SlideShare a Scribd company logo
2
Most read
6
Most read
1
Chapter 2
2.1 d. 3
kN/m
17.17



)
05
.
0
)(
1000
(
)
81
.
9
)(
5
.
87
(
c. 3
kN/m
14.93







15
.
0
1
17
.
17
1 w
d
a. Eq. (2.12): 0.76






 e
e
e
G w
s
;
1
)
81
.
9
)(
68
.
2
(
14.93
.
1
b. Eq. (2.6): 0.43





76
.
0
1
76
.
0
1 e
e
n
e. Eq. (2.14): 53%









 )
100
(
76
.
0
)
68
.
2
)(
15
.
0
(
e
G
w
V
V
S s
v
w
2.2 a. From Eqs. (2.11) and (2.12), it can be seen that,
3
kN/m
16.48







22
.
0
1
1
.
20
1 w
d
b.
e
G
e
G s
w
s







1
)
81
.
9
(
1
kN/m
16.48 3
Eq. (2.14): ).
)(
22
.
0
( s
s G
wG
e 
 So,
2.67


 s
s
s
G
G
G
;
22
.
0
1
81
.
9
48
.
16
s
m
t
b
9
8
@
g
m
a
i
l
.
c
o
m
You can access complete document on following URL. Contact me if site not loaded
https://unihelp.xyz/
Contact me in order to access the whole complete document - Email: smtb98@gmail.com
WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
Chapter 2
2
2
2.3 a. 0.55








 e
e
e
w
G w
s
;
1
)
12
.
0
1
)(
4
.
62
)(
65
.
2
(
119.5
.
1
)
1
(
b. 0.355



55
.
0
1
55
.
0
n
c. 57.8%



 100
55
.
0
)
65
.
2
)(
12
.
0
(
e
G
w
S s
d. 3
lb/ft
106.7







12
.
0
1
5
.
119
1 w
d
2.4 a.
w
e
Gs  . 0.97


















 e
e
e
e
w
e
w
d ;
1
)
4
.
62
(
36
.
0
85.43
.
1
)
(
b. 0.49





97
.
0
1
97
.
0
1 e
e
n
c. 2.69



36
.
0
97
.
0
w
e
Gs
d. 3
lb/ft
115.9









97
.
0
1
)
4
.
62
)(
97
.
0
69
.
2
(
1
)
(
sat
e
e
G w
s
Chapter 2
3
2.5 From Eqs. (2.11) and (2.12): 3
lb/ft
108
08
.
0
1
64
.
116



d
Eq. (2.12): 53
.
0
;
1
)
4
.
62
)(
65
.
2
(
108
;
1






 e
e
e
G w
s
d
Eq. (2.23): 0.94







 max
max
max
min
max
max
;
44
.
0
53
.
0
82
.
0 e
e
e
e
e
e
e
Dr
3
lb/ft
85.2







94
.
0
1
)
4
.
62
)(
65
.
2
(
1 max
(min)
e
G w
s
d
2.6 Refer to Table 2.7 for classification.
Soil A: A-7-6(9) (Note: PI is greater than LL 30.)
GI = (F200 – 35)[0.2 + 0.005(LL – 40)] + 0.01(F200 – 15)(PI – 10)
=
=
(65 – 35)[0.2 + 0.005(42 – 40)] + 0.01(65 – 15)(16 – 10)
9.3  9
Soil B: A-6(5)
GI =
=
(55 – 35)[0.2 + 0.005(38 – 40)] + 0.01(55 – 15)(13 – 10)
5.4  5
Soil C: A-3-(0)
Soil D: A-4(5)
GI =
=
(64– 35)[0.2 + 0.005(35 – 40)] + 0.01(64 – 15)(9 – 10)
4.585 ≈ 5
Soil E: A-2-6(1)
GI = 0.01(F200 – 15)(PI – 10) = 0.01(33 – 15)(13 – 10) = 0.54 ≈ 1
Soil F: A-7-6(19) (PI is greater than LL  30.)
GI =
=
(76– 35)[0.2 + 0.005(52 – 40)] + 0.01(76 – 15)(24 – 10)
19.2 ≈ 19
Chapter 2
4
4
2.7 Soil A: Table 2.8: 65% passing No. 200 sieve.
Fine grained soil; LL = 42; PI = 16
Figure 2.5: ML
Figure 2.7: Plus No. 200 > 30%; Plus No. 4 = 0
% sand > % gravel – sandy silt
Soil B: Table 2.8: 55% passing No. 200 sieve.
Fine grained soil; LL = 38; PI = 13
Figure 2.5: Plots below A-line – ML
Figure 2.7: Plus No. 200 > 30%
% sand > % gravel – sandy silt
Soil C: Table 2.8: 8% passing No. 200 sieve.
% sand > % gravel – sandy soil – SP
Figure 2.6: % gravel = 100 – 95 = 5% < 15% – poorly graded sand
Soil D: Table 2.8: 64% passing No. 200 sieve
Fine grained soil; LL = 35, PI = 9
Figure 2.5 – ML
Figure 2.7: % sand (31%) > % gravel (5%) – sandy silt
Soil E: Table 2.8: 33% passing No. 200 sieve; 100% passing No. 4 sieve.
Sandy soil; LL = 38; PI = 13
Figure 2.5: Plots below A-line – SM
Figure 2.6: % gravel (0%) < 15% – silty sand
Soil F: Table 2.8: 76% passing No. 200 sieve; LL = 52; PI = 24
Figure 2.5: CH
Figure 2.7: Plus No. 200 is 100 – 76 = 24%
% gravel > % gravel – fat clay with sand
Chapter 2
5
2.8 43
.
0
1
117
)
4
.
62
)(
68
.
2
(
1
e
;
1











