How to ReS and ReSS
A
280nm
230nm
A
K
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.14 1.33 1.6 2 2.67 4 8 ∞
IIII II
IIIII I1/K
GUESSmix in Hexane / Ethyl acetate / Methanol / Water 4:6:4:6
Reverse Phase
Normal Phase
G
H
X
T
r
C
D
F
R
U
V
A
Q
M
N
Z
E O
I
Y
b
Traditional Chromatogram
HEMWat +2
0
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350mL
A
280nm
230nm
120 mL HSCCC (CCC-1000)
1 mL/min, 1,200 rpm
fraction collection 3 mL/tube
Elution Extrusion Method
How to represent the partition
coefficient K on the
chromatograph?
0
0 50 100 150 200 250 300 350mL
A
0
10
20
30
40
50
60
70
80
90
100
280nm
230nm
K
0 ≥ K ≤ infinity K = (VR-VM)/VS
Reciprocal Symmetry
Chose a midline “M” .
To the left of “M” à 0 ≥ K ≤ M
To the right of “M” à M ≥ K ≤ infinity
To graph it: Chose “1” as midline
To the left of 1 à x = K
To the right of 1 à x = 2-(1/K)
Reciprocal Symmetry Plot
0
5
10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
X = K
Kvalues
x = 2- 1/K
(0.25,0.25)
(1.75,4)
ReS Excel plot
Reciprocal Symmetry K’(1) adjusted values
ReS x-axis adjusted plot
Reciprocal Symmetry Plot
0
5
10
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.25 2 2.5 10
8
K
Kvalues
5
Reciprocal Symmetry K axis
K = 1/(2-x)
Reciprocal Symmetry
Chose a midline “M” .
To the left of “M” à 0 ≥ K ≤ M
To the right of “M” à M ≥ K ≤ infinity
To graph it: Chose “M” as midline
To the left of “M” à x = K
To the right of “M” à x = 2(M)-(M2/K)
ReSS Excel Plot
Reciprocal Symmetry Plot
0
10
20
30
0 1 2 3 4 5 6 7 8
X = K
Kvalues
x = 8 – (16/K)
(1,1)
(7,16)
Reciprocal Symmetry K’ adjusted values
M = 4
ReSS x-axis adjusted plot
K = 16/(8-x)
Reciprocal Symmetry Plot
0
10
20
30
0 1 2 3 4
8
K
Kvalues
(1,1)
(16,16)
5.33 8 16
Reciprocal Symmetry K axis
Chromatograms!
HEMWat +2
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2K'(1)
A
280nm
230nm
0
0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1)
A
ReSS
HEMWat +2
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4K'(2)
A
280nm
230nm
0
0 0.5 1 1.5 2 2.67 4 8
∞K'(2)
A
HEMWat +2
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350mL
A 280nm
230nm
0 0.25 0.5 0.75 1 1.33 2 4
∞K'(1)
A
0 0.5 1 1.5 2 2.67 4 8 ∞K'(2)
A
T
H
X
r
D
Y
b
I
OZ
M
E
N
A
V
U
F
R
G
Q
C
How to decide where to put “M”?
What looks nice.
