This document discusses the chain rule for functions of multiple variables. It begins by reviewing the chain rule for single-variable functions, then extends it to functions of more variables. The chain rule is presented for cases where the dependent variable z is a function of intermediate variables x and y, which are themselves functions of independent variables s and t. General formulas are given using partial derivatives. Examples are worked out, such as finding the derivative of a function defined implicitly by an equation. Diagrams are used to illustrate the relationships between variables.