,
Φxx(z) = σ2
v +
1
2
∞
X
k=−∞
cos ω0kz−k
and
1
2
∞
X
k=−∞
cos ω0kz−k
=
1
4
[
∞
X
k=−∞
ejω0k
z−k
+
∞
X
k=−∞
e−jω0k
z−k
]
In a similar way to the proof given in Problem 2.5, we can show that here also there is no region
of z-plane in which either of summation on the right side of the above equation may converge.
5. (i) From (2.43),
φxx(k) = rxx(k) + |mx|2
.
Taking z-transform from both sides,
Φxx(z) =
∞
X
k=−∞
rxx(k)z−k
+ |mx|2
∞
X
k=−∞
z−k
.
We note that
∞
X
k=−∞
z−k
=
−1
X
k=−∞
z−k
+
∞
X
k=0
z−k
and for this to be convergent, |z|  1 for the first term on the right side, and |z|  1 for
the second term. Clearly there is no region of z for which
∞
P
k=−∞
z−k is convergent.
6 Contents Chap. 2
(ii) Since x(n) is a stationary process with mx 6= 0, we can separate it into two parts
x(n) = mx + y(n)
In the above equation y(n) is a stationary process with my = 0. Taking a Fourier transform
from the above equation we have
X(ejω
) = mxδ(ω) + Y (ejω
)
y(ejω
) =
∞
X
n=−∞
y(n)e−jωn
In the vicinity of ω = 0, Y (ejω) becomes
lim
ω→0
Y (ejω
) =
∞
X
n=−∞
y(n)
Since my = 0, we can expect that the above equation would also be zero., and thus in
vicinity of ω = 0, we have
X(ejω
) = mxδ(ω)
(iii) As in previous part
x(n) = mx + y(n)
y(n) is a stationary process with my = 0. So we have
φxx(k) = m2
x + φyy(k)
Φxx(ejω
) = m2
xδ(ω) + Φyy(z)
Φyy(z) =
∞
X
k=−∞
φyy(k)e−jωk
In vicinity of ω = 0 we have
Φyy(z) =
∞
X
k=−∞
φyy(k)
=
∞
X
k=−∞
E[y(n)y∗
(n − k)]
= E

y(n)
∞
X
k=−∞
y∗
(n − k)
#
= 0
Accordingly,
Φxx(ejω
) = m2
xδ(ω)
Sec. 2.0 Contents 7
6. Solution to this problem follows the same line of derivations as Problem 2.5, with mx replaced
by Aejω0n.
7. Starting from (2.54), we arrived at (2.55) as follows
Φxx(z) =
∞
X
k=−∞
φxx(k)z−k
= (
∞
X
k=−∞
φ∗
xx(k)(z∗
)−k
)∗
= (
∞
X
k=−∞
φxx(−k)(
1
z∗
)k
)∗
(from (2.48))
= (
∞
X
k=−∞
φxx(k)(
1
z∗
)−k
)∗
(k → −k)
= (Φxx(
1
z∗
))∗
= Φ∗
xx(
1
z∗
)
Equation (2.56) is also proved in the same way.
8. (i) From (2.57)
Φvv(z) = H∗
(
1
z∗
)Φvv(z) = σ2
v × (
1
1 − az∗
)∗
= σ2
v ×
1
1 − a∗z
From (2.80),
Φuu(z) = H(z)H∗
(
1
z∗
)Φvv(z) =
σ2
v
(1 − az−1)(1 − a∗z)
(ii) For |a|  1,
1
1 − a∗z
=
∞
X
k=0
(a∗
)k
ak
=
0
X
k=−∞
(a∗
)−k
z−k
Since φvu(k) is the inverse z-transform of Φvu(z) and φvv(z) =
∞
P
k=−∞
φvu(k)z−k, it follows
that
φvu(k) =

0 k  0
σ2
v(a∗)−k, k ≤ 0
By method of partial fraction,
Φuu(z) =
σ2
v
(1 − a∗z)(1 − az−1) = −(σ2
v/a∗)z
(z−1/a∗)(z−a)
=
A
z − 1/a∗
+
B
z − a
8 Contents Chap. 2
Where
A =

−
σ2
v
a∗
z
z − a

z=1/a∗
= −
σ2
v
a∗
1
1 − |a|2
B =

−
σ2
v
a∗
z
z − 1/a∗

z=a
=
σ2
va
1 − |a|2
The first term on the right hand side corresponds to a left sided sequence,
A
z − 1/a∗
= −
Aa∗
1 − a∗z
=
σ2
v
1 − |a|2
1
1 − a∗z
=
σ2
v
1 − |a|2
∞
X
k=0
(a∗
)k
zk
=
σ2
v
1 − |a|2
0
X
k=−∞
(1/a∗
)k
z−k
and the second term to a right sided sequence
B
z − a
=
Bz−1
1 − az−1
= Bz−1
∞
X
k=0
ak
z−k
=
σ2
v
1 − |a|2
∞
X
k=1
ak−1
z−k
Using the above results, and since Φuu(z) =
∞
P
k=−∞
φuuz−k, we get
φuu(k) =
( σ2
v
1−|a|2 ak−1 k  0
σ2
v
1−|a|2 (a∗)−k k ≤ 0
(iii)
σ2
u = φuu(0) =
σ2
v
1 − |a|2
9. (i) When a 6= b,
Φvu(z) = H∗
(
1
z∗
)Φvv(z) =
σ2
v
(1 − a∗z)(1 − b∗z)
Φuu(z) = H(z)H∗
(
1
z∗
)Φvv(z) =
σ2
v
(1 − az−1)(1 − bz−1)(1 − a∗z)(1 − b∗z)
When a = b,
Φvu(z) = H∗
(
1
z∗
)Φvv(z) =
σ2
v
(1 − a∗z)2
Φuu(z) = H(z)H∗
(
1
z∗
)Φvv(z) =
σ2
v
(1 − az−1)2(1 − a∗z)2
Sec. 2.0 Contents 9
(ii) When a 6= b
Φvu(z) =
σ2
v
a∗ − b∗