HEMWat 0
-0.01
0 0.5 1 1.5 2 2.5 3 3.5 4K'(2)
A
280nm
230nm
HEMWat 0
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2K'(1)
A
280nm
230nm
M should represent volume midline:
Same number of data points on each side of the midline
0
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2
A
0
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4KD
A
280nm
230nm
G Mix H/EtOAc/MeOH/Water 4:6:4:6
0
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6K' (3)
A
280nm
230nm
How to ReS/ReSS
What you need:
• UV-vis trace for EECCC chromatogram
• Time trace for EECCC chromatogram
• Mobile phase volumeà VM = void volume
• The total time of run à Vrun
• Column Volume à VM
• Equations:
• K = (VR-VM)/(VC-VM) before Vee
• K = Vcm/(Vcm+VC-VR) after Vee
• ReS x = K’(1) 1 = midline
x = K for 0 < K < 1
x = 2-(1/K) for 1 < K < infinity
• ReSS x = K’(2) 2 = midline
x = K for 0 < K < 2
x = 4-(4/K) for 2 < K < infinity
• ReSS x = K’(<M) M = any number as a midline
x = K for 0 < K < M
x = 2M-(M2/K) for M < K < infinity
• Excel Sheet set up:
• A – “Elapsed time” in 20 second intervals A2 = date
• B – 280nm
• C – 230nm
• D – mL & min
• E – tube (3 mL/tube)
• F – VM F2
• Vcm F4 [F8-F10]
• Vee F6 [F8-F10+F2]
• ` Vrun F8
• VC F10
• G – K Vm < K < Vee [ROUND((D___-F$2)/(F$10-F$2),4)]
Vee < K < Vrun [ROUND(F$4/((F$4+F$10)-D___),4)]
• H – K’(1) 0 < K < 1 [ROUND((D___-F$2)/(F$10-F$2),4)]
1 < K < infinity [ROUND(2-1/G____,4)]
• I – K’(2) 0 < K < 2 [ROUND((D____-F$2)/(F$10-F$2),4)]
2 < K < infinity [ROUND(4-4/G____,4)]
Notes
With this set-up you can fool around with VM
and Vrun to fit the chromatogram nicely into
the plot.
• Columns G, H, and I require you to
manually put the two different equations in
for the proper intervals.
• Put K values into the plot, for x > midline,
once you have it in powerpoint.
Applications
Instrument comparison
Solvent system family mapping
Experiment time and separation
Reversed-phase / normal phase plot
Fractogram ReSS plot
GUESSmix in hexane / ethyl acetate / methanol / water 4:6:4:6
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ¥K'(2)
A
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ¥K'(2)
A
280nm
230nm
J-type centrifuge 120 mL
Fast Centrifugal Partition Chromatography (FCPC) 200 mL
220 mg
440 mg
G
H
X
T
r
C
D
F
R
U
V
A
Q
M
N
Z
E O
I
Y
b
HEMWat +3 VCM = 313 mL
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞
KD
A 280nm
230nm
I II III
r C
F
U
V
M
Q
N
Z E
O
b
HEMWat +3 VCM = 254.5 mL
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞KD
A
HEMWat +3 VCM = 228 mL
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞
KD
A
HEMWat +3 VCM = 162 mL
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞KD
A
I II III
I II III
I II III
a
b
c
d
MS
GUESSmix in hexane /ethyl acetate / methanol / water 4:6:4:6
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
mL
A
280nm
230nm
r
C
F
U
V
M
Q
N
Z
E
O
b
I II III
run time = 7.2 hours
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
mL
A
I II III
run time = 6.3 hours
Experiment time and separation behavior
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
mL
A
I II III
run time = 4.8 hours
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425
mL
A
I II III
run time = 5.8 hours