d
w
s
w
s
d
G
e
G
Eq. (2.37):






































43
.
0
1
43
.
0
63
.
0
1
63
.
0
22
.
0
;
1
1
3
3
2
2
3
2
1
3
1
2
1
k
e
e
e
e
k
k
; k2 = 0.08 cm/s
2.9 From Eq. (2.41):
n
n
n
e
e
e
e
k
k
)
6316
.
0
(
1667
.
0
;
9
.
1
2
.
1
2
.
2
9
.
2
10
91
.
0
10
2
.
0
or
;
1
1
6
6
2
1
1
2
2
1


































 

898
.
3
1996
.
0
778
.
0
)
6316
.
0
log(
)
1667
.
0
log(





n
cm/s
10
0.075 6
-































)
10
216
.
0
(
9
.
1
9
.
0
1
10
216
.
0
2
.
1
)
2
.
2
)(
10
2
.
0
(
)
1
(
6
998
.
3
3
6
998
.
3
6
1
1
1
e
e
C
k
e
e
k
C
n
n
Chapter 2
6
6
2.10 The flow net is shown.
/m/s
m
10
17.06 3
6
-















 










8
)
4
)(
25
.
5
(
10
10
5
.
6
So,
m.
25
.
5
75
.
1
7
cm/s;
10
5
.
6
2
4
2
1
max
4
q
H
H
h
k
2.11 a.
7825
.
0
3
2
7825
.
0
3
2
10
6
.
0
1
6
.
0
)
2
.
0
(
4622
.
2
)
1
(
4622
.
2


























e
e
D
k cm/s
0.041

b. 32
.
2
6
.
0
3
32
.
2
10
6
.
0
3
)
2
.
0
(
2
.
0
4
.
0
6
.
0
1
6
.
0
)
35
(
)
(
1
35 
























 D
C
e
e
k u cm/s
0.171

Chapter 2
7
2.12 3
dry(sand) kN/m
16.84
55
.
0
1
)
81
.
9
)(
66
.
2
(
1







e
G w
s
  3
sat(sand) kN/m
81
.
0
2
48
.
0
1
)
48
.
0
66
.
2
(
81
.
9
1










e
e
G w
w
s
3
sat(clay ) kN/m
18.55
)
74
.
2
)(
3478
.
0
(
1
)
3478
.
0
1
)(
81
.
9
)(
74
.
2
(
1
)
1
(









s
w
s
wG
w
G
At A: σ = 0; u = 0; σ = 0
At B: σ = (16.84)(3) = 50.52 kN/m2
u = 0
σ = 50.52 kN/m2
At C: σ = σB + (20.81)(1.5) = 50.52 + 31.22 = 81.74 kN/m2
u = (9.81)(1.5) = 14.72 kN/m2
σ = 81.74 – 14.72 = 67.02 kN/m2
At D: σ = σC + (18.55)(5) = 81.74 + 92.75 = 174.49 kN/m2
u = (9.81)(6.5) = 63.77 kN/m2
σ = 174.49 – 63.77 = 110.72 kN/m2
2.13 Eq. (2.54): Cc = 0.009(LL – 10) = 0.009(42 – 10) = 0.288
Eq. (2.65):
mm
87.2

















