Ant Colony Optimization


By:
Sachin Agarwalla
Regd. No-0911012065
C.S.E(A)
                      Under Guidance Of:
                      Mr. Swadhin Ku. Barisal
                      B.E., M.Tech., CSE (IIT, Kharagpur)
                      Assistant Professor                   1
                      I.T.E.R
Optimization

              General optimization problem:
              given f:Xℝ,
              find xεX such that f(x) is minimum




 • Given a graph with two specified vertices A and B, find a shortest path
   from A to B.
 shortest path problem, polynomial



                                                                             2
Ant colony          food




                           3

             nest
Ant Colony Optimization (ACO):
a heuristic optimization method for shortest path
  and other optimization problems which borrows
  ideas from biological ants




                                                    4
Ant Colony Optimization
Outline

•     History: ACO for shortest paths
•     ACO for shortest paths I: directed
•     ACO for shortest paths II: general
•     Advantages and Disadvantages
•     Summary
•     References


                                           5
History: ACO for shortest
paths …
                            6
History: ACO for shortest paths

Goss et al. 1989, Deneuborg et al. 1990
                                                         food
experiments with Argentine ants:
• ants go from the nest to the food source and
  backwards
• after a while, the ants prefer the shortest path
  from the nest to the food source
• stigmercy:
   • the ants communicate indirectly laying
     pheromone trails and following trails with higher
     pheromone
   • length gradient  pheromone will accumulate
     on the shortest path

                                                         nest
                                                                7
ACO for shortest paths I:directed
A first ACO for a simple shortest path problem:

directed acyclic graph (V={0,...,N}, E={ij}), ant hill: 0, food source: N




       for all i: pi:=0;                                   /*ant position init*/
               si:=hungry;                                   /*ant state init*/
       for all i j: τij:=const;                           /*pheromone init*/
       repeat for all i: ant_step(i);                             /*ant step*/
                                                                                   8
                 for all i j: τij := (1-ρ) τij ;   /*evaporate pheromone*/
ACO for shortest paths I:directed




ant_step(i):
if pi=N: si:=satisfied; if pi=0: si:=hungry;                     /*collect food/deliver food*/
if si=hungry: choose j with pij with probability τpi j/Σpij’τpij’     /*choose next step*/
                update Δτpi j := ε; pi:=j;                         /*update pheromone*/
if si=satisfied: choose j with jpi with probability τjpi/Σj’piτj’pi
               update Δτjpi:= ε; pj:=i;                         /* reversed directions*/
                                                                                                 9
ACO for shortest paths II:general

...a more complex undirected cyclic graph ...

                 WC4        WC5          Barbara   Marc


               449a         Anja         Dagmar    Espresso


               322          339          WC3       Friedhelm

          Fachschaft        WC2          Rechner   Astrid

        Zeitschriften       WC           Bibo      RZ-Sekretariat

Mensa         Cafete     Getraenke-      RZ        Toiletten
                            automat
                                                                    10
ACO for shortest paths II:general


                             ... Marc was not so happy with the result ...




                                                                 449a
449a
                                                                             11
ACO for shortest paths II:general
   for all i: pi:=0;                                 /*ant position init*/
         si:=hungry
             si:=( );                            /*ant brain is empty*/         minibrain
   for all i-j: τi-j:=const;                         /*pheromone init*/
    repeat for all i: construct_solution(i);
repeat for all i: ant_step(i);
           for all i: global_pheromone_update(i);
              for all i-j: τi-j := (1-ρ) τi-j;            /*evaporate*/

   construct_solution(i):
   while pi≠N                                            /*no solution*/
      choose j with pi-j with probability τpi-j / Σpi-j’τpi-j’;
        pi:=j;
                                                                              minibrain
      append j to si;                            /*remember the trail*/

   global_pheromone_update(i):
                                                                             update according
   for all j-j’ in si:         Δτj-j’:= 1/length of the path stored in si;                      12
                                                                             to the quality
ACO for shortest paths II:general