a∗
1 − a∗z
−
b∗
1 − b∗z

Thus, we have
φvu(k) =
(
0 k  0
σ2
v
a∗−b∗

(a∗)−k+1 − (b∗)−k+1

k ≤ 0
Similarly,
Φuu(z) =
A
(z − a)
+
B
(z − b)
+
C
(z − 1/a∗)
+
D
(z − 1/b∗)
Where
A =

σ2
vz2
a∗b∗(z − b)(z − 1/a∗)(z − 1/b∗)

z=a
=
σ2
va2
(a − b)(1 − |a|2)(1 − ab∗)
B =

σ2
vz2
a∗b∗(z − a)(z − 1/a∗)(z − 1/b∗)

z=b
=
−σ2
va2
(a − b)(1 − |b|2)(1 − ba∗)
C =

σ2
vz2
a∗b∗(z − a)(z − b)(z − 1/b∗)

z=1/a∗
=
−σ2
v
(a∗ − b∗)(1 − |a|2)(1 − ba∗)
D =

σ2
vz2
a∗b∗(z − a)(z − b)(z − 1/a∗)

z=1/b∗
=
σ2
va2
(a∗ − b∗)(1 − |b|2)(1 − ab∗)
Hence,
Φuu(z) =
Az−1
(1 − az−1)
+
Bz−1
(1 − bz−1)
−
Ca∗
(1 − a∗z)
−
Da∗
(1 − a∗z)
=
∞
X
k=1
Aak−1
z−k
+
∞
X
k=1
Bak−1
z−k
−
0
X
k=−∞
C(a∗
)−k+1
z−k
−
0
X
k=−∞
D(b∗
)−k+1
z−k
and
φvu(k) =

Aak−1 + Bbk−1 k  0
−C(a∗)−k+1 − D(b∗)−k+1 k ≤ 0
When a = b,
φvu(k) =
1
2πj
I
C
Φvu(z)zk−1
dz =
1
2πj
I
C
σ2
vzk−1
(1 − a∗z)2
dz =
1
2πj
I
C
σ2
vzk−1
(a∗)2(z − 1/a∗)2
dz
Where C is a contour in |a|  |z|  |a|−1. For k ≥ 1, there is no poles inside C implies
that φvu(k) = 0. For k  1, substituting z = 1/p and noting that p = a∗ is the only pole
in C,
φvu(k) =
1
2πj
I
C
Φvu(1/p)p−k−1
dp =
1
2πj
I
C
σ2
vp−k+1
(p − a∗)2
dp
10 Contents Chap. 2
= Residue

σ2
vp−k+1
(p − a∗)2

p=a∗
=

d
dp
σ2
vp−k+1

p
= a∗
= σ2
v(1 − k)(a∗
)−k
Hence,
φvu(k) =

0 k  0
σ2
v(1 − k)(a∗)−k k ≤ 0
Similarly, applying the residue method to find inverse z-transform of Φuu(z),
φuu(k) =
( σ2
v
(1−|a|2)3 [(1 − |a|2)(1 + k) + 2|a|2]ak k ≥ −1
σ2
v
(1−|a|2)3 [(1 − |a|2)(1 − k) + 2|a|2](a∗)−k k  −1
(iii)
σ2
u = φuu(0)
10. (i) Using (2.75),
Φvu(z) = H∗
(1/z∗
)Φvv(z) =
N−1
X
n=0
h(n)(z∗
)n
!∗
σ2
v
σ2
v
N−1
X
n=0
h∗
(n)zn
= σ2
v
0
X
n=−(N−1)
h∗
(−n)z−n
Using (2.80),
Φuu(z)H(z)H∗
(1/z∗
)Φvv(z) = σ2
v
N−1
X
n=0
h(n)z−n
N−1
X
m=0
h∗
(m)zm
σ2
v
N−1
X
n=0
N−1
X
m=0
h(n)h∗
(m)z−(n−m)
With n − m = k, we obtain
Φuu(z) = σ2
v
N−1
X
k=−(N−1)
αh(k)z−k
,
where αh(k) =
min(N−1,N−1−k)
P
m=max(0,−k)
h(m + k)h∗(m).
(ii) From the result of Part (a), we immediately obtain
φvu(k) =