Experiment time and separation behavior
A
280nm
230nm
A
K
0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.14 1.33 1.6 2 2.67 4 8 ∞
IIII II
IIIII I1/K
Reversed Phase
Normal Phase
G
H
X
T
r
C
D
F
R
U
V
A
Q
M
N
Z
E O
I
Y
b
KD
intervals
0
≤ KD < 0.0625
0.0625
≤ KD <
0.125
0.125
≤ KD < 0.25
0.25
≤ KD < 0.5
0.5
≤ KD <
1
1
≤ KD <
2
2
≤ KD <
4
4
≤ KD <
8
8
≤ KD <
16
16
≤ KD <
32
32
≤ KD <
∞
HEMWat
0 rXHTG DR CF
QUA
V
N ME Z O I Yb
DEMWat
0 rXHT G D C
FUV
A
RQ
ZMN
E
OI Yb
GUESS Mix in DEMWat 5:5:5:5
0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1)
A
HEMWat 0
0 0.25 0.5 0.75 1 1.33 2 4
∞K'(1)
A
280nm
230nm
O
I
Yb
Z
E
M
NA
VU
F
DRX
H
T
G
r
C
Q
I
X
H
T
r
G
D
C
F
U
V
A
R
Q
ZMNE
OIYb
Alpinia combined fraction in hexane / tert-butylmethylether / methanol / water 5:5:5:5
0 0.25 0.5 0.75 1 1.33 2 4 ¥K'(1)
A
Alpinia DCM extract in hexane / ethyl acetate / methanol / water 5:5:5:5
0 0.25 0.5 0.75 1 1.33 2 4 ¥K'(1)
A
0
5
10
15
mg
280nm
230nm
mg
OH
O
OO
HO
OO
O
OH
O
O
OH
O
0 0.5 1 1.5 2 2.5 3 3.5 4 4.57 5.33 6.4 8 10.67 16 32 ¥
Oplopanax crude extract in hexane / DCM / methanol / water 7:3:7:3
hexane / ethyl acetate 8:2 hexane / ethyl acetate 7:3
ReS
40
60
80
100
120
140
0 0.25 0.5 0.75 1.33 2 4 ¥K'(1)
40
60
80
100
120
140
0 0.5 1 1.5 2.67 4 8 ¥K'(2)
40
60
80
100
120
140
0 0.5 1 1.5 2 2.5 3.6 4.5 6 9 18 ¥K'(3)
40
60
80
100
120
140
0 1 2 3 5.33 8 16 ¥K'(4)
tube tube
tubetube
ReSS
References
Reciprocal Symmetry Plots as a New Representation of
Countercurrent Chromatograms. G.F. Pauli, J.B. Friesen US
8175817 B2 awarded 05/08/2012.
http://www.google.com/patents/US8175817
Friesen, J. B.; Pauli, G. F., Reciprocal symmetry plots as a
representation of countercurrent chromatograms. Analytical
Chemistry 2007, 79, 2320-2324
Friesen, J. B.; Pauli, G. F., Rational development of solvent system
families in counter-current chromatography. Journal of
Chromatography A 2007, 1151, 51-59.
Friesen, J. B.; Pauli, G. F., Performance characteristics of countercurrent
separation in analysis of natural products of agricultural significance. Journal
of Agricultural and Food Chemistry 2008, 56, 19-28.
Friesen, J. B.; Pauli, G. F., GUESSmix-guided optimization of
elution-extrusion counter-current separations. Journal of
Chromatography A 2009, 1216, 4225-4231.

More Related Content

PDF
Elution methods in Countercurrent Chromatography
PDF
PDF
Benefits of NexION 300D ICP-MS reaction mode in removing the Gd interference ...
PDF
Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...
PDF
#2 determination of o 18 of water and c-13 of dic using simple modification o...
PDF
Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...
PDF
Analysis of Aggregation, Stability, and Lot Comparability by Sedimentation Ve...
PDF
Hydraulic Fracturing and Environmental Testing of Water
Elution methods in Countercurrent Chromatography
Benefits of NexION 300D ICP-MS reaction mode in removing the Gd interference ...
Analysis of “The Big Four” Heavy Metals in Hops by Graphite Furnace Atomic Ab...
#2 determination of o 18 of water and c-13 of dic using simple modification o...
Using THGA and Zeeman Background Correction for Blood-Lead Determination in C...
Analysis of Aggregation, Stability, and Lot Comparability by Sedimentation Ve...
