SlideShare a Scribd company logo
Partial Derivative
Let us consider a function u of three independent variable x,y,z i.e.
u=f (x , y , z)−−−−(1)
Then the partial derivative of u w.r.t x is denoted by
∂u
∂x
and is defined as
∂u(x, y , z)
∂x
= lim
∆ x→0
f (x+∆ x ,z)−f (x , y , z)
∆ x
The partial derivative of u w.r.t. y and z can be defined similarly and they are
denoted by
∂u
∂ y
&
∂u
∂ z
.
The partial derivative
∂u
∂x
is denoted by as ux
Similarly
∂u
∂ y
=uy &
∂u
∂ z
=uz.
The partial derivative of higher order of the function (1) can also be calculated by
successive differentiation. Thus we have
∂
2
u
∂x
2
=
∂
∂ x (∂u
∂ x )=uxx
∂
2
u
∂ y
2
=
∂
∂ y (∂u
∂ y )=uyy
∂2
u
∂x ∂ y
=
∂
∂x (∂u
∂ y )=uxy
∂
2
u
∂ y∂ x
=
∂
∂ y (∂u
∂ x )=uyx
Problems:
1. If u=x3
−3 xy2
then prove that
∂
2
u
∂x
2
+
∂
2
u
∂ y
2
=0
2. If u=eax
sinby verify
∂2
u
∂x ∂ y
=
∂2
u
∂ y ∂ x
3. If z=log ⁡(x2
+ y2
) then prove that
∂
2
z
∂x ∂ y
=
∂
2
z
∂ y ∂ x
Mrs P M Swami, Department of BSH
4. If u=log ⁡(x3
+ y3
+z3
−3xyz) prove that
∂u
∂x
+
∂u
∂ y
+
∂u
∂ z
=
3
x+ y+z
5. Ifu=exyz
find
∂3
u
∂x ∂ y ∂z
6. If u=e
x
2
+ y
2
+z
2
then prove that
∂
3
u
∂x ∂ y ∂z
=8 xyzu
7. Ifz (x+ y)=x2
+ y2
then prove that (
∂ z
∂ x
−
∂z
∂ y
)
2
=4[1−
∂ z
∂ x
−
∂ z
∂ y ]
8. If u=x
y
verify
∂2
u
∂x ∂ y
=
∂2
u
∂ y ∂ x
9. Prove that z=f (x+at)+∅(x −at) satisfies
∂
2
z
∂t
2
=a
2 ∂
2
z
∂ x
2 where a is constant.
10. If z=x2
tan− 1 y
x
− y2
tan− 1 x
y
prove that
∂
2
z
∂x ∂ y
=
x
2
− y
2
x2
+ y2
11.If u=log ⁡(x
3
+ y
3
−x
2
y − y
2
x) prove that (
∂
∂ x
+
∂
∂ y
)
2
u=−
4
(x+ y)
2
12.If u=log ⁡(x
3
+ y
3
−z
3
+3xyz) prove (
∂
∂ x
+
∂
∂ y
+
∂
∂z
)
2
u=−
9
(x+ y+z)2
13.If u=
1
x
2
+ y
2
+ z
2 then prove that
∂2
u
∂x2
+
∂2
u
∂ y2
+
∂2
u
∂z2
=2u
2
14. If r
2
=x
2
+ y
2
+z
2
∧V=r
m
, provet at
ℎ V xx+V yy +Vzz =m(m+1)r
m−2
15.If x
x
y
y
z
z
=c , show that at x=y=z,
∂
2
z
∂x ∂ y
=−(xlogex)−1
16.Find the value of “n” so that V=r
n
(3cos
2
θ−1) Satisfies the equation
∂
∂r (r
2 ∂V
∂r )+
1
sinθ
∂
∂θ (sinθ
∂V
∂θ )=0
Mrs P M Swami, Department of BSH
Examples on variable to be treated as constant:
(
∂r
∂ x
)
θ
Means the partial derivative of r w.r.t x treating θ as constant. In a relation
expressing r is function of x and θ only.