110
155
log
82
.
0
1
mm)
1000
7
.
3
)(
288
.
0
(
log
1 o
o
o
c
c
c
e
H
C
S
2.14 Eq. (2.69):
mm
56.69










































128
155
log
82
.
0
1
)
3700
)(
288
.
0
(
110
128
log
75
.
0
1
mm)
3700
(
5
288
.
0
log
1
log
1 c
o
o
c
c
o
c
o
c
s
c
e
H
C
e
H
C
S
Chapter 2
8
8
2.15 a. Eq. (2.53): 0.392
150
300
log
792
.
0
91
.
0
log
1
2
2
1





















e
e
Cc
From Eq. (2.65):
o
o
o
c
c
c
e
H
C
S






 log
1
Using the results of Problem 2.12,
2
kN/m
87
.
88
)
81
.
9
55
.
18
(
2
5
)
81
.
9
81
.
20
(
5
.
1
)
84
.
16
)(
3
( 






o
953
.
0
)
74
.
2
)(
3478
.
0
( 

 s
o wG
e
mm
194.54






 


87
.
88
50
87
.
88
log
953
.
0
1
mm)
5000
)(
392
.
0
(
c
S
b. Eq. (2.73): 2
H
t
C
T v
v  . For U = 50%, Tv = 0.197 (Table 2.11). So,
days
609
sec
10
5262
;
cm)
500
(
10
36
.
9
197
.
0 4
2
4






t
t
2.16 a. Eq. (2.53): 0.377





















120
360
log
64
.
0
82
.
0
log
1
2
2
1 e
e
Cc
b. 0.736




















 2
2
1
2
2
1
;
120
200
log
82
.
0
0.377
;
log
e
e
e
e
Cc
Chapter 2
9
2.17 Eq. (2.73): 2
H
t
C
T v
v  . For 60% consolidation, Tv = 0.286 (Table 2.11).
Lab time: min
6
49
min
8 6
1


t
/min
in.
0788
.
0
;
)
5
.
1
(
6
49
286
.
0 2
2







 v
v
C
C
Field: U = 50%; Tv = 0.197
days
6.25
min
9000
;
2
12
10
)
0788
.
0
(
197
.
0 2







 
 t
t
2.18 5
.
0
60
30


U
t
t
H
t
C
T
v
v
6
2
2
1
)
1
(
)
1
( 10
2
2
1000
2
)
)(
2
( 







 


t
t
H
t
C
T
v
v
6
2
2
2
)
2
(
)
2
( 10
8
2
1000
1
)
)(
2
( 







 


So, Tv(1) = 0.25Tv(2). The following table can be prepared for trial and error
procedure.
Tv(1) Tv(2)
U1 U2
U
H
H
H
U
H
U



2
1
2
2
1
1
(Figure 2.22)
0.05
0.10
0.125
0.1125
0.2
0.4
0.5
0.45
0.26
0.36
0.40
0.385
0.51
0.70
0.76
0.73
0.34
0.473
0.52
0.50
So, Tv(1) = 0.1125 = 2  10-6
t; t = 56,250 min = 39.06 days
Chapter 2
10
10
2.19 Eq. (2.84): .
2
H
t
C
T c
v
c  tc = 60 days = 60  24  60  60 sec;
2
2

H m = 1000 mm.
0415
.
0
)
1000
(
)
60
60
24
60
)(
10
8
(
2
3







c
T
After 30 days: 0207
.
0
)
1000
(
)
60
60
24
30
)(
10
8
(
2
3
2








H
t
C
T v
v
From Figure 2.24 for Tv = 0.0207 and Tc = 0.0415, U = 5%. So
Sc = (0.05)(120) = 6 mm
After 100 days: 069
.
0
)
1000
(
)
60
60
24
100
)(
10
8
(
2
3
2








H
t
C
T v
v
From Figure 2.24 for Tv = 0.069 and Tc = 0.0415, U  23%. So
Sc = (0.23)(120) = 27.6 mm
2.20 






 
N
S
1
tan
Normal force, N (lb) Shear force, S (lb) 






 
N
S
1
tan (deg)
50
110
150
43.5
95.5
132.0
41.02
40.96
41.35
From the graph,   41
2.21 Normally consolidated clay; c = 0.