                   WC4      WC5      Barbara   Marc



                            Anja     Dagmar    Espresso
                 449a



                            339      WC3       Friedhelm
                 322


         Fachschaft         WC2      Rechner   Astrid



        Zeitschriften       WC       Bibo      RZ-Sekretariat


Mensa          Cafete
                         Getraenke   RZ        Toiletten




                                                                13
ACO for shortest paths
         init pheromone ti-j ;
         repeat       for all ants i: construct_solution(i);
                      for all ants i: global_pheromone_update(i);
                      for all edges: evaporate pheromone;

         construct_solution(i):
         init ant;
         while not yet a solution:
             expand the solution by one edge probabilistically
             according to the pheromone;

         global_pheromone_update(i):
         for all edges in the solution:
                     increase the pheromone according to the quality;
                                                                        14
Advantages and Disadvantages


 Advantages :
           1) Positive feedback accounts for rapid discovery of good solution.
           2) Efficient for Travels salesman problem and other similar problem.
           3) Can be use in dynamic application.



Disadvantages :
           1) Theoretical analysis is difficult.
           2) Probability distribution changes by iteration.
           3) Time to convergence is uncertian.



                                                                                  15
Summary

•   Artificial Intelligence technique used to develop a new method to solve problems
    unsolvable since last many years
•   ACO is a recently proposed metaheuristic approach for solving hard combinatorial
    optimization problems.
•   Artificial ants implement a randomized construction heuristic which makes probabilistic
    decisions
•   ACO shows great performance with the “ill-structured” problems like network routing




                                                                                              16
References

•   M. Dorigo, M. Birattari, T. Stützle, “Ant Colony Optimization – Artificial Ants as a
    Computational Intelligence Technique”, IEEE Computational Intelligence Magazine,
    2006
•   C. Blum, Theoretical and Practical Aspects of Ant Colony Optimization, Dissertations
    in Artificial Intelligence, Vol. 282, Akademische Verlagsgesellschaft Aka GmbH, Berlin,
    Germany, 2004.
•   Wikipedia.com




                                                                                              17
Questions ?




              18
Thank You !




              19

More Related Content

PPT
Ant Colony Optimization presentation
PPTX
ant colony optimization
PDF
Ant Colony Optimization: Routing
PPTX
Ant Colony Optimization (ACO)
PPT
Ant colony Optimization
PPTX
Optimization by Ant Colony Method
PDF
Ant Colony Optimization
PDF
Ant colony optimization
Ant Colony Optimization presentation
ant colony optimization
Ant Colony Optimization: Routing
Ant Colony Optimization (ACO)
Ant colony Optimization
Optimization by Ant Colony Method
Ant Colony Optimization
Ant colony optimization

What's hot (20)

PPTX
Ant colony optimization
PPT
Ant colony optimization
PPTX
Classification with ant colony optimization
PPTX
Travelling and salesman problem using ant colony optimization
PPTX
Ant colony optimization (aco)
PPTX
Final project
PPT
Ant Colony Optimization - ACO
PPTX
Ant Colony Optimization
PPT
Ant colony optimization
PPT
Particle Swarm Optimization - PSO
PPT
Ant colony optimization
PPT
Optimization techniques: Ant Colony Optimization: Bee Colony Optimization: Tr...
PPT
PPSX
Particle Swarm optimization
PPTX
Particle swarm optimization
PPSX
Show ant-colony-optimization-for-solving-the-traveling-salesman-problem
PPTX
Particle swarm optimization
PPTX
Ant colony optimization
PPTX
Firefly algorithm
PPTX
Ant colony algorithm
Ant colony optimization
Ant colony optimization
Classification with ant colony optimization
Travelling and salesman problem using ant colony optimization
Ant colony optimization (aco)
Final project
Ant Colony Optimization - ACO
Ant Colony Optimization
Ant colony optimization
Particle Swarm Optimization - PSO
Ant colony optimization
Optimization techniques: Ant Colony Optimization: Bee Colony Optimization: Tr...
Particle Swarm optimization
Particle swarm optimization
Show ant-colony-optimization-for-solving-the-traveling-salesman-problem
Particle swarm optimization
Ant colony optimization
Firefly algorithm
Ant colony algorithm
Ad