When no indication is given regarding which variable to be kept constant then by
convention we take
∂
∂x
→
(
∂
∂ x
)
y
∧∂
∂ y
→(
∂
∂ y
)
x
Similarly ∂
∂r
→
(
∂
∂r
)
θ
∧∂
∂θ
→(
∂
∂θ
)
r
Problems:
1. If x=rcosθ∧y=rsinθ then ST (i) [x(∂ x
∂r )θ
+ y(∂ y
∂r )θ
]
2
=x2
+ y2
(ii) (
∂ y
∂θ
)
r
(iii) (
∂r
∂ x
)
y
(iv) (
∂θ
∂ y
)
x
(iv) (
∂θ
∂ x
)
y
Differentiation of composite functions:
Let z=f (x , y),x=∅(t )∧ y=∅(t) so that z is function of x,y and x & y are themselves
function of third variable t. these three relation defines z is function of t.
therefore z is called composite function of t.
z→ x , y →t
z→t
dz
dt
=
∂ z
∂x
.
dx
dt
+
∂ z
∂ y
.
dy
dt
If z is function of x & y and z=f (x , y),x=∅(u,v)∧ y=∅(u,v) then
z→ x , y →u, v
That is z→u,v
∂ z
∂u
=
∂ z
∂x
.
∂x
∂u
+
∂ y
∂u
.
∂ z
∂ y
Mrs P M Swami, Department of BSH
∂ z
∂v
=
∂ z
∂x
.
∂ x
∂v
+
∂ y
∂v
.
∂ z
∂ y
Problems:
1. If z=x
2
+ y
2
,x=atsint∧y=atcostthen find
dz
dt
.
2. If z=tan
−1 x
y
,x=2t∧y=1−t
2
find
dz
dt
.
3. If z=x
2
+ y
2
,x=at
2
∧y=2at find
dz
dt
.
4. If u=xlogxy ,w ere
ℎ x
3
+ y
3
+3xy=1,find
du
dx
5. If u=f (ex − y
,ey− z
,ez−x
) Find
∂u
∂x
+
∂u
∂ y
+
∂u
∂ z
6. If u=f (ax −by ,by−cz ,cz−ax)Find
1
a
∂u
∂x
+
1
b
∂u
∂ y
+
1
c
∂u
∂z
7. If u=f (x− y , y −z ,z −x) then Find
∂u
∂x
+
∂u
∂ y
+
∂u
∂ z
8. If u=f (x2
− y2
, y2
−z2
,z2
−x2
) then Find
1
x
∂u
∂x
+
1
y
∂u
∂ y
+
1
z
∂u
∂ z
Differentiation of implicit function of two variable:
dy
dx
=−
∂f
∂ x
∂f
∂ y
Problems:
1. If (cosx)
y
=(siny)
x
find
dy
dx
2. If x
y
+ y
x
+x
x
+ y
y
=0 find
dy
dx
Mrs P M Swami, Department of BSH
Homogenous function:
A function f(x,y,z) is called homogenous function of degree n. if by putting
X=xt, Y=yt and Z=zt the function of f(x,y,z) becomes tn
f(x,y,z). where n is
degree.
Problems:
1. Verify whether the function u=
x
2
+ y
2
√x+√ y
is homogenous or not.
2. Verify whether the function u=sin(x
2
+ y
2
x+ y ) is homogenous or not.
3. Verify whether the function u=sin
−1 y
x
is homogenous or not.
Euler’s theorem:
Statement: For a homogenous function u(x,y) of degree n in x & y is
x
∂u
∂ x
+ y
∂u
∂ y
=nu
Proof:
Since u(x,y) is homogenous function of degree n in x & y hence it will be
expressed as u=xn
∅(x
y )−−−−−−−(1)
∂u
∂x
=x
n
∅
'
(x
y ).
1
y
+∅(x
y )nx
n−1
x
∂u
∂ x
=xn+1
∅'
(x
y ).
1
y
+∅(x
y )n xn
x
∂u
∂ x
=x
n+1
∅
'
(x
y ).
1
y
+nu−−−−−−(2)
∂u
∂ y
=x
n
∅
'
(x
y )(−
x
y
2 )
y
∂u
∂ y
=−xn+1
∅'
(x
y ).
