SlideShare a Scribd company logo
The Chain Rule
Objective
 To use the chain rule for
differentiation.
 ES: Explicitly assess information and
draw conclusions
The Chain Rule
 The Chain Rule is a technique for
differentiating composite functions.
 Composite functions are made up of
layers of functions inside of
functions.
The Chain Rule
Some functions have
many layers that must
be peeled away in order
to find their derivatives.
The Chain Rule
( ( ))
y f g x

Inside function
Outside function
(derivative of outside function) (derivative of inside function)
dy
dx
 
The Chain Rule
If ( ( ))
y f g x

Then
dy
dx
 '( )
f ( )
g x '( )
g x

The Chain Rule
1. Identify inner and outer functions.
2. Derive outer function, leaving the
inner function alone.
3. Derive the inner function.
The Chain Rule (Example A)
2 3
( 1)
y x
 
The Chain Rule
2 3
( )
1
x
y  
Inside function
 Key Point: If the inside function contains
something other than plain old “x,” you must use
the Chain Rule to find the derivative.
The Chain Rule
2 3
( )
1
x
y  
Outside function
The Chain Rule
2 3
( )
1
x
y  
Inside function
The Chain Rule
Outside function
2 3
( )
1
x
y  
The Chain Rule
2 3
( 1)
y x
 
dy
dx
 3 2
( ) (2 )
x
2
1
x 
The Chain Rule
2 3
( 1)
y x
 
2 2
1 2
(
3( ) )
dy
x x
dx
 
The derivative
of the outside
The derivative
of the inside (blop)
The Chain Rule
2 3
( 1)
y x
 
2 2
3( 1) (2 )
dy
x x
dx
 
2 2
6 ( 1)
dy
x x
dx
 
The Chain Rule
1
3
4 2
Differentiate: ( ) (6 2 3)
f x x x
  
'( )
f x  1
3
2
3
( )
3
24 4
x x

CAUTION:
Possible mistakes ahead!
What mistake did I make?
I changed the inside function and did not multiply
by the derivative of the inside function.
Solve 1
3
4 2
Differentiate: ( ) (6 2 3)
f x x x
  
4 6
Differentiate: ( ) (3 2 )
f x x x
 
2
Differentiate: ( ) 3 1
g x x x
  
2
7
Differentiate: ( )
(2 3)
h x
x



2 60
Differentiate: ( ) (2 4 1)
f x x x
  
2 2
3
Differentiate: ( ) ( 1)
g x x
 
5 3
1
Differentiate: ( )
(2 7)
h x
x


The Chain Rule (Example B)
1
3
4 2
Differentiate: ( ) (6 2 3)
f x x x
  
'( )
f x  1
3
2
3
( )
4 2
6 2 3
x x
  3
(24 4 )
x x

'( )
f x  1
3
2
3
( )
4 2
6 2 3
x x
  2
(4 )(6 1)
x x 
'( )
f x  4
3 x
2
3
( )
4 2
6 2 3
x x
  2
(6 1)
x 
 
 
 
2
2
4 2 3
4 6 1
'
3 6 2 3
x x
f x
x x


 
The Chain Rule (Example C)
4 6
Differentiate: ( ) (3 2 )
f x x x
 
'( )
f x  6
5
( )
4
3 2
x x
 3
(3 8 )
x

The Chain Rule (Example D)
2
Differentiate: ( ) 3 1
g x x x
  
'( )
g x  1
2
1
2
( )

2
3 1
x x
  (6 1)
x 
1
2 2
( ) (3 1)
g x x x
  
'( )
g x 
2
1
2 2
(3 1)
x x
 
6 1
x 
2
6 1
'( )
2 3 1
x
g x
x x


 
The Chain Rule (Example E)
2
7
Differentiate: ( )
(2 3)
h x
x



'( )
h x  14 3
( )
2 3
x  (2)
2
( ) 7(2 3)
h x x 
  
'( )
h x  3
(2 3)
x 
28
The Chain Rule (Example F)
2 60
Differentiate: ( ) (2 4 1)
f x x x
  
'( )
f x  60
59
( )
2
2 4 1
x x
  (4 4)
x 
'( )
f x  60
59
( )
2
2 4 1
x x
  (4)( 1)
x 
'( )
f x  240
59
( )
2
2 4 1
x x
  ( 1)
x 
The Chain Rule (Example G)
2 2
3
Differentiate: ( ) ( 1)
g x x
 
'( )
g x  2
3
1
3
( )