Hydraulic Fracturing and Environmental Testing of Water

Viewers also liked (11)

PDF
Solvent System Selection
PDF
Commercially Available Countercurrent Separation (CCS) Instruments
PDF
K based-chromatography: future and potential of Countercurrent Chromatography
PDF
Instrument Methods (Introduction)
PDF
Optimization parameters in Countercurrent Chromatography
PDF
Different solvent delivery methods in Counterurrent Chromatography
PDF
Comparison of CCS Instruments
PDF
Introduction to countercurrent chromatography: instruments
PDF
Partitioning experiments
PDF
solvent system formulation
Solvent System Selection
Commercially Available Countercurrent Separation (CCS) Instruments
K based-chromatography: future and potential of Countercurrent Chromatography
Instrument Methods (Introduction)
Optimization parameters in Countercurrent Chromatography
Different solvent delivery methods in Counterurrent Chromatography
Comparison of CCS Instruments
Introduction to countercurrent chromatography: instruments
Partitioning experiments
solvent system formulation
Ad

Similar to Reciprocal symmetry plots in Countercurrent Chromatography (20)

PDF
Integrating Countercurrent Separations into Natural Product Purification Work...
PPT
Jiri University of Zimbabwe CHHSC Lec 4 2020.ppt
PPTX
Gas Chromatography
PDF
CHROMATOGRAPHY 1. vxssdllllllllllllllllllllllllllllllllll
PPT
Finding the best separation for enantiomeric mixtures
PPTX
EXPERIMENTAL TECHNIQUES.pptx
DOCX
Gc chromatography
DOCX
Compiled manual version 1
PPTX
Understanding important factor during HSGC development
PDF
Analysis of Phenols in Whisky by HPLC with FL Detection
PDF
Sac ki anh mai - anh mai
PDF
Multi-residue pesticide analysis of food samples using acetonitrile extractio...
PDF
Expt1 prac short_version_2014
PPTX
11,12 chromotography in food analysis.pptx
PPTX
Flash and chiral chromatography
PPTX
Flash and chiral chromatography
PDF
Determination of Residual Solvents in Flexible Packaging
PDF
Head space gas_chromatography_analysis_of_residual (1)
PPT
Gas Chromatography Fall 09
PPT
Chromatography part 1
Integrating Countercurrent Separations into Natural Product Purification Work...
Jiri University of Zimbabwe CHHSC Lec 4 2020.ppt
Gas Chromatography
CHROMATOGRAPHY 1. vxssdllllllllllllllllllllllllllllllllll
Finding the best separation for enantiomeric mixtures
EXPERIMENTAL TECHNIQUES.pptx
Gc chromatography
Compiled manual version 1
Understanding important factor during HSGC development
Analysis of Phenols in Whisky by HPLC with FL Detection
Sac ki anh mai - anh mai
Multi-residue pesticide analysis of food samples using acetonitrile extractio...
Expt1 prac short_version_2014
11,12 chromotography in food analysis.pptx
Flash and chiral chromatography
Flash and chiral chromatography
Determination of Residual Solvents in Flexible Packaging
Head space gas_chromatography_analysis_of_residual (1)
Gas Chromatography Fall 09
Chromatography part 1
Ad

More from Center for Natural Product Technologies (6)

PDF
NMR data Sharing on Dataverse
PDF
DNA-based and Chemical Identification of plant powders
PDF
What CPC can bring to your natural compounds purification?
PPTX
Basic principles of Countercurrent Separation
PDF
MZMine workflow from Dr. Kellogg
PDF
qHNMR for purity determination
NMR data Sharing on Dataverse
DNA-based and Chemical Identification of plant powders
What CPC can bring to your natural compounds purification?
Basic principles of Countercurrent Separation
MZMine workflow from Dr. Kellogg
qHNMR for purity determination

Recently uploaded (20)

PPTX
Introcution to Microbes Burton's Biology for the Health
PPTX
ELISA(Enzyme linked immunosorbent assay)
PDF
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
PDF
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
PPTX
Introduction to Immunology (Unit-1).pptx
PPTX
gene cloning powerpoint for general biology 2
PPTX
PMR- PPT.pptx for students and doctors tt
PPTX
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
PPT
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
PPT
Cell Structure Description and Functions
PPTX
Substance Disorders- part different drugs change body
PPTX
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
PPTX
TORCH INFECTIONS in pregnancy with toxoplasma
PDF
Packaging materials of fruits and vegetables
PPTX
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
PDF
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
PDF
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
PDF
Chapter 3 - Human Development Poweroint presentation
PPT
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
PDF
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...