1
y
−−−−−(3)
Mrs P M Swami, Department of BSH
From (2) & (3) we have x
∂u
∂ x
+ y
∂u
∂ y
=nu
Theorem: If u is homogenous function of degree n in x & y then prove that
x2 ∂2
u
∂ x2
+2xy
∂2
u
∂ x∂ y
+ y2 ∂2
u
∂ y2
=n(n−1)u
Proof: we know that x
∂u
∂ x
+ y
∂u
∂ y
=nu−−−−−(1)
Differentiate w.r.t x partially,
x
∂
2
u
∂ x
2
+
∂u
∂x
+ y
∂
∂ x (∂u
∂ y )=n
∂u
∂ x
x
2 ∂2
u
∂ x2
+x
∂u
∂ x
+xy
∂2
u
∂ x ∂ y
=nx
∂u
∂x
x
2 ∂
2
u
∂ x
2
+xy
∂
2
u
∂ x ∂ y
=(n−1)x
∂u
∂ x
−−−−−(2)
Differentiate w.r.t y partially,
x
∂
∂ y (∂u
∂x )+ y
∂
2
u
∂ y
2
+
∂u
∂ y
=n
∂u
∂ y
xy
∂2
u
∂ y ∂ x
+ y2 ∂2
u
∂ y
2
+ y
∂u
∂ y
=ny
∂u
∂ y
xy
∂2
u
∂ y ∂ x
+ y
2 ∂2
u
∂ y2
=(n−1) y
∂u
∂ y
−−−−−(3)
From (2) & (3) we have
x
2 ∂
2
u
∂ x
2
+2xy
∂
2
u
∂ x∂ y
+ y
2 ∂
2
u
∂ y
2
=n(n−1)u
Corollary: If u is homogenous function of three variable x,y & z of degree n then
Mrs P M Swami, Department of BSH
x
∂u
∂ x
+ y
∂u
∂ y
+z
∂u
∂ z
=nu
Corollary: If z is homogenous function of x & y and z=f(u) then,
x
∂u
∂ x
+ y
∂u
∂ y
=n
f (u)
f '
(u)
And x
2 ∂
2
u
∂ x2
+2xy
∂
2
u
∂ x∂ y
+ y
2 ∂
2
u
∂ y2
=g(u)[ g
'
(u)−1]
Where g(u)=n
f (u)
f '
(u)
Problems:
1. If z=
x
1
3
+ y
1
3
x
1
2
+ y
1
2
find x
∂z
∂ x
+ y
∂z
∂ y
2. If u=
x3
y+ y3
x
y− x
then find x
2 ∂
2
u
∂ x2
+2xy
∂
2
u
∂ x∂ y
+ y
2 ∂
2
u
∂ y2
3. If u=xsin
− 1 y
x
+ y tan
−1 y
x
then find
i. x
∂u
∂ x
+ y
∂u
∂ y
ii. x
2 ∂2
u
∂ x2
+2xy
∂2
u
∂ x∂ y
+ y
2 ∂2
u
∂ y2
4. If u=x
4
y
2
tan
−1 x
y
find
i. x
∂u
∂ x
+ y
∂u
∂ y
ii. x2 ∂
2
u
∂ x2
+2xy
∂
2
u
∂ x∂ y
+ y2 ∂
2
u
∂ y2
5. If u=sin
−1
(√x−√y
√x+√ y )t en
ℎ provet at
ℎ
∂u
∂ y
=−
x
y
∂u
∂ x
6. If y=xcosu t en
ℎ find x
2 ∂
2
u
∂ x
2
+2 xy
∂
2
u
∂ x∂ y
+ y
2 ∂
2
u
∂ y
2
Mrs P M Swami, Department of BSH
7. If u=f (x
y
+
y
x
+
z
x )t en
ℎ find x
∂u
∂ x
+ y
∂u
∂ y
8. Verify Euler’s theorem for the function u=log ⁡(
x+ y
x− y
)
9. If u=4 log
(x
1
4
+ y
1
4
x
1
5
+ y
1
5 )then find x
2 ∂2
u
∂ x2
+2xy
∂2
u
∂ x∂ y
+ y
2 ∂2
u
∂ y2
10. If u=sin−1
√x2
+ y2
then PT x
2 ∂2
u
∂ x
2
+2xy
∂2
u
∂ x∂ y
+ y
2 ∂2
u
∂ y
2
=tan
3
u
11.If u=cosec
−1
√x
1
2
+ y
1
2
x
1
3
+ y
1
3
then prove that
x
2 ∂2
u
∂ x
2
+2xy
∂2
u
∂ x∂ y
+ y
2 ∂2
u
∂ y
2
=
tanu
12 [13
12
+
tan2
u
12 ]
12.Verify Euler’s theorem for the function u=sin−1
√x2
+ y2
13.If cosu=
√x2
+ y2
x− y
then find x
2 ∂
2
u
∂ x2
+2xy
∂
2
u
∂ x∂ y
+ y
2 ∂
2
u
∂ y2
Mrs P M Swami, Department of BSH

More Related Content

DOCX
Partial derivative and related questions
PDF
Transformation of random variables
PDF
evans_pde_solutions_ch2_ch3.pdf
PPT
Complex varible
PPT
Complex varible
PPT
CHAIN RULE AND IMPLICIT FUNCTION
PPTX
Partial differentiation B tech
PDF
Week 3 [compatibility mode]
Partial derivative and related questions
Transformation of random variables
evans_pde_solutions_ch2_ch3.pdf
Complex varible
Complex varible
CHAIN RULE AND IMPLICIT FUNCTION
Partial differentiation B tech
Week 3 [compatibility mode]

Similar to Application Of Partial derivative for F Y.docx (20)

PDF
Continuity of functions by graph (exercises with detailed solutions)
PDF
U unit3 vm
PDF
Lesson20 Tangent Planes Slides+Notes
PDF
lec12.pdf
PDF