 




2
45
tan2
3
1 ; 
38







 


 ;
2
45
tan
30
96
30 2
Chapter 2
11
2.22 




 




2
45
tan2
3
1 ; 
30







 


 ;
2
45
tan
20
40
20 2
2.23 c = 0. Eq. (2.91): 2
kN/m
387.8














 




2
28
45
tan
140
2
45
tan 2
2
3
1
2.24 Eq. (2.91): 




 








 




2
45
tan
2
2
45
3
1 c





 








 


2
45
tan
2
2
45
tan
140
368 2
c (a)





 








 


2
45
tan
2
2
45
tan
280
701 2
c (b)
Solving Eqs. (a) and (b),  = 24; c = 12 kN/m2
2.25 
25

























 

13
32
13
32
sin
sin 1
3
1
3
1
1















 
3
1
3
1
1
sin
2
3
2
3 lb/in.
5
.
7
5
.
5
13
;
lb/in.
5
.
26
5
.
5
32 








34










 
5
.
7
5
.
26
5
.
7
5
.
26
sin 1
Normally consolidated clay; c = 0 and c = 0
2.26 




 




2
45
tan2
3
1 . 2
2
1 kN/m
305.9
2
20
45
tan
150 









Chapter 2
12
12
2
kN/m
61.9
















 




u
u
u
;
2
28
45
tan
150
9
.
305
;
2
45
tan 2
2
3
1
2.27 a. )
log(
6
.
1
4
.
0
10
26 50
D
C
D u
r 











 30.7
)]
13
.
0
)[log(
6
.
1
(
)
1
.
2
)(
4
.
0
(
)
53
.
0
)(
10
(
26
b.
b
ae 


1
327
.
2
09
.
0
21
.
0
097
.
0
101
.
2
097
.
0
101
.
2
15
85



















D
D
a
081
.
0
)
327
.
2
)(
398
.
0
(
845
.
0
398
.
0
845
.
0 




 a
b

33.67




081
.
0
)
68
.
0
)(
327
.
2
(
1

More Related Content

PDF
Introduction to Geotechnical Engineering 2nd Edition Holtz Solutions Manual
PDF
sm ch2 open akan.pdf
PDF
Chapter 02 us - final solutions
PPT
PDF
UC Davis gyrotron cavity simulation
PDF
Chapter 14 solutions
PDF
Reciprocal symmetry plots in Countercurrent Chromatography
PDF
Solucionario_Felder.pdf
Introduction to Geotechnical Engineering 2nd Edition Holtz Solutions Manual
sm ch2 open akan.pdf
Chapter 02 us - final solutions
UC Davis gyrotron cavity simulation
Chapter 14 solutions
Reciprocal symmetry plots in Countercurrent Chromatography
Solucionario_Felder.pdf

Similar to Answers to Problems for Principles of Foundation Engineering, 8th Edition – Braja M. Das (20)

PDF
Electic circuits fundamentals thomas floyd, david buchla 8th edition
PDF
Electic circuits fundamentals thomas floyd, david buchla 8th edition
PDF
Solution manual for water resources engineering 3rd edition - david a. chin
PPTX
KdBaBmN39 chudi utsuk nur dimBfDlao76.pptx
PDF
Progress 1st sem
PDF
Solution for Introduction to Environment Engineering and Science 3rd edition ...
PDF
Dev1insulating solid liquid 2
PDF
Solution manual for fundamentals of geotechnical engineering 4th edition br...
DOC
Examples on total consolidation
PDF
PDF
Solutions completo elementos de maquinas de shigley 8th edition
PDF
Dalitz Project Poster
DOCX
project designa.docx
PPT
Gradually Varied Flow in Open Channel
PDF
Chapter_14_solution_shigley_9th__edition
PDF
Capítulo 02 considerações estatísticas
PDF
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
DOCX
Codigos maira mejia
PPTX
การคิดอัตราค่าไฟ
PDF
Shallow and Deep Founation Design Calucations
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Electic circuits fundamentals thomas floyd, david buchla 8th edition
Solution manual for water resources engineering 3rd edition - david a. chin
KdBaBmN39 chudi utsuk nur dimBfDlao76.pptx
Progress 1st sem
Solution for Introduction to Environment Engineering and Science 3rd edition ...
Dev1insulating solid liquid 2
Solution manual for fundamentals of geotechnical engineering 4th edition br...
Examples on total consolidation
Solutions completo elementos de maquinas de shigley 8th edition
Dalitz Project Poster
project designa.docx
Gradually Varied Flow in Open Channel
Chapter_14_solution_shigley_9th__edition
Capítulo 02 considerações estatísticas
solucionario mecanica vectorial para ingenieros - beer & johnston (dinamica...
Codigos maira mejia
การคิดอัตราค่าไฟ
Shallow and Deep Founation Design Calucations
Ad