Introcution to Microbes Burton's Biology for the Health
ELISA(Enzyme linked immunosorbent assay)
BET Eukaryotic signal Transduction BET Eukaryotic signal Transduction.pdf
GROUP 2 ORIGINAL PPT. pdf Hhfiwhwifhww0ojuwoadwsfjofjwsofjw
Introduction to Immunology (Unit-1).pptx
gene cloning powerpoint for general biology 2
PMR- PPT.pptx for students and doctors tt
Cells and Organs of the Immune System (Unit-2) - Majesh Sir.pptx
Biochemestry- PPT ON Protein,Nitrogenous constituents of Urine, Blood, their ...
Cell Structure Description and Functions
Substance Disorders- part different drugs change body
SCIENCE 4 Q2W5 PPT.pptx Lesson About Plnts and animals and their habitat
TORCH INFECTIONS in pregnancy with toxoplasma
Packaging materials of fruits and vegetables
HAEMATOLOGICAL DISEASES lack of red blood cells, which carry oxygen throughou...
Unit 5 Preparations, Reactions, Properties and Isomersim of Organic Compounds...
The Future of Telehealth: Engineering New Platforms for Care (www.kiu.ac.ug)
Chapter 3 - Human Development Poweroint presentation
THE CELL THEORY AND ITS FUNDAMENTALS AND USE
Worlds Next Door: A Candidate Giant Planet Imaged in the Habitable Zone of ↵ ...

Reciprocal symmetry plots in Countercurrent Chromatography

  • 1. How to ReS and ReSS A 280nm 230nm A K 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.14 1.33 1.6 2 2.67 4 8 ∞ IIII II IIIII I1/K GUESSmix in Hexane / Ethyl acetate / Methanol / Water 4:6:4:6 Reverse Phase Normal Phase G H X T r C D F R U V A Q M N Z E O I Y b
  • 2. Traditional Chromatogram HEMWat +2 0 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350mL A 280nm 230nm 120 mL HSCCC (CCC-1000) 1 mL/min, 1,200 rpm fraction collection 3 mL/tube Elution Extrusion Method
  • 3. How to represent the partition coefficient K on the chromatograph? 0 0 50 100 150 200 250 300 350mL A 0 10 20 30 40 50 60 70 80 90 100 280nm 230nm K 0 ≥ K ≤ infinity K = (VR-VM)/VS
  • 4. Reciprocal Symmetry Chose a midline “M” . To the left of “M” à 0 ≥ K ≤ M To the right of “M” à M ≥ K ≤ infinity To graph it: Chose “1” as midline To the left of 1 à x = K To the right of 1 à x = 2-(1/K)
  • 5. Reciprocal Symmetry Plot 0 5 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 X = K Kvalues x = 2- 1/K (0.25,0.25) (1.75,4) ReS Excel plot Reciprocal Symmetry K’(1) adjusted values
  • 6. ReS x-axis adjusted plot Reciprocal Symmetry Plot 0 5 10 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.25 2 2.5 10 8 K Kvalues 5 Reciprocal Symmetry K axis K = 1/(2-x)
  • 7. Reciprocal Symmetry Chose a midline “M” . To the left of “M” à 0 ≥ K ≤ M To the right of “M” à M ≥ K ≤ infinity To graph it: Chose “M” as midline To the left of “M” à x = K To the right of “M” à x = 2(M)-(M2/K)