σ2
vh∗(−k) −(N − 1) ≤ k ≤ 0
0 otherwise
and
φuu(k) =

σ2
vαh(k) −(N − 1) ≤ k ≤ N − 1
0 otherwise
= σ2
vαh(k) (since αh(k) = 0 for k ≤ −N and k ≥ N)
Sec. 2.0 Contents 11
11. From (2.65),
E[|xN (ejω
)|2
] =
N
X
n=−N
N
X
m=−N
E[x(n)x∗
(m)]e−jω(n−m)
=
N
X
n=−N
N
X
m=−N
φxx(n − m)ejω(n−m)
Next, we note that k = n − m can take values in the range −2N to 2N and for any k = n − m,
there are 2N + 1 − |k| similar terms added together. Thus we obtain
E[|xN (ejω
)|2
] =
2N
X
k=−2N
(2N + 1 − |k|)φxx(k)e−jωk
Dividing both sides of the result by 2N + 1, gives (2.66).
12. From (2.75), φxy(z) = H∗(1/z∗)Φxx(z). Using (2.55) and (2.56), we get
Φ∗
yx(1/z∗
) = H∗
(1/z∗
)Φxx(z)
Hence, Φyx(z) = H(z)Φ∗
xx(1/z∗) = H(z)Φxx(z) From (2.90), Φdy(z) = H∗(1/z∗)Φdx(z). Again
using (2.56), we get
Φ∗
yd(1/z∗
) = H∗
(1/z∗
)Φ∗
xd(1/z∗
)
Hence, Φyd(z) = H(z)Φxd(z).
13. Using ? to denote convolution,
(i) φyx(n) = h(n) ? φxx(n),
(ii) φxy(n) = h∗(−n) ? φxx(n),
(iii) φyd(n) = h(n) ? φxd(n),
(iv) φdy(n) = h∗(−n) ? φdx(n)
14. Let y(n) = y1(n) + y2(n), where y1(n) and y2(n) are the outputs of H(z) and G(z), respectively.
(i) Since u(n) and v(n) are uncorrelated,
φuy(n) = φuy1(n) + φuy2(n) = φuy1(n)
Hence,
Φuy(z) = Φuy1(z) = H∗
(1/z∗
)Φuu(z) = σ2
uH∗
(1/z∗
).
(ii) Similar to Part (b), Φvy(z) = σ2
vG∗(1/z∗).
(iii) Noting that y1(n) and y2(n) are originating from uncorrelated source, u(n) and v(n),
respectively, we obtain Φyy(z) = Φy1y1(z)+Φy2y2(z) = σ2
uH(z)H∗(1/z∗)+σ2
vG(z)G∗(1/z∗).
12 Contents Chap. 2
15. (i) Using Φxx(z) = H(z)H∗(1/z∗)Φvv(z), with H(z) = 1
1−0.5z−1 and Φvv(z) = 1, we obtain
Φxx(z) =
1
1 − 0.5z−1

1
1 − 0.5(1/z∗)−1
∗
=
1
(1 − 0.5z−1)(1 − 0.5z)
(ii) Since Φyy(z) = G(z)G∗(1/z∗)Φzz(z), where G(z) = 1 − 2z−1, we obtain
Φyy(z) =
1 − 2z−1
1 − 0.5z−1
×

1 − 2(1/z∗)−1
1 − 0.5(1/z∗)−1
∗
Φvv(z) =
1 − 2z−1
1 − 0.5z−1
×
1 − 2z
1 − 0.5z
=
1 − 2(z + z−1) + 4
1 − 0.5(z + z−1) + 1/4
= 4
(iii) Using Φvy(z) = H∗(1/z∗)G∗(1/z∗)Φvv(z),
Φvy(z) =

1 − 2(1/z∗)−1
1 − 0.5(1/z∗)−1
∗
Φvv(z) =
1 − 2z
1 − 0.5z
.
16. (i) Since x(n) =
P
k
h(k)v(n − k) and y(n) =
P
k
g(k)v(n − k),
φxy(m) = E[x(n)y∗
(n − m)] = E[
X
l
X
k
h(k)g∗
(l)v(n − k)v∗
(n − m − l)]
=
X
l
X
k
h(k)g∗
(l)E[v(n − k)v∗
(n − m − l)] =
X
l
X
k
h(k)g∗
(l)δ(−k + l + m).
But δ(−k + l + m) = 1 for k = l + m and zero elsewhere. Using this in the above result,
we obtain φxy(m) =
P
l
h(l + m)g∗(l).
(ii) Since Φxy(z) is the z-transform of φxy(m),
Φxy(z) =
X
m
φxy(m)z−m
=
X
m
X
l
h(l + m)g∗
(l)z−m
X
m
X
l
h(l + m)z−(m+l)
g∗
(l)zl
=
X
l
g∗
(l)zl
X
m
h(l + m)z−(m+l)
= G∗
(1/z∗
)H(z) = H(z)G∗
(1/z∗
).
17. (i) Since u(n) = x(n) + y(n), we have
φuu(k) = E[(x(n) + y(n))(x∗
(n + k) + y∗
(n + k))]
= E[x(n)x∗
(n + k)] + E[y(n)y∗
(n + k)] + E[x(n)y∗
(n + k)] + E[y(n)x∗
(n + k)]
= φxx(k) + φyy(k) + φxy(k) + φyx(k)
Hence,
Φuu(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φyx(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φ∗
xy(1/z∗
)
Sec. 2.0 Contents 13
(ii) Since u(n) is the output of a system with input v(n) and transfer function H(z) + G(z),
Φuu(z) = (H(z) + G(z))(H∗
(1/z∗
) + G∗
(1/z∗
))Φvv(z)
= H(z)H∗
(1/z∗
)Φvv(z)+G(z)G∗
(1/z∗
)Φvv(z)+H(z)G∗
(1/z∗
)Φvv(z)+H∗
(1/z∗
)G(z)Φvv(z)
Since v(n) in a zero-mean unit-variance white noise process,
Φvv(z) = 1
and we have
Φuu(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φyx(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φ∗
xy(1/z∗
)
14 Contents Chap. 2