Fourier 3
PDF
Taller 2
PDF
Universal algebra (1)
PDF
Sect4 2
PDF
Maths Notes - Differential Equations
DOCX
DIFFERENTIAL EQUATION
PDF
Mathematics 3.pdf civil engineering concrete
PDF
Partial diferential good
PDF
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
PPT
Derivatives
PDF
CalculusStudyGuide
PDF
Answers to Problems for Advanced Engineering Mathematics, 7th Edition by Denn...
PDF
Imc2016 day2-solutions
PDF
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
PDF
Assignment For Matlab Report Subject Calculus 2
PPT
first order ode with its application
Continuity of functions by graph (exercises with detailed solutions)
U unit3 vm
Lesson20 Tangent Planes Slides+Notes
lec12.pdf
Fourier 3
Taller 2
Universal algebra (1)
Sect4 2
Maths Notes - Differential Equations
DIFFERENTIAL EQUATION
Mathematics 3.pdf civil engineering concrete
Partial diferential good
Solutions for Problems in "A First Course in Differential Equations" (11th Ed...
Derivatives
CalculusStudyGuide
Answers to Problems for Advanced Engineering Mathematics, 7th Edition by Denn...
Imc2016 day2-solutions
Answers to Problems for Advanced Engineering Mathematics 6th Edition Internat...
Assignment For Matlab Report Subject Calculus 2
first order ode with its application
Ad

Recently uploaded (20)

PDF
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
PPTX
7. General Toxicologyfor clinical phrmacy.pptx
PDF
HPLC-PPT.docx high performance liquid chromatography
PPTX
Introduction to Cardiovascular system_structure and functions-1
PDF
. Radiology Case Scenariosssssssssssssss
PPTX
Derivatives of integument scales, beaks, horns,.pptx
PPTX
2Systematics of Living Organisms t-.pptx
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
ECG_Course_Presentation د.محمد صقران ppt
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
2. Earth - The Living Planet Module 2ELS
PPTX
Introduction to Fisheries Biotechnology_Lesson 1.pptx
PPTX
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
PPTX
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
PPTX
INTRODUCTION TO EVS | Concept of sustainability
PPTX
Microbiology with diagram medical studies .pptx
DOCX
Viruses (History, structure and composition, classification, Bacteriophage Re...
PPTX
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
Mastering Bioreactors and Media Sterilization: A Complete Guide to Sterile Fe...
7. General Toxicologyfor clinical phrmacy.pptx
HPLC-PPT.docx high performance liquid chromatography
Introduction to Cardiovascular system_structure and functions-1
. Radiology Case Scenariosssssssssssssss
Derivatives of integument scales, beaks, horns,.pptx
2Systematics of Living Organisms t-.pptx
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
ECG_Course_Presentation د.محمد صقران ppt
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
2. Earth - The Living Planet Module 2ELS
Introduction to Fisheries Biotechnology_Lesson 1.pptx
EPIDURAL ANESTHESIA ANATOMY AND PHYSIOLOGY.pptx
ognitive-behavioral therapy, mindfulness-based approaches, coping skills trai...