  • 8. ReSS Excel Plot Reciprocal Symmetry Plot 0 10 20 30 0 1 2 3 4 5 6 7 8 X = K Kvalues x = 8 – (16/K) (1,1) (7,16) Reciprocal Symmetry K’ adjusted values M = 4
  • 9. ReSS x-axis adjusted plot K = 16/(8-x) Reciprocal Symmetry Plot 0 10 20 30 0 1 2 3 4 8 K Kvalues (1,1) (16,16) 5.33 8 16 Reciprocal Symmetry K axis
  • 10. Chromatograms! HEMWat +2 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2K'(1) A 280nm 230nm 0 0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1) A
  • 11. ReSS HEMWat +2 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4K'(2) A 280nm 230nm 0 0 0.5 1 1.5 2 2.67 4 8 ∞K'(2) A
  • 12. HEMWat +2 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350mL A 280nm 230nm 0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1) A 0 0.5 1 1.5 2 2.67 4 8 ∞K'(2) A T H X r D Y b I OZ M E N A V U F R G Q C
  • 13. How to decide where to put “M”? What looks nice. HEMWat 0 -0.01 0 0.5 1 1.5 2 2.5 3 3.5 4K'(2) A 280nm 230nm HEMWat 0 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2K'(1) A 280nm 230nm
  • 14. M should represent volume midline: Same number of data points on each side of the midline 0 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.125 1.25 1.375 1.5 1.625 1.75 1.875 2 A 0 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4KD A 280nm 230nm G Mix H/EtOAc/MeOH/Water 4:6:4:6 0 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6K' (3) A 280nm 230nm
  • 15. How to ReS/ReSS What you need: • UV-vis trace for EECCC chromatogram • Time trace for EECCC chromatogram • Mobile phase volumeà VM = void volume • The total time of run à Vrun • Column Volume à VM
  • 16. • Equations: • K = (VR-VM)/(VC-VM) before Vee • K = Vcm/(Vcm+VC-VR) after Vee • ReS x = K’(1) 1 = midline x = K for 0 < K < 1 x = 2-(1/K) for 1 < K < infinity • ReSS x = K’(2) 2 = midline x = K for 0 < K < 2 x = 4-(4/K) for 2 < K < infinity • ReSS x = K’(<M) M = any number as a midline x = K for 0 < K < M x = 2M-(M2/K) for M < K < infinity
  • 17. • Excel Sheet set up: • A – “Elapsed time” in 20 second intervals A2 = date • B – 280nm • C – 230nm • D – mL & min • E – tube (3 mL/tube) • F – VM F2 • Vcm F4 [F8-F10] • Vee F6 [F8-F10+F2] • ` Vrun F8 • VC F10 • G – K Vm < K < Vee [ROUND((D___-F$2)/(F$10-F$2),4)] Vee < K < Vrun [ROUND(F$4/((F$4+F$10)-D___),4)] • H – K’(1) 0 < K < 1 [ROUND((D___-F$2)/(F$10-F$2),4)] 1 < K < infinity [ROUND(2-1/G____,4)] • I – K’(2) 0 < K < 2 [ROUND((D____-F$2)/(F$10-F$2),4)] 2 < K < infinity [ROUND(4-4/G____,4)]
  • 18. Notes With this set-up you can fool around with VM and Vrun to fit the chromatogram nicely into the plot. • Columns G, H, and I require you to manually put the two different equations in for the proper intervals. • Put K values into the plot, for x > midline, once you have it in powerpoint.