Recently uploaded (20)

PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PPTX
202450812 BayCHI UCSC-SV 20250812 v17.pptx
PDF
HVAC Specification 2024 according to central public works department
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
PDF
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
PDF
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
PDF
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
PDF
advance database management system book.pdf
PDF
Complications of Minimal Access-Surgery.pdf
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Introduction to pro and eukaryotes and differences.pptx
PPTX
Unit 4 Computer Architecture Multicore Processor.pptx
PPTX
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
DOC
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
PDF
Practical Manual AGRO-233 Principles and Practices of Natural Farming
PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PPTX
B.Sc. DS Unit 2 Software Engineering.pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
202450812 BayCHI UCSC-SV 20250812 v17.pptx
HVAC Specification 2024 according to central public works department
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 1)
1.3 FINAL REVISED K-10 PE and Health CG 2023 Grades 4-10 (1).pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
David L Page_DCI Research Study Journey_how Methodology can inform one's prac...
OBE - B.A.(HON'S) IN INTERIOR ARCHITECTURE -Ar.MOHIUDDIN.pdf
BP 704 T. NOVEL DRUG DELIVERY SYSTEMS (UNIT 2).pdf
advance database management system book.pdf
Complications of Minimal Access-Surgery.pdf
What if we spent less time fighting change, and more time building what’s rig...
Introduction to pro and eukaryotes and differences.pptx
Unit 4 Computer Architecture Multicore Processor.pptx
Onco Emergencies - Spinal cord compression Superior vena cava syndrome Febr...
Soft-furnishing-By-Architect-A.F.M.Mohiuddin-Akhand.doc
Practical Manual AGRO-233 Principles and Practices of Natural Farming
Environmental Education MCQ BD2EE - Share Source.pdf
B.Sc. DS Unit 2 Software Engineering.pptx
Ad

Answers to Problems for Principles of Foundation Engineering, 8th Edition – Braja M. Das