INTRODUCTION TO EVS | Concept of sustainability
Microbiology with diagram medical studies .pptx
Viruses (History, structure and composition, classification, Bacteriophage Re...
G5Q1W8 PPT SCIENCE.pptx 2025-2026 GRADE 5
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
AlphaEarth Foundations and the Satellite Embedding dataset
Ad

Application Of Partial derivative for F Y.docx

  • 1. Partial Derivative Let us consider a function u of three independent variable x,y,z i.e. u=f (x , y , z)−−−−(1) Then the partial derivative of u w.r.t x is denoted by ∂u ∂x and is defined as ∂u(x, y , z) ∂x = lim ∆ x→0 f (x+∆ x ,z)−f (x , y , z) ∆ x The partial derivative of u w.r.t. y and z can be defined similarly and they are denoted by ∂u ∂ y & ∂u ∂ z . The partial derivative ∂u ∂x is denoted by as ux Similarly ∂u ∂ y =uy & ∂u ∂ z =uz. The partial derivative of higher order of the function (1) can also be calculated by successive differentiation. Thus we have ∂ 2 u ∂x 2 = ∂ ∂ x (∂u ∂ x )=uxx ∂ 2 u ∂ y 2 = ∂ ∂ y (∂u ∂ y )=uyy ∂2 u ∂x ∂ y = ∂ ∂x (∂u ∂ y )=uxy ∂ 2 u ∂ y∂ x = ∂ ∂ y (∂u ∂ x )=uyx Problems: 1. If u=x3 −3 xy2 then prove that ∂ 2 u ∂x 2 + ∂ 2 u ∂ y 2 =0 2. If u=eax sinby verify ∂2 u ∂x ∂ y = ∂2 u ∂ y ∂ x 3. If z=log ⁡(x2 + y2 ) then prove that ∂ 2 z ∂x ∂ y = ∂ 2 z ∂ y ∂ x Mrs P M Swami, Department of BSH
  • 2. 4. If u=log ⁡(x3 + y3 +z3 −3xyz) prove that ∂u ∂x + ∂u ∂ y + ∂u ∂ z = 3 x+ y+z 5. Ifu=exyz find ∂3 u ∂x ∂ y ∂z 6. If u=e x 2 + y 2 +z 2 then prove that ∂ 3 u ∂x ∂ y ∂z =8 xyzu 7. Ifz (x+ y)=x2 + y2 then prove that ( ∂ z ∂ x − ∂z ∂ y ) 2 =4[1− ∂ z ∂ x − ∂ z ∂ y ] 8. If u=x y verify ∂2 u ∂x ∂ y = ∂2 u ∂ y ∂ x 9. Prove that z=f (x+at)+∅(x −at) satisfies ∂ 2 z ∂t 2 =a 2 ∂ 2 z ∂ x 2 where a is constant. 10. If z=x2 tan− 1 y x − y2 tan− 1 x y prove that ∂ 2 z ∂x ∂ y = x 2 − y 2 x2 + y2 11.If u=log ⁡(x 3 + y 3 −x 2 y − y 2 x) prove that ( ∂ ∂ x + ∂ ∂ y ) 2 u=− 4 (x+ y) 2 12.If u=log ⁡(x 3 + y 3 −z 3 +3xyz) prove ( ∂ ∂ x + ∂ ∂ y + ∂ ∂z ) 2 u=− 9 (x+ y+z)2 13.If u= 1 x 2 + y 2 + z 2 then prove that ∂2 u ∂x2 + ∂2 u ∂ y2 + ∂2 u ∂z2 =2u 2 14. If r 2 =x 2 + y 2 +z 2 ∧V=r m , provet at ℎ V xx+V yy +Vzz =m(m+1)r m−2 15.If x x y y z z =c , show that at x=y=z, ∂ 2 z ∂x ∂ y =−(xlogex)−1 16.Find the value of “n” so that V=r n (3cos 2 θ−1) Satisfies the equation ∂ ∂r (r 2 ∂V ∂r )+ 1 sinθ ∂ ∂θ (sinθ ∂V ∂θ )=0 Mrs P M Swami, Department of BSH