  • 19. Applications Instrument comparison Solvent system family mapping Experiment time and separation Reversed-phase / normal phase plot Fractogram ReSS plot
  • 20. GUESSmix in hexane / ethyl acetate / methanol / water 4:6:4:6 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ¥K'(2) A 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ¥K'(2) A 280nm 230nm J-type centrifuge 120 mL Fast Centrifugal Partition Chromatography (FCPC) 200 mL 220 mg 440 mg G H X T r C D F R U V A Q M N Z E O I Y b
  • 21. HEMWat +3 VCM = 313 mL 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞ KD A 280nm 230nm I II III r C F U V M Q N Z E O b HEMWat +3 VCM = 254.5 mL 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞KD A HEMWat +3 VCM = 228 mL 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞ KD A HEMWat +3 VCM = 162 mL 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.29 2.67 3.2 4 5.33 8 16 ∞KD A I II III I II III I II III a b c d MS
  • 22. GUESSmix in hexane /ethyl acetate / methanol / water 4:6:4:6 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 mL A 280nm 230nm r C F U V M Q N Z E O b I II III run time = 7.2 hours 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 mL A I II III run time = 6.3 hours Experiment time and separation behavior
  • 23. 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 mL A I II III run time = 4.8 hours 0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 mL A I II III run time = 5.8 hours Experiment time and separation behavior
  • 24. A 280nm 230nm A K 0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1 1.14 1.33 1.6 2 2.67 4 8 ∞ IIII II IIIII I1/K Reversed Phase Normal Phase G H X T r C D F R U V A Q M N Z E O I Y b
  • 25. KD intervals 0 ≤ KD < 0.0625 0.0625 ≤ KD < 0.125 0.125 ≤ KD < 0.25 0.25 ≤ KD < 0.5 0.5 ≤ KD < 1 1 ≤ KD < 2 2 ≤ KD < 4 4 ≤ KD < 8 8 ≤ KD < 16 16 ≤ KD < 32 32 ≤ KD < ∞ HEMWat 0 rXHTG DR CF QUA V N ME Z O I Yb DEMWat 0 rXHT G D C FUV A RQ ZMN E OI Yb GUESS Mix in DEMWat 5:5:5:5 0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1) A HEMWat 0 0 0.25 0.5 0.75 1 1.33 2 4 ∞K'(1) A 280nm 230nm O I Yb Z E M NA VU F DRX H T G r C Q I X H T r G D C F U V A R Q ZMNE OIYb
  • 26. Alpinia combined fraction in hexane / tert-butylmethylether / methanol / water 5:5:5:5 0 0.25 0.5 0.75 1 1.33 2 4 ¥K'(1) A Alpinia DCM extract in hexane / ethyl acetate / methanol / water 5:5:5:5 0 0.25 0.5 0.75 1 1.33 2 4 ¥K'(1) A 0 5 10 15 mg 280nm 230nm mg OH O OO HO OO O OH O O OH O
  • 27. 0 0.5 1 1.5 2 2.5 3 3.5 4 4.57 5.33 6.4 8 10.67 16 32 ¥ Oplopanax crude extract in hexane / DCM / methanol / water 7:3:7:3 hexane / ethyl acetate 8:2 hexane / ethyl acetate 7:3 ReS 40 60 80 100 120 140 0 0.25 0.5 0.75 1.33 2 4 ¥K'(1) 40 60 80 100 120 140 0 0.5 1 1.5 2.67 4 8 ¥K'(2) 40 60 80 100 120 140 0 0.5 1 1.5 2 2.5 3.6 4.5 6 9 18 ¥K'(3) 40 60 80 100 120 140 0 1 2 3 5.33 8 16 ¥K'(4) tube tube tubetube ReSS
  • 28. References Reciprocal Symmetry Plots as a New Representation of Countercurrent Chromatograms. G.F. Pauli, J.B. Friesen US 8175817 B2 awarded 05/08/2012. http://www.google.com/patents/US8175817 Friesen, J. B.; Pauli, G. F., Reciprocal symmetry plots as a representation of countercurrent chromatograms. Analytical Chemistry 2007, 79, 2320-2324 Friesen, J. B.; Pauli, G. F., Rational development of solvent system families in counter-current chromatography. Journal of Chromatography A 2007, 1151, 51-59. Friesen, J. B.; Pauli, G. F., Performance characteristics of countercurrent separation in analysis of natural products of agricultural significance. Journal of Agricultural and Food Chemistry 2008, 56, 19-28. Friesen, J. B.; Pauli, G. F., GUESSmix-guided optimization of elution-extrusion counter-current separations. Journal of Chromatography A 2009, 1216, 4225-4231.