2
1
x  (2 )
x
2
2 3
( ) ( 1)
g x x
 
'( )
g x 
3
1
2 3
( 1)
x 
2
3 2
4
'( )
3 1
x
g x
x


(2 )
x
The Chain Rule (Example H)
5 3
1
Differentiate: ( )
(2 7)
h x
x


'( )
h x  3

4
( )
5
2 7
x  4
(10 )
x
5 3
( ) (2 7)
h x x 
 
'( )
h x  5 4
(2 7)
x 
3
 4
(10 )
x
4
5 4
30
'( )
(2 7)
x
h x
x



The Chain Rule (Example I)
2
3
Differentiate: ( )
1
j x
x


'( )
j x  3
 2
( )
2
1
x  (2 )
x
2 1
( ) 3( 1)
j x x 
 
'( )
j x  2 2
( 1)
x 
3
 (2 )
x
2 2
6
'( )
( 1)
x
j x
x



Conclusion
 Remember: When a function is inside
another function, use the Chain Rule to
find the derivative.
 First, differentiate the outside function,
leaving the inside function alone.
 Last, differentiate the inside function.

More Related Content

PPTX
astronomi fotometri bintang
DOCX
Proses terbentuknya bumi
PPTX
Green Product.pptx
PPTX
Ppt (heat transfers /transfer kalor)
PPTX
Pagsusulit sa kabanata apat
PPTX
Asteroid
PPT
Konstanta pegas
PPTX
Cinta tanah air
astronomi fotometri bintang
Proses terbentuknya bumi
Green Product.pptx
Ppt (heat transfers /transfer kalor)
Pagsusulit sa kabanata apat
Asteroid
Konstanta pegas
Cinta tanah air

Similar to Lec5_ The Chain Rule.ppt (20)

PDF
Ah unit 1 differentiation
PPT
Day_1_-_Rules_for_Differentiation (1).ppt
PPT
1 Functions. Function is a rule but not all rules are functions.
PPT
Calculusseveralvariables.ppt
PDF
01 derivadas
PPT
Chapter 06
PPT
Differential calculus
PDF
The Chain Rule, Part 2
PDF
College algebra 7th edition by blitzer solution manual
PDF
Chapter 1 (math 1)
PDF
exponen dan logaritma
PPT
Integration_of_Rational_Functions_by_Partial_Fraction.ppt
PDF
Partial Derivatives Numerical Methods Chapter 2
PDF
SPSF04 - Euler and Runge-Kutta Methods
PPTX
The chain rule
 
PDF
Smoothed Particle Galerkin Method Formulation.pdf
PDF
Difrentiation 140930015134-phpapp01
PDF
2.8A Function Operations
PPTX
Composite Functions for grade 11 students.pptx
PDF
Cuaderno+de+integrales
Ah unit 1 differentiation
Day_1_-_Rules_for_Differentiation (1).ppt
1 Functions. Function is a rule but not all rules are functions.
Calculusseveralvariables.ppt
01 derivadas
Chapter 06
Differential calculus
The Chain Rule, Part 2
College algebra 7th edition by blitzer solution manual
Chapter 1 (math 1)
exponen dan logaritma
Integration_of_Rational_Functions_by_Partial_Fraction.ppt
Partial Derivatives Numerical Methods Chapter 2
SPSF04 - Euler and Runge-Kutta Methods
The chain rule
 
Smoothed Particle Galerkin Method Formulation.pdf
Difrentiation 140930015134-phpapp01
2.8A Function Operations
Composite Functions for grade 11 students.pptx
Cuaderno+de+integrales
Ad

Recently uploaded (20)

PPTX
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
PPTX
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
PDF
Well-logging-methods_new................
PPTX
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
PPTX
Internet of Things (IOT) - A guide to understanding
PPTX
Fundamentals of safety and accident prevention -final (1).pptx
PPTX
Geodesy 1.pptx...............................................
PDF
R24 SURVEYING LAB MANUAL for civil enggi
PPTX
CYBER-CRIMES AND SECURITY A guide to understanding
DOCX
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
PDF
Embodied AI: Ushering in the Next Era of Intelligent Systems
PPTX
UNIT 4 Total Quality Management .pptx
PPT
Project quality management in manufacturing
PDF
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
PDF
composite construction of structures.pdf
PDF
737-MAX_SRG.pdf student reference guides
PPTX
UNIT-1 - COAL BASED THERMAL POWER PLANTS
PPTX
Construction Project Organization Group 2.pptx
PPTX
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
PPTX
additive manufacturing of ss316l using mig welding
Engineering Ethics, Safety and Environment [Autosaved] (1).pptx
Infosys Presentation by1.Riyan Bagwan 2.Samadhan Naiknavare 3.Gaurav Shinde 4...
Well-logging-methods_new................
M Tech Sem 1 Civil Engineering Environmental Sciences.pptx
Internet of Things (IOT) - A guide to understanding
Fundamentals of safety and accident prevention -final (1).pptx
Geodesy 1.pptx...............................................
R24 SURVEYING LAB MANUAL for civil enggi
CYBER-CRIMES AND SECURITY A guide to understanding
ASol_English-Language-Literature-Set-1-27-02-2023-converted.docx
Embodied AI: Ushering in the Next Era of Intelligent Systems
UNIT 4 Total Quality Management .pptx
Project quality management in manufacturing
BIO-INSPIRED HORMONAL MODULATION AND ADAPTIVE ORCHESTRATION IN S-AI-GPT
composite construction of structures.pdf
737-MAX_SRG.pdf student reference guides
UNIT-1 - COAL BASED THERMAL POWER PLANTS
Construction Project Organization Group 2.pptx
MET 305 2019 SCHEME MODULE 2 COMPLETE.pptx
additive manufacturing of ss316l using mig welding
Ad