More Related Content

PDF
Antwoorden fourier and laplace transforms, manual solutions
PPT
Z Transform And Inverse Z Transform - Signal And Systems
PPTX
Chapter 6 frequency domain transformation.pptx
PDF
signalsandsystemsztransformEEEmaterial.pdf
PDF
Signal3
PDF
evans_pde_solutions_ch2_ch3.pdf
PDF
Manual solucoes ex_extras
PDF
Manual solucoes ex_extras
Antwoorden fourier and laplace transforms, manual solutions
Z Transform And Inverse Z Transform - Signal And Systems
Chapter 6 frequency domain transformation.pptx
signalsandsystemsztransformEEEmaterial.pdf
Signal3
evans_pde_solutions_ch2_ch3.pdf
Manual solucoes ex_extras
Manual solucoes ex_extras

Similar to Answers to Problems for Adaptive Filters (2nd Edition) - Behrouz Farhang-Boroujeny (20)

PDF
Manual solucoes ex_extras
PDF
ztransforms_Upload a presentation_Upload a presentation to downloadto downloa...
PPT
Z transfrm ppt
PDF
Complex analysis and differential equation
PDF
fouriertransform.pdf
PDF
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
PDF
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
PDF
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
PDF
A sharp nonlinear Hausdorff-Young inequality for small potentials
PDF
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
PDF
Scattering theory analogues of several classical estimates in Fourier analysis
PDF
Calculo integral - Larson
PDF
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
PDF
Signals and transforms in linear systems analysis
PDF
PPT
Z transform and Properties of Z Transform
PPT
lec z-transform.ppt
PDF
Solving the energy problem of helium final report
PDF
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
PDF
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Manual solucoes ex_extras
ztransforms_Upload a presentation_Upload a presentation to downloadto downloa...
Z transfrm ppt
Complex analysis and differential equation
fouriertransform.pdf
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
Further Results On The Basis Of Cauchy’s Proper Bound for the Zeros of Entire...
A sharp nonlinear Hausdorff-Young inequality for small potentials
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
Scattering theory analogues of several classical estimates in Fourier analysis
Calculo integral - Larson
On the-approximate-solution-of-a-nonlinear-singular-integral-equation
Signals and transforms in linear systems analysis
Z transform and Properties of Z Transform
lec z-transform.ppt
Solving the energy problem of helium final report
Wavelet Tour of Signal Processing 3rd Edition Mallat Solutions Manual
Elementary Linear Algebra 5th Edition Larson Solutions Manual
Ad

More from nazrinajeeb3 (13)

PDF
Question Bank for Principles of Economics, 6th Australia Edition by Mankiw
PDF
Solutions for Exercises from Power Electronics, 2nd Edition by Mohan
PDF
Question Bank – Karp’s Cell and Molecular Biology (9th Edition) by Karp and I...
PDF
Answers to Problems – Strategic Management (10th Edition) by Dess and McNamara
PDF
Solutions for Exercises – Renewable Energy Resources (4th Edition) by John Tw...
PDF
Solutions for Problems - The Mechanical Universe: Mechanics and Heat by Fraut...
PDF
Question Bank - Organic Chemistry, 9th Edition by Wade & Simek
PDF
Solutions for Exercises - Beyond the Mechanical Universe: From Electricity to...
PDF
Solutions for Problems in Dynamics (15th Edition) by Russell Hibbeler
PDF
Solutions for Ethics Across the Professions, 2nd Edition - Clancy Martin, Way...
PDF
Solutions for Exercises in Electronic Commerce 2018 - Efraim Turban, Jon Outland
PDF
Fundamentals of Heat and Mass Transfer: Exercise Solutions, 6th Edition - The...
PDF
Question Bank for Modern Physics - Felder (New Edition)
Question Bank for Principles of Economics, 6th Australia Edition by Mankiw
Solutions for Exercises from Power Electronics, 2nd Edition by Mohan
Question Bank – Karp’s Cell and Molecular Biology (9th Edition) by Karp and I...
Answers to Problems – Strategic Management (10th Edition) by Dess and McNamara
Solutions for Exercises – Renewable Energy Resources (4th Edition) by John Tw...
Solutions for Problems - The Mechanical Universe: Mechanics and Heat by Fraut...
Question Bank - Organic Chemistry, 9th Edition by Wade & Simek
Solutions for Exercises - Beyond the Mechanical Universe: From Electricity to...
Solutions for Problems in Dynamics (15th Edition) by Russell Hibbeler
Solutions for Ethics Across the Professions, 2nd Edition - Clancy Martin, Way...
Solutions for Exercises in Electronic Commerce 2018 - Efraim Turban, Jon Outland
Fundamentals of Heat and Mass Transfer: Exercise Solutions, 6th Edition - The...
Question Bank for Modern Physics - Felder (New Edition)
Ad