Recently uploaded (20)

PDF
Environmental Education MCQ BD2EE - Share Source.pdf
PDF
Uderstanding digital marketing and marketing stratergie for engaging the digi...
PDF
Empowerment Technology for Senior High School Guide
PPTX
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
DOCX
Cambridge-Practice-Tests-for-IELTS-12.docx
PDF
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
PPTX
History, Philosophy and sociology of education (1).pptx
PDF
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
PDF
advance database management system book.pdf
PDF
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
PDF
HVAC Specification 2024 according to central public works department
PPTX
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
PPTX
Virtual and Augmented Reality in Current Scenario
PPTX
TNA_Presentation-1-Final(SAVE)) (1).pptx
PDF
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
PDF
LDMMIA Reiki Yoga Finals Review Spring Summer
PDF
AI-driven educational solutions for real-life interventions in the Philippine...
PDF
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
PDF
What if we spent less time fighting change, and more time building what’s rig...
PPTX
Introduction to pro and eukaryotes and differences.pptx
Environmental Education MCQ BD2EE - Share Source.pdf
Uderstanding digital marketing and marketing stratergie for engaging the digi...
Empowerment Technology for Senior High School Guide
Chinmaya Tiranga Azadi Quiz (Class 7-8 )
Cambridge-Practice-Tests-for-IELTS-12.docx
FOISHS ANNUAL IMPLEMENTATION PLAN 2025.pdf
History, Philosophy and sociology of education (1).pptx
Vision Prelims GS PYQ Analysis 2011-2022 www.upscpdf.com.pdf
advance database management system book.pdf
A GUIDE TO GENETICS FOR UNDERGRADUATE MEDICAL STUDENTS
HVAC Specification 2024 according to central public works department
ELIAS-SEZIURE AND EPilepsy semmioan session.pptx
Virtual and Augmented Reality in Current Scenario
TNA_Presentation-1-Final(SAVE)) (1).pptx
Τίμαιος είναι φιλοσοφικός διάλογος του Πλάτωνα
LDMMIA Reiki Yoga Finals Review Spring Summer
AI-driven educational solutions for real-life interventions in the Philippine...
احياء السادس العلمي - الفصل الثالث (التكاثر) منهج متميزين/كلية بغداد/موهوبين
What if we spent less time fighting change, and more time building what’s rig...
Introduction to pro and eukaryotes and differences.pptx
Ad