  • 3. Examples on variable to be treated as constant: ( ∂r ∂ x ) θ Means the partial derivative of r w.r.t x treating θ as constant. In a relation expressing r is function of x and θ only. When no indication is given regarding which variable to be kept constant then by convention we take ∂ ∂x → ( ∂ ∂ x ) y ∧∂ ∂ y →( ∂ ∂ y ) x Similarly ∂ ∂r → ( ∂ ∂r ) θ ∧∂ ∂θ →( ∂ ∂θ ) r Problems: 1. If x=rcosθ∧y=rsinθ then ST (i) [x(∂ x ∂r )θ + y(∂ y ∂r )θ ] 2 =x2 + y2 (ii) ( ∂ y ∂θ ) r (iii) ( ∂r ∂ x ) y (iv) ( ∂θ ∂ y ) x (iv) ( ∂θ ∂ x ) y Differentiation of composite functions: Let z=f (x , y),x=∅(t )∧ y=∅(t) so that z is function of x,y and x & y are themselves function of third variable t. these three relation defines z is function of t. therefore z is called composite function of t. z→ x , y →t z→t dz dt = ∂ z ∂x . dx dt + ∂ z ∂ y . dy dt If z is function of x & y and z=f (x , y),x=∅(u,v)∧ y=∅(u,v) then z→ x , y →u, v That is z→u,v ∂ z ∂u = ∂ z ∂x . ∂x ∂u + ∂ y ∂u . ∂ z ∂ y Mrs P M Swami, Department of BSH
  • 4. ∂ z ∂v = ∂ z ∂x . ∂ x ∂v + ∂ y ∂v . ∂ z ∂ y Problems: 1. If z=x 2 + y 2 ,x=atsint∧y=atcostthen find dz dt . 2. If z=tan −1 x y ,x=2t∧y=1−t 2 find dz dt . 3. If z=x 2 + y 2 ,x=at 2 ∧y=2at find dz dt . 4. If u=xlogxy ,w ere ℎ x 3 + y 3 +3xy=1,find du dx 5. If u=f (ex − y ,ey− z ,ez−x ) Find ∂u ∂x + ∂u ∂ y + ∂u ∂ z 6. If u=f (ax −by ,by−cz ,cz−ax)Find 1 a ∂u ∂x + 1 b ∂u ∂ y + 1 c ∂u ∂z 7. If u=f (x− y , y −z ,z −x) then Find ∂u ∂x + ∂u ∂ y + ∂u ∂ z 8. If u=f (x2 − y2 , y2 −z2 ,z2 −x2 ) then Find 1 x ∂u ∂x + 1 y ∂u ∂ y + 1 z ∂u ∂ z Differentiation of implicit function of two variable: dy dx =− ∂f ∂ x ∂f ∂ y Problems: 1. If (cosx) y =(siny) x find dy dx 2. If x y + y x +x x + y y =0 find dy dx Mrs P M Swami, Department of BSH
  • 5. Homogenous function: A function f(x,y,z) is called homogenous function of degree n. if by putting X=xt, Y=yt and Z=zt the function of f(x,y,z) becomes tn f(x,y,z). where n is degree. Problems: 1. Verify whether the function u= x 2 + y 2 √x+√ y is homogenous or not. 2. Verify whether the function u=sin(x 2 + y 2 x+ y ) is homogenous or not. 3. Verify whether the function u=sin −1 y x is homogenous or not. Euler’s theorem: Statement: For a homogenous function u(x,y) of degree n in x & y is x ∂u ∂ x + y ∂u ∂ y =nu Proof: Since u(x,y) is homogenous function of degree n in x & y hence it will be expressed as u=xn ∅(x y )−−−−−−−(1) ∂u ∂x =x n ∅ ' (x y ). 1 y +∅(x y )nx n−1 x ∂u ∂ x =xn+1 ∅' (x y ). 1 y +∅(x y )n xn x ∂u ∂ x =x n+1 ∅ ' (x y ). 1 y +nu−−−−−−(2) ∂u ∂ y =x n ∅ ' (x y )(− x y 2 ) y ∂u ∂ y =−xn+1 ∅' (x y ). 1 y −−−−−(3) Mrs P M Swami, Department of BSH