Recently uploaded (20)

PDF
Race Reva University – Shaping Future Leaders in Artificial Intelligence
PDF
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
PDF
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PPTX
Core Concepts of Personalized Learning and Virtual Learning Environments
PDF
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
PDF
HVAC Specification 2024 according to central public works department
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
Climate and Adaptation MCQs class 7 from chatgpt
PPTX
Computer Architecture Input Output Memory.pptx
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PDF
Literature_Review_methods_ BRACU_MKT426 course material
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
PPTX
Introduction to pro and eukaryotes and differences.pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
Race Reva University – Shaping Future Leaders in Artificial Intelligence
LIFE & LIVING TRILOGY- PART (1) WHO ARE WE.pdf
LIFE & LIVING TRILOGY - PART (3) REALITY & MYSTERY.pdf
AI-driven educational solutions for real-life interventions in the Philippine...
Core Concepts of Personalized Learning and Virtual Learning Environments
CISA (Certified Information Systems Auditor) Domain-Wise Summary.pdf
HVAC Specification 2024 according to central public works department
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
B.Sc. DS Unit 2 Software Engineering.pptx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
Climate and Adaptation MCQs class 7 from chatgpt
Computer Architecture Input Output Memory.pptx
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Literature_Review_methods_ BRACU_MKT426 course material
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
LIFE & LIVING TRILOGY - PART - (2) THE PURPOSE OF LIFE.pdf
Introduction to pro and eukaryotes and differences.pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
Cambridge-Practice-Tests-for-IELTS-12.docx

Answers to Problems for Adaptive Filters (2nd Edition) - Behrouz Farhang-Boroujeny