  • 1. 1 Chapter 2 2.1 d. 3 kN/m 17.17    ) 05 . 0 )( 1000 ( ) 81 . 9 )( 5 . 87 ( c. 3 kN/m 14.93        15 . 0 1 17 . 17 1 w d a. Eq. (2.12): 0.76        e e e G w s ; 1 ) 81 . 9 )( 68 . 2 ( 14.93 . 1 b. Eq. (2.6): 0.43      76 . 0 1 76 . 0 1 e e n e. Eq. (2.14): 53%           ) 100 ( 76 . 0 ) 68 . 2 )( 15 . 0 ( e G w V V S s v w 2.2 a. From Eqs. (2.11) and (2.12), it can be seen that, 3 kN/m 16.48        22 . 0 1 1 . 20 1 w d b. e G e G s w s        1 ) 81 . 9 ( 1 kN/m 16.48 3 Eq. (2.14): ). )( 22 . 0 ( s s G wG e   So, 2.67    s s s G G G ; 22 . 0 1 81 . 9 48 . 16 s m t b 9 8 @ g m a i l . c o m You can access complete document on following URL. Contact me if site not loaded https://unihelp.xyz/ Contact me in order to access the whole complete document - Email: smtb98@gmail.com WhatsApp: https://wa.me/message/2H3BV2L5TTSUF1 - Telegram: https://t.me/solutionmanual
  • 2. Chapter 2 2 2 2.3 a. 0.55          e e e w G w s ; 1 ) 12 . 0 1 )( 4 . 62 )( 65 . 2 ( 119.5 . 1 ) 1 ( b. 0.355    55 . 0 1 55 . 0 n c. 57.8%     100 55 . 0 ) 65 . 2 )( 12 . 0 ( e G w S s d. 3 lb/ft 106.7        12 . 0 1 5 . 119 1 w d 2.4 a. w e Gs  . 0.97                    e e e e w e w d ; 1 ) 4 . 62 ( 36 . 0 85.43 . 1 ) ( b. 0.49      97 . 0 1 97 . 0 1 e e n c. 2.69    36 . 0 97 . 0 w e Gs d. 3 lb/ft 115.9          97 . 0 1 ) 4 . 62 )( 97 . 0 69 . 2 ( 1 ) ( sat e e G w s
  • 3. Chapter 2 3 2.5 From Eqs. (2.11) and (2.12): 3 lb/ft 108 08 . 0 1 64 . 116    d Eq. (2.12): 53 . 0 ; 1 ) 4 . 62 )( 65 . 2 ( 108 ; 1        e e e G w s d Eq. (2.23): 0.94         max max max min max max ; 44 . 0 53 . 0 82 . 0 e e e e e e e Dr 3 lb/ft 85.2        94 . 0 1 ) 4 . 62 )( 65 . 2 ( 1 max (min) e G w s d 2.6 Refer to Table 2.7 for classification. Soil A: A-7-6(9) (Note: PI is greater than LL 30.) GI = (F200 – 35)[0.2 + 0.005(LL – 40)] + 0.01(F200 – 15)(PI – 10) = = (65 – 35)[0.2 + 0.005(42 – 40)] + 0.01(65 – 15)(16 – 10) 9.3  9 Soil B: A-6(5) GI = = (55 – 35)[0.2 + 0.005(38 – 40)] + 0.01(55 – 15)(13 – 10) 5.4  5 Soil C: A-3-(0) Soil D: A-4(5) GI = = (64– 35)[0.2 + 0.005(35 – 40)] + 0.01(64 – 15)(9 – 10) 4.585 ≈ 5 Soil E: A-2-6(1) GI = 0.01(F200 – 15)(PI – 10) = 0.01(33 – 15)(13 – 10) = 0.54 ≈ 1 Soil F: A-7-6(19) (PI is greater than LL  30.) GI = = (76– 35)[0.2 + 0.005(52 – 40)] + 0.01(76 – 15)(24 – 10) 19.2 ≈ 19
  • 4. Chapter 2 4 4 2.7 Soil A: Table 2.8: 65% passing No. 200 sieve. Fine grained soil; LL = 42; PI = 16 Figure 2.5: ML Figure 2.7: Plus No. 200 > 30%; Plus No. 4 = 0 % sand > % gravel – sandy silt Soil B: Table 2.8: 55% passing No. 200 sieve. Fine grained soil; LL = 38; PI = 13 Figure 2.5: Plots below A-line – ML Figure 2.7: Plus No. 200 > 30% % sand > % gravel – sandy silt Soil C: Table 2.8: 8% passing No. 200 sieve. % sand > % gravel – sandy soil – SP Figure 2.6: % gravel = 100 – 95 = 5% < 15% – poorly graded sand Soil D: Table 2.8: 64% passing No. 200 sieve Fine grained soil; LL = 35, PI = 9 Figure 2.5 – ML Figure 2.7: % sand (31%) > % gravel (5%) – sandy silt Soil E: Table 2.8: 33% passing No. 200 sieve; 100% passing No. 4 sieve. Sandy soil; LL = 38; PI = 13 Figure 2.5: Plots below A-line – SM Figure 2.6: % gravel (0%) < 15% – silty sand Soil F: Table 2.8: 76% passing No. 200 sieve; LL = 52; PI = 24 Figure 2.5: CH Figure 2.7: Plus No. 200 is 100 – 76 = 24% % gravel > % gravel – fat clay with sand