Ant colony optimization

  • 1. Ant Colony Optimization By: Sachin Agarwalla Regd. No-0911012065 C.S.E(A) Under Guidance Of: Mr. Swadhin Ku. Barisal B.E., M.Tech., CSE (IIT, Kharagpur) Assistant Professor 1 I.T.E.R
  • 2. Optimization General optimization problem: given f:Xℝ, find xεX such that f(x) is minimum • Given a graph with two specified vertices A and B, find a shortest path from A to B.  shortest path problem, polynomial 2
  • 3. Ant colony food 3 nest
  • 4. Ant Colony Optimization (ACO): a heuristic optimization method for shortest path and other optimization problems which borrows ideas from biological ants 4
  • 5. Ant Colony Optimization Outline • History: ACO for shortest paths • ACO for shortest paths I: directed • ACO for shortest paths II: general • Advantages and Disadvantages • Summary • References 5
  • 6. History: ACO for shortest paths … 6
  • 7. History: ACO for shortest paths Goss et al. 1989, Deneuborg et al. 1990 food experiments with Argentine ants: • ants go from the nest to the food source and backwards • after a while, the ants prefer the shortest path from the nest to the food source • stigmercy: • the ants communicate indirectly laying pheromone trails and following trails with higher pheromone • length gradient  pheromone will accumulate on the shortest path nest 7
  • 8. ACO for shortest paths I:directed A first ACO for a simple shortest path problem: directed acyclic graph (V={0,...,N}, E={ij}), ant hill: 0, food source: N for all i: pi:=0; /*ant position init*/ si:=hungry; /*ant state init*/ for all i j: τij:=const; /*pheromone init*/ repeat for all i: ant_step(i); /*ant step*/ 8 for all i j: τij := (1-ρ) τij ; /*evaporate pheromone*/
  • 9. ACO for shortest paths I:directed ant_step(i): if pi=N: si:=satisfied; if pi=0: si:=hungry; /*collect food/deliver food*/ if si=hungry: choose j with pij with probability τpi j/Σpij’τpij’ /*choose next step*/ update Δτpi j := ε; pi:=j; /*update pheromone*/ if si=satisfied: choose j with jpi with probability τjpi/Σj’piτj’pi update Δτjpi:= ε; pj:=i; /* reversed directions*/ 9
  • 10. ACO for shortest paths II:general ...a more complex undirected cyclic graph ... WC4 WC5 Barbara Marc 449a Anja Dagmar Espresso 322 339 WC3 Friedhelm Fachschaft WC2 Rechner Astrid Zeitschriften WC Bibo RZ-Sekretariat Mensa Cafete Getraenke- RZ Toiletten automat 10
  • 11. ACO for shortest paths II:general ... Marc was not so happy with the result ... 449a 449a 11
  • 12. ACO for shortest paths II:general for all i: pi:=0; /*ant position init*/ si:=hungry si:=( ); /*ant brain is empty*/ minibrain for all i-j: τi-j:=const; /*pheromone init*/ repeat for all i: construct_solution(i); repeat for all i: ant_step(i); for all i: global_pheromone_update(i); for all i-j: τi-j := (1-ρ) τi-j; /*evaporate*/ construct_solution(i): while pi≠N /*no solution*/ choose j with pi-j with probability τpi-j / Σpi-j’τpi-j’; pi:=j; minibrain append j to si; /*remember the trail*/ global_pheromone_update(i): update according for all j-j’ in si: Δτj-j’:= 1/length of the path stored in si; 12 to the quality
  • 13. ACO for shortest paths II:general WC4 WC5 Barbara Marc Anja Dagmar Espresso 449a 339 WC3 Friedhelm 322 Fachschaft WC2 Rechner Astrid Zeitschriften WC Bibo RZ-Sekretariat Mensa Cafete Getraenke RZ Toiletten 13
  • 14. ACO for shortest paths init pheromone ti-j ; repeat for all ants i: construct_solution(i); for all ants i: global_pheromone_update(i); for all edges: evaporate pheromone; construct_solution(i): init ant; while not yet a solution: expand the solution by one edge probabilistically according to the pheromone; global_pheromone_update(i): for all edges in the solution: increase the pheromone according to the quality; 14
  • 15. Advantages and Disadvantages Advantages : 1) Positive feedback accounts for rapid discovery of good solution. 2) Efficient for Travels salesman problem and other similar problem. 3) Can be use in dynamic application. Disadvantages : 1) Theoretical analysis is difficult. 2) Probability distribution changes by iteration. 3) Time to convergence is uncertian. 15
  • 16. Summary • Artificial Intelligence technique used to develop a new method to solve problems unsolvable since last many years • ACO is a recently proposed metaheuristic approach for solving hard combinatorial optimization problems. • Artificial ants implement a randomized construction heuristic which makes probabilistic decisions • ACO shows great performance with the “ill-structured” problems like network routing 16
  • 17. References • M. Dorigo, M. Birattari, T. Stützle, “Ant Colony Optimization – Artificial Ants as a Computational Intelligence Technique”, IEEE Computational Intelligence Magazine, 2006 • C. Blum, Theoretical and Practical Aspects of Ant Colony Optimization, Dissertations in Artificial Intelligence, Vol. 282, Akademische Verlagsgesellschaft Aka GmbH, Berlin, Germany, 2004. • Wikipedia.com 17