  • 1. Chapter 2 Discrete-Time Signals and Systems 1. (i) x(n) = 3n n 0 0.7n n ≥ 0 ⇒ X(z) = −1 X n=−∞ 3n z−n + ∞ X n=0 0.7n z−n = ∞ X n=1 (3−1 z)n + ∞ X n=0 (0.7z−1 )n = z 3 − z + z z − 0.7 And region of convergence is 0.7 |z| 3 (ii) x(n) =    2n n 0 0.7n 0 ≤ n 5 0.5n n ≥ 5 and thus X(z) = ∞ X n=−∞ x(n)z−n = −1 X n=−∞ 2n z−n + 4 X n=0 0.7n z−n + ∞ X n=5 0.5n z−n = ∞ X n=1 (2−1 z)n + 4 X n=0 (0.7z−1 )n + ∞ X n=5 (0.5z−1 )n = z 2 − z + 1 − (0.7z−1)5 1 − 0.7z−1 + (0.5z−1)5 1 − 0.5z−1 for 0.5 |z| 2 3 s m t b 9 8 @ g m a i l . c o m You can access complete document on following URL. Contact me if site not loaded https://unihelp.xyz/ Contact me in order to access the whole complete document - Email: smtb98@gmail.com WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
  • 2. 4 Contents Chap. 2 2. By method of partial fraction, H(z) = 1 (1 − 0.5z−1)(1 − 2z−1) = A 1 − 0.5z−1 + B 1 − 2z−1 , where A = −1 3 and B = 4 3. (i) When the region of convergence is I, both terms on the right hand side are z-transform of a left-sided sequence. We thus get A 1 − 0.5z−1 = −A −1 X n=−∞ 0.5n z−n , B 1 − 2z−1 = −B −1 X n=−∞ 2n z−n and h(n) = 0 n ≥ 0 1 3 × 0.5n − 4 3 × 2n n 0. (ii) When the region of convergence is II, the first corresponds to a right-sided sequence and the second term to a left-sided sequence. We thus get A 1 − 0.5z−1 = A ∞ X n=0 0.5n z−n , B 1 − 2z−1 = −B × 0.5z 1 − 0.5z = −B × 0.5z ∞ X n=0 0.5n zn = −B ∞ X n=1 0.5n zn = −B −1 X n=−∞ 0.5−n z−n = −B −1 X n=−∞ 2n z−n and h(n) = −1 3 × 0.5n n ≥ 0 4 3 × 2n n 0. (iii) When the region of the convergence is III, both terms corresponds to a right sided sequence. We thus get A 1 − 0.5z−1 = A ∞ X n=0 0.5n z−n , B 1 − 2z−1 = B ∞ X n=0 2n z−n and h(n) = −1 3 × 0.5n + 4 3 × 2n n ≥ 0 0 n 0.
  • 3. Sec. 2.0 Contents 5 3. From (2.43), φxx(k) = rxx(k) + |mx|2 . Taking z-transform from both sides, Φxx(z) = ∞ X k=−∞ rxx(k)z−k + |mx|2 ∞ X k=−∞ z−k . We note that ∞ X k=−∞ z−k = −1 X k=−∞ z−k + ∞ X k=0 z−k and for this to be convergent, |z| 1 for the first term on the right side, and |z| 1 for the second term. Clearly there is no region of z for which ∞ P k=−∞ z−k is convergent. 4. Applying (2.38), φxx(k) = φvv(k) + E[sin(ω0n + θ) sin(ω0(n − k) + θ)] = σ2 vδ(k) + E[ 1 2 cos(ω0k) − 1 2 cos(ω0(2n − k) + 2θ)] = σ2 vδ(k) + 1 2 cos ω0k where σ2 v = E[|v(n)|2] Hence, Φxx(z) = σ2 v + 1 2 ∞ X k=−∞ cos ω0kz−k and 1 2 ∞ X k=−∞ cos ω0kz−k = 1 4 [ ∞ X k=−∞ ejω0k z−k + ∞ X k=−∞ e−jω0k z−k ] In a similar way to the proof given in Problem 2.5, we can show that here also there is no region of z-plane in which either of summation on the right side of the above equation may converge. 5. (i) From (2.43), φxx(k) = rxx(k) + |mx|2 . Taking z-transform from both sides, Φxx(z) = ∞ X k=−∞ rxx(k)z−k + |mx|2 ∞ X k=−∞ z−k . We note that ∞ X k=−∞ z−k = −1 X k=−∞ z−k + ∞ X k=0 z−k and for this to be convergent, |z| 1 for the first term on the right side, and |z| 1 for the second term. Clearly there is no region of z for which ∞ P k=−∞ z−k is convergent.
  • 4. 6 Contents Chap. 2 (ii) Since x(n) is a stationary process with mx 6= 0, we can separate it into two parts x(n) = mx + y(n) In the above equation y(n) is a stationary process with my = 0. Taking a Fourier transform from the above equation we have X(ejω ) = mxδ(ω) + Y (ejω ) y(ejω ) = ∞ X n=−∞ y(n)e−jωn In the vicinity of ω = 0, Y (ejω) becomes lim ω→0 Y (ejω ) = ∞ X n=−∞ y(n) Since my = 0, we can expect that the above equation would also be zero., and thus in vicinity of ω = 0, we have X(ejω ) = mxδ(ω) (iii) As in previous part x(n) = mx + y(n) y(n) is a stationary process with my = 0. So we have φxx(k) = m2 x + φyy(k) Φxx(ejω ) = m2 xδ(ω) + Φyy(z) Φyy(z) = ∞ X k=−∞ φyy(k)e−jωk In vicinity of ω = 0 we have Φyy(z) = ∞ X k=−∞ φyy(k) = ∞ X k=−∞ E[y(n)y∗ (n − k)] = E y(n) ∞ X k=−∞ y∗ (n − k) # = 0 Accordingly, Φxx(ejω ) = m2 xδ(ω)