  • 5. Chapter 2 5 2.8 43 . 0 1 117 ) 4 . 62 )( 68 . 2 ( 1 e ; 1            d w s w s d G e G Eq. (2.37):                                       43 . 0 1 43 . 0 63 . 0 1 63 . 0 22 . 0 ; 1 1 3 3 2 2 3 2 1 3 1 2 1 k e e e e k k ; k2 = 0.08 cm/s 2.9 From Eq. (2.41): n n n e e e e k k ) 6316 . 0 ( 1667 . 0 ; 9 . 1 2 . 1 2 . 2 9 . 2 10 91 . 0 10 2 . 0 or ; 1 1 6 6 2 1 1 2 2 1                                      898 . 3 1996 . 0 778 . 0 ) 6316 . 0 log( ) 1667 . 0 log(      n cm/s 10 0.075 6 -                                ) 10 216 . 0 ( 9 . 1 9 . 0 1 10 216 . 0 2 . 1 ) 2 . 2 )( 10 2 . 0 ( ) 1 ( 6 998 . 3 3 6 998 . 3 6 1 1 1 e e C k e e k C n n
  • 6. Chapter 2 6 6 2.10 The flow net is shown. /m/s m 10 17.06 3 6 -                            8 ) 4 )( 25 . 5 ( 10 10 5 . 6 So, m. 25 . 5 75 . 1 7 cm/s; 10 5 . 6 2 4 2 1 max 4 q H H h k 2.11 a. 7825 . 0 3 2 7825 . 0 3 2 10 6 . 0 1 6 . 0 ) 2 . 0 ( 4622 . 2 ) 1 ( 4622 . 2                           e e D k cm/s 0.041  b. 32 . 2 6 . 0 3 32 . 2 10 6 . 0 3 ) 2 . 0 ( 2 . 0 4 . 0 6 . 0 1 6 . 0 ) 35 ( ) ( 1 35                           D C e e k u cm/s 0.171 
  • 7. Chapter 2 7 2.12 3 dry(sand) kN/m 16.84 55 . 0 1 ) 81 . 9 )( 66 . 2 ( 1        e G w s   3 sat(sand) kN/m 81 . 0 2 48 . 0 1 ) 48 . 0 66 . 2 ( 81 . 9 1           e e G w w s 3 sat(clay ) kN/m 18.55 ) 74 . 2 )( 3478 . 0 ( 1 ) 3478 . 0 1 )( 81 . 9 )( 74 . 2 ( 1 ) 1 (          s w s wG w G At A: σ = 0; u = 0; σ = 0 At B: σ = (16.84)(3) = 50.52 kN/m2 u = 0 σ = 50.52 kN/m2 At C: σ = σB + (20.81)(1.5) = 50.52 + 31.22 = 81.74 kN/m2 u = (9.81)(1.5) = 14.72 kN/m2 σ = 81.74 – 14.72 = 67.02 kN/m2 At D: σ = σC + (18.55)(5) = 81.74 + 92.75 = 174.49 kN/m2 u = (9.81)(6.5) = 63.77 kN/m2 σ = 174.49 – 63.77 = 110.72 kN/m2 2.13 Eq. (2.54): Cc = 0.009(LL – 10) = 0.009(42 – 10) = 0.288 Eq. (2.65): mm 87.2                  110 155 log 82 . 0 1 mm) 1000 7 . 3 )( 288 . 0 ( log 1 o o o c c c e H C S 2.14 Eq. (2.69): mm 56.69                                           128 155 log 82 . 0 1 ) 3700 )( 288 . 0 ( 110 128 log 75 . 0 1 mm) 3700 ( 5 288 . 0 log 1 log 1 c o o c c o c o c s c e H C e H C S
  • 8. Chapter 2 8 8 2.15 a. Eq. (2.53): 0.392 150 300 log 792 . 0 91 . 0 log 1 2 2 1                      e e Cc From Eq. (2.65): o o o c c c e H C S        log 1 Using the results of Problem 2.12, 2 kN/m 87 . 88 ) 81 . 9 55 . 18 ( 2 5 ) 81 . 9 81 . 20 ( 5 . 1 ) 84 . 16 )( 3 (        o 953 . 0 ) 74 . 2 )( 3478 . 0 (    s o wG e mm 194.54           87 . 88 50 87 . 88 log 953 . 0 1 mm) 5000 )( 392 . 0 ( c S b. Eq. (2.73): 2 H t C T v v  . For U = 50%, Tv = 0.197 (Table 2.11). So, days 609 sec 10 5262 ; cm) 500 ( 10 36 . 9 197 . 0 4 2 4       t t 2.16 a. Eq. (2.53): 0.377                      120 360 log 64 . 0 82 . 0 log 1 2 2 1 e e Cc b. 0.736                      2 2 1 2 2 1 ; 120 200 log 82 . 0 0.377 ; log e e e e Cc