  • 6. From (2) & (3) we have x ∂u ∂ x + y ∂u ∂ y =nu Theorem: If u is homogenous function of degree n in x & y then prove that x2 ∂2 u ∂ x2 +2xy ∂2 u ∂ x∂ y + y2 ∂2 u ∂ y2 =n(n−1)u Proof: we know that x ∂u ∂ x + y ∂u ∂ y =nu−−−−−(1) Differentiate w.r.t x partially, x ∂ 2 u ∂ x 2 + ∂u ∂x + y ∂ ∂ x (∂u ∂ y )=n ∂u ∂ x x 2 ∂2 u ∂ x2 +x ∂u ∂ x +xy ∂2 u ∂ x ∂ y =nx ∂u ∂x x 2 ∂ 2 u ∂ x 2 +xy ∂ 2 u ∂ x ∂ y =(n−1)x ∂u ∂ x −−−−−(2) Differentiate w.r.t y partially, x ∂ ∂ y (∂u ∂x )+ y ∂ 2 u ∂ y 2 + ∂u ∂ y =n ∂u ∂ y xy ∂2 u ∂ y ∂ x + y2 ∂2 u ∂ y 2 + y ∂u ∂ y =ny ∂u ∂ y xy ∂2 u ∂ y ∂ x + y 2 ∂2 u ∂ y2 =(n−1) y ∂u ∂ y −−−−−(3) From (2) & (3) we have x 2 ∂ 2 u ∂ x 2 +2xy ∂ 2 u ∂ x∂ y + y 2 ∂ 2 u ∂ y 2 =n(n−1)u Corollary: If u is homogenous function of three variable x,y & z of degree n then Mrs P M Swami, Department of BSH
  • 7. x ∂u ∂ x + y ∂u ∂ y +z ∂u ∂ z =nu Corollary: If z is homogenous function of x & y and z=f(u) then, x ∂u ∂ x + y ∂u ∂ y =n f (u) f ' (u) And x 2 ∂ 2 u ∂ x2 +2xy ∂ 2 u ∂ x∂ y + y 2 ∂ 2 u ∂ y2 =g(u)[ g ' (u)−1] Where g(u)=n f (u) f ' (u) Problems: 1. If z= x 1 3 + y 1 3 x 1 2 + y 1 2 find x ∂z ∂ x + y ∂z ∂ y 2. If u= x3 y+ y3 x y− x then find x 2 ∂ 2 u ∂ x2 +2xy ∂ 2 u ∂ x∂ y + y 2 ∂ 2 u ∂ y2 3. If u=xsin − 1 y x + y tan −1 y x then find i. x ∂u ∂ x + y ∂u ∂ y ii. x 2 ∂2 u ∂ x2 +2xy ∂2 u ∂ x∂ y + y 2 ∂2 u ∂ y2 4. If u=x 4 y 2 tan −1 x y find i. x ∂u ∂ x + y ∂u ∂ y ii. x2 ∂ 2 u ∂ x2 +2xy ∂ 2 u ∂ x∂ y + y2 ∂ 2 u ∂ y2 5. If u=sin −1 (√x−√y √x+√ y )t en ℎ provet at ℎ ∂u ∂ y =− x y ∂u ∂ x 6. If y=xcosu t en ℎ find x 2 ∂ 2 u ∂ x 2 +2 xy ∂ 2 u ∂ x∂ y + y 2 ∂ 2 u ∂ y 2 Mrs P M Swami, Department of BSH
  • 8. 7. If u=f (x y + y x + z x )t en ℎ find x ∂u ∂ x + y ∂u ∂ y 8. Verify Euler’s theorem for the function u=log ⁡( x+ y x− y ) 9. If u=4 log (x 1 4 + y 1 4 x 1 5 + y 1 5 )then find x 2 ∂2 u ∂ x2 +2xy ∂2 u ∂ x∂ y + y 2 ∂2 u ∂ y2 10. If u=sin−1 √x2 + y2 then PT x 2 ∂2 u ∂ x 2 +2xy ∂2 u ∂ x∂ y + y 2 ∂2 u ∂ y 2 =tan 3 u 11.If u=cosec −1 √x 1 2 + y 1 2 x 1 3 + y 1 3 then prove that x 2 ∂2 u ∂ x 2 +2xy ∂2 u ∂ x∂ y + y 2 ∂2 u ∂ y 2 = tanu 12 [13 12 + tan2 u 12 ] 12.Verify Euler’s theorem for the function u=sin−1 √x2 + y2 13.If cosu= √x2 + y2 x− y then find x 2 ∂ 2 u ∂ x2 +2xy ∂ 2 u ∂ x∂ y + y 2 ∂ 2 u ∂ y2 Mrs P M Swami, Department of BSH