  • 5. Sec. 2.0 Contents 7 6. Solution to this problem follows the same line of derivations as Problem 2.5, with mx replaced by Aejω0n. 7. Starting from (2.54), we arrived at (2.55) as follows Φxx(z) = ∞ X k=−∞ φxx(k)z−k = ( ∞ X k=−∞ φ∗ xx(k)(z∗ )−k )∗ = ( ∞ X k=−∞ φxx(−k)( 1 z∗ )k )∗ (from (2.48)) = ( ∞ X k=−∞ φxx(k)( 1 z∗ )−k )∗ (k → −k) = (Φxx( 1 z∗ ))∗ = Φ∗ xx( 1 z∗ ) Equation (2.56) is also proved in the same way. 8. (i) From (2.57) Φvv(z) = H∗ ( 1 z∗ )Φvv(z) = σ2 v × ( 1 1 − az∗ )∗ = σ2 v × 1 1 − a∗z From (2.80), Φuu(z) = H(z)H∗ ( 1 z∗ )Φvv(z) = σ2 v (1 − az−1)(1 − a∗z) (ii) For |a| 1, 1 1 − a∗z = ∞ X k=0 (a∗ )k ak = 0 X k=−∞ (a∗ )−k z−k Since φvu(k) is the inverse z-transform of Φvu(z) and φvv(z) = ∞ P k=−∞ φvu(k)z−k, it follows that φvu(k) = 0 k 0 σ2 v(a∗)−k, k ≤ 0 By method of partial fraction, Φuu(z) = σ2 v (1 − a∗z)(1 − az−1) = −(σ2 v/a∗)z (z−1/a∗)(z−a) = A z − 1/a∗ + B z − a
  • 6. 8 Contents Chap. 2 Where A = − σ2 v a∗ z z − a z=1/a∗ = − σ2 v a∗ 1 1 − |a|2 B = − σ2 v a∗ z z − 1/a∗ z=a = σ2 va 1 − |a|2 The first term on the right hand side corresponds to a left sided sequence, A z − 1/a∗ = − Aa∗ 1 − a∗z = σ2 v 1 − |a|2 1 1 − a∗z = σ2 v 1 − |a|2 ∞ X k=0 (a∗ )k zk = σ2 v 1 − |a|2 0 X k=−∞ (1/a∗ )k z−k and the second term to a right sided sequence B z − a = Bz−1 1 − az−1 = Bz−1 ∞ X k=0 ak z−k = σ2 v 1 − |a|2 ∞ X k=1 ak−1 z−k Using the above results, and since Φuu(z) = ∞ P k=−∞ φuuz−k, we get φuu(k) = ( σ2 v 1−|a|2 ak−1 k 0 σ2 v 1−|a|2 (a∗)−k k ≤ 0 (iii) σ2 u = φuu(0) = σ2 v 1 − |a|2 9. (i) When a 6= b, Φvu(z) = H∗ ( 1 z∗ )Φvv(z) = σ2 v (1 − a∗z)(1 − b∗z) Φuu(z) = H(z)H∗ ( 1 z∗ )Φvv(z) = σ2 v (1 − az−1)(1 − bz−1)(1 − a∗z)(1 − b∗z) When a = b, Φvu(z) = H∗ ( 1 z∗ )Φvv(z) = σ2 v (1 − a∗z)2 Φuu(z) = H(z)H∗ ( 1 z∗ )Φvv(z) = σ2 v (1 − az−1)2(1 − a∗z)2
  • 7. Sec. 2.0 Contents 9 (ii) When a 6= b Φvu(z) = σ2 v a∗ − b∗ a∗ 1 − a∗z − b∗ 1 − b∗z Thus, we have φvu(k) = ( 0 k 0 σ2 v a∗−b∗ (a∗)−k+1 − (b∗)−k+1 k ≤ 0 Similarly, Φuu(z) = A (z − a) + B (z − b) + C (z − 1/a∗) + D (z − 1/b∗) Where A = σ2 vz2 a∗b∗(z − b)(z − 1/a∗)(z − 1/b∗) z=a = σ2 va2 (a − b)(1 − |a|2)(1 − ab∗) B = σ2 vz2 a∗b∗(z − a)(z − 1/a∗)(z − 1/b∗) z=b = −σ2 va2 (a − b)(1 − |b|2)(1 − ba∗) C = σ2 vz2 a∗b∗(z − a)(z − b)(z − 1/b∗) z=1/a∗ = −σ2 v (a∗ − b∗)(1 − |a|2)(1 − ba∗) D = σ2 vz2 a∗b∗(z − a)(z − b)(z − 1/a∗) z=1/b∗ = σ2 va2 (a∗ − b∗)(1 − |b|2)(1 − ab∗) Hence, Φuu(z) = Az−1 (1 − az−1) + Bz−1 (1 − bz−1) − Ca∗ (1 − a∗z) − Da∗ (1 − a∗z) = ∞ X k=1 Aak−1 z−k + ∞ X k=1 Bak−1 z−k − 0 X k=−∞ C(a∗ )−k+1 z−k − 0 X k=−∞ D(b∗ )−k+1 z−k and φvu(k) = Aak−1 + Bbk−1 k 0 −C(a∗)−k+1 − D(b∗)−k+1 k ≤ 0 When a = b, φvu(k) = 1 2πj I C Φvu(z)zk−1 dz = 1 2πj I C σ2 vzk−1 (1 − a∗z)2 dz = 1 2πj I C σ2 vzk−1 (a∗)2(z − 1/a∗)2 dz Where C is a contour in |a| |z| |a|−1. For k ≥ 1, there is no poles inside C implies that φvu(k) = 0. For k 1, substituting z = 1/p and noting that p = a∗ is the only pole in C, φvu(k) = 1 2πj I C Φvu(1/p)p−k−1 dp = 1 2πj I C σ2 vp−k+1 (p − a∗)2 dp
  • 8. 10 Contents Chap. 2 = Residue σ2 vp−k+1 (p − a∗)2 p=a∗ = d dp σ2 vp−k+1 p = a∗ = σ2 v(1 − k)(a∗ )−k Hence, φvu(k) = 0 k 0 σ2 v(1 − k)(a∗)−k k ≤ 0 Similarly, applying the residue method to find inverse z-transform of Φuu(z), φuu(k) = ( σ2 v (1−|a|2)3 [(1 − |a|2)(1 + k) + 2|a|2]ak k ≥ −1 σ2 v (1−|a|2)3 [(1 − |a|2)(1 − k) + 2|a|2](a∗)−k k −1 (iii) σ2 u = φuu(0) 10. (i) Using (2.75), Φvu(z) = H∗ (1/z∗ )Φvv(z) = N−1 X n=0 h(n)(z∗ )n !∗ σ2 v σ2 v N−1 X n=0 h∗ (n)zn = σ2 v 0 X n=−(N−1) h∗ (−n)z−n Using (2.80), Φuu(z)H(z)H∗ (1/z∗ )Φvv(z) = σ2 v N−1 X n=0 h(n)z−n N−1 X m=0 h∗ (m)zm σ2 v N−1 X n=0 N−1 X m=0 h(n)h∗ (m)z−(n−m) With n − m = k, we obtain Φuu(z) = σ2 v N−1 X k=−(N−1) αh(k)z−k , where αh(k) = min(N−1,N−1−k) P m=max(0,−k) h(m + k)h∗(m). (ii) From the result of Part (a), we immediately obtain φvu(k) = σ2 vh∗(−k) −(N − 1) ≤ k ≤ 0 0 otherwise and φuu(k) = σ2 vαh(k) −(N − 1) ≤ k ≤ N − 1 0 otherwise = σ2 vαh(k) (since αh(k) = 0 for k ≤ −N and k ≥ N)