  • 9. Chapter 2 9 2.17 Eq. (2.73): 2 H t C T v v  . For 60% consolidation, Tv = 0.286 (Table 2.11). Lab time: min 6 49 min 8 6 1   t /min in. 0788 . 0 ; ) 5 . 1 ( 6 49 286 . 0 2 2         v v C C Field: U = 50%; Tv = 0.197 days 6.25 min 9000 ; 2 12 10 ) 0788 . 0 ( 197 . 0 2           t t 2.18 5 . 0 60 30   U t t H t C T v v 6 2 2 1 ) 1 ( ) 1 ( 10 2 2 1000 2 ) )( 2 (             t t H t C T v v 6 2 2 2 ) 2 ( ) 2 ( 10 8 2 1000 1 ) )( 2 (             So, Tv(1) = 0.25Tv(2). The following table can be prepared for trial and error procedure. Tv(1) Tv(2) U1 U2 U H H H U H U    2 1 2 2 1 1 (Figure 2.22) 0.05 0.10 0.125 0.1125 0.2 0.4 0.5 0.45 0.26 0.36 0.40 0.385 0.51 0.70 0.76 0.73 0.34 0.473 0.52 0.50 So, Tv(1) = 0.1125 = 2  10-6 t; t = 56,250 min = 39.06 days
  • 10. Chapter 2 10 10 2.19 Eq. (2.84): . 2 H t C T c v c  tc = 60 days = 60  24  60  60 sec; 2 2  H m = 1000 mm. 0415 . 0 ) 1000 ( ) 60 60 24 60 )( 10 8 ( 2 3        c T After 30 days: 0207 . 0 ) 1000 ( ) 60 60 24 30 )( 10 8 ( 2 3 2         H t C T v v From Figure 2.24 for Tv = 0.0207 and Tc = 0.0415, U = 5%. So Sc = (0.05)(120) = 6 mm After 100 days: 069 . 0 ) 1000 ( ) 60 60 24 100 )( 10 8 ( 2 3 2         H t C T v v From Figure 2.24 for Tv = 0.069 and Tc = 0.0415, U  23%. So Sc = (0.23)(120) = 27.6 mm 2.20          N S 1 tan Normal force, N (lb) Shear force, S (lb)          N S 1 tan (deg) 50 110 150 43.5 95.5 132.0 41.02 40.96 41.35 From the graph,   41 2.21 Normally consolidated clay; c = 0.            2 45 tan2 3 1 ;  38             ; 2 45 tan 30 96 30 2
  • 11. Chapter 2 11 2.22            2 45 tan2 3 1 ;  30             ; 2 45 tan 20 40 20 2 2.23 c = 0. Eq. (2.91): 2 kN/m 387.8                     2 28 45 tan 140 2 45 tan 2 2 3 1 2.24 Eq. (2.91):                      2 45 tan 2 2 45 3 1 c                    2 45 tan 2 2 45 tan 140 368 2 c (a)                    2 45 tan 2 2 45 tan 280 701 2 c (b) Solving Eqs. (a) and (b),  = 24; c = 12 kN/m2 2.25  25                             13 32 13 32 sin sin 1 3 1 3 1 1                  3 1 3 1 1 sin 2 3 2 3 lb/in. 5 . 7 5 . 5 13 ; lb/in. 5 . 26 5 . 5 32          34             5 . 7 5 . 26 5 . 7 5 . 26 sin 1 Normally consolidated clay; c = 0 and c = 0 2.26            2 45 tan2 3 1 . 2 2 1 kN/m 305.9 2 20 45 tan 150          
  • 12. Chapter 2 12 12 2 kN/m 61.9                       u u u ; 2 28 45 tan 150 9 . 305 ; 2 45 tan 2 2 3 1 2.27 a. ) log( 6 . 1 4 . 0 10 26 50 D C D u r              30.7 )] 13 . 0 )[log( 6 . 1 ( ) 1 . 2 )( 4 . 0 ( ) 53 . 0 )( 10 ( 26 b. b ae    1 327 . 2 09 . 0 21 . 0 097 . 0 101 . 2 097 . 0 101 . 2 15 85                    D D a 081 . 0 ) 327 . 2 )( 398 . 0 ( 845 . 0 398 . 0 845 . 0       a b  33.67     081 . 0 ) 68 . 0 )( 327 . 2 ( 1