  • 9. Sec. 2.0 Contents 11 11. From (2.65), E[|xN (ejω )|2 ] = N X n=−N N X m=−N E[x(n)x∗ (m)]e−jω(n−m) = N X n=−N N X m=−N φxx(n − m)ejω(n−m) Next, we note that k = n − m can take values in the range −2N to 2N and for any k = n − m, there are 2N + 1 − |k| similar terms added together. Thus we obtain E[|xN (ejω )|2 ] = 2N X k=−2N (2N + 1 − |k|)φxx(k)e−jωk Dividing both sides of the result by 2N + 1, gives (2.66). 12. From (2.75), φxy(z) = H∗(1/z∗)Φxx(z). Using (2.55) and (2.56), we get Φ∗ yx(1/z∗ ) = H∗ (1/z∗ )Φxx(z) Hence, Φyx(z) = H(z)Φ∗ xx(1/z∗) = H(z)Φxx(z) From (2.90), Φdy(z) = H∗(1/z∗)Φdx(z). Again using (2.56), we get Φ∗ yd(1/z∗ ) = H∗ (1/z∗ )Φ∗ xd(1/z∗ ) Hence, Φyd(z) = H(z)Φxd(z). 13. Using ? to denote convolution, (i) φyx(n) = h(n) ? φxx(n), (ii) φxy(n) = h∗(−n) ? φxx(n), (iii) φyd(n) = h(n) ? φxd(n), (iv) φdy(n) = h∗(−n) ? φdx(n) 14. Let y(n) = y1(n) + y2(n), where y1(n) and y2(n) are the outputs of H(z) and G(z), respectively. (i) Since u(n) and v(n) are uncorrelated, φuy(n) = φuy1(n) + φuy2(n) = φuy1(n) Hence, Φuy(z) = Φuy1(z) = H∗ (1/z∗ )Φuu(z) = σ2 uH∗ (1/z∗ ). (ii) Similar to Part (b), Φvy(z) = σ2 vG∗(1/z∗). (iii) Noting that y1(n) and y2(n) are originating from uncorrelated source, u(n) and v(n), respectively, we obtain Φyy(z) = Φy1y1(z)+Φy2y2(z) = σ2 uH(z)H∗(1/z∗)+σ2 vG(z)G∗(1/z∗).
  • 10. 12 Contents Chap. 2 15. (i) Using Φxx(z) = H(z)H∗(1/z∗)Φvv(z), with H(z) = 1 1−0.5z−1 and Φvv(z) = 1, we obtain Φxx(z) = 1 1 − 0.5z−1 1 1 − 0.5(1/z∗)−1 ∗ = 1 (1 − 0.5z−1)(1 − 0.5z) (ii) Since Φyy(z) = G(z)G∗(1/z∗)Φzz(z), where G(z) = 1 − 2z−1, we obtain Φyy(z) = 1 − 2z−1 1 − 0.5z−1 × 1 − 2(1/z∗)−1 1 − 0.5(1/z∗)−1 ∗ Φvv(z) = 1 − 2z−1 1 − 0.5z−1 × 1 − 2z 1 − 0.5z = 1 − 2(z + z−1) + 4 1 − 0.5(z + z−1) + 1/4 = 4 (iii) Using Φvy(z) = H∗(1/z∗)G∗(1/z∗)Φvv(z), Φvy(z) = 1 − 2(1/z∗)−1 1 − 0.5(1/z∗)−1 ∗ Φvv(z) = 1 − 2z 1 − 0.5z . 16. (i) Since x(n) = P k h(k)v(n − k) and y(n) = P k g(k)v(n − k), φxy(m) = E[x(n)y∗ (n − m)] = E[ X l X k h(k)g∗ (l)v(n − k)v∗ (n − m − l)] = X l X k h(k)g∗ (l)E[v(n − k)v∗ (n − m − l)] = X l X k h(k)g∗ (l)δ(−k + l + m). But δ(−k + l + m) = 1 for k = l + m and zero elsewhere. Using this in the above result, we obtain φxy(m) = P l h(l + m)g∗(l). (ii) Since Φxy(z) is the z-transform of φxy(m), Φxy(z) = X m φxy(m)z−m = X m X l h(l + m)g∗ (l)z−m X m X l h(l + m)z−(m+l) g∗ (l)zl = X l g∗ (l)zl X m h(l + m)z−(m+l) = G∗ (1/z∗ )H(z) = H(z)G∗ (1/z∗ ). 17. (i) Since u(n) = x(n) + y(n), we have φuu(k) = E[(x(n) + y(n))(x∗ (n + k) + y∗ (n + k))] = E[x(n)x∗ (n + k)] + E[y(n)y∗ (n + k)] + E[x(n)y∗ (n + k)] + E[y(n)x∗ (n + k)] = φxx(k) + φyy(k) + φxy(k) + φyx(k) Hence, Φuu(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φyx(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φ∗ xy(1/z∗ )
  • 11. Sec. 2.0 Contents 13 (ii) Since u(n) is the output of a system with input v(n) and transfer function H(z) + G(z), Φuu(z) = (H(z) + G(z))(H∗ (1/z∗ ) + G∗ (1/z∗ ))Φvv(z) = H(z)H∗ (1/z∗ )Φvv(z)+G(z)G∗ (1/z∗ )Φvv(z)+H(z)G∗ (1/z∗ )Φvv(z)+H∗ (1/z∗ )G(z)Φvv(z) Since v(n) in a zero-mean unit-variance white noise process, Φvv(z) = 1 and we have Φuu(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φyx(z) = Φxx(z) + Φyy(z) + Φxy(z) + Φ∗ xy(1/z∗ )