Lec5_ The Chain Rule.ppt

  • 2. Objective  To use the chain rule for differentiation.  ES: Explicitly assess information and draw conclusions
  • 3. The Chain Rule  The Chain Rule is a technique for differentiating composite functions.  Composite functions are made up of layers of functions inside of functions.
  • 4. The Chain Rule Some functions have many layers that must be peeled away in order to find their derivatives.
  • 5. The Chain Rule ( ( )) y f g x  Inside function Outside function (derivative of outside function) (derivative of inside function) dy dx  
  • 6. The Chain Rule If ( ( )) y f g x  Then dy dx  '( ) f ( ) g x '( ) g x 
  • 7. The Chain Rule 1. Identify inner and outer functions. 2. Derive outer function, leaving the inner function alone. 3. Derive the inner function.
  • 8. The Chain Rule (Example A) 2 3 ( 1) y x  
  • 9. The Chain Rule 2 3 ( ) 1 x y   Inside function  Key Point: If the inside function contains something other than plain old “x,” you must use the Chain Rule to find the derivative.
  • 10. The Chain Rule 2 3 ( ) 1 x y   Outside function
  • 11. The Chain Rule 2 3 ( ) 1 x y   Inside function
  • 12. The Chain Rule Outside function 2 3 ( ) 1 x y  
  • 13. The Chain Rule 2 3 ( 1) y x   dy dx  3 2 ( ) (2 ) x 2 1 x 
  • 14. The Chain Rule 2 3 ( 1) y x   2 2 1 2 ( 3( ) ) dy x x dx   The derivative of the outside The derivative of the inside (blop)
  • 15. The Chain Rule 2 3 ( 1) y x   2 2 3( 1) (2 ) dy x x dx   2 2 6 ( 1) dy x x dx  
  • 16. The Chain Rule 1 3 4 2 Differentiate: ( ) (6 2 3) f x x x    '( ) f x  1 3 2 3 ( ) 3 24 4 x x  CAUTION: Possible mistakes ahead! What mistake did I make? I changed the inside function and did not multiply by the derivative of the inside function.
  • 17. Solve 1 3 4 2 Differentiate: ( ) (6 2 3) f x x x    4 6 Differentiate: ( ) (3 2 ) f x x x   2 Differentiate: ( ) 3 1 g x x x    2 7 Differentiate: ( ) (2 3) h x x    2 60 Differentiate: ( ) (2 4 1) f x x x    2 2 3 Differentiate: ( ) ( 1) g x x   5 3 1 Differentiate: ( ) (2 7) h x x  
  • 18. The Chain Rule (Example B) 1 3 4 2 Differentiate: ( ) (6 2 3) f x x x    '( ) f x  1 3 2 3 ( ) 4 2 6 2 3 x x   3 (24 4 ) x x  '( ) f x  1 3 2 3 ( ) 4 2 6 2 3 x x   2 (4 )(6 1) x x  '( ) f x  4 3 x 2 3 ( ) 4 2 6 2 3 x x   2 (6 1) x        2 2 4 2 3 4 6 1 ' 3 6 2 3 x x f x x x    
  • 19. The Chain Rule (Example C) 4 6 Differentiate: ( ) (3 2 ) f x x x   '( ) f x  6 5 ( ) 4 3 2 x x  3 (3 8 ) x 
  • 20. The Chain Rule (Example D) 2 Differentiate: ( ) 3 1 g x x x    '( ) g x  1 2 1 2 ( )  2 3 1 x x   (6 1) x  1 2 2 ( ) (3 1) g x x x    '( ) g x  2 1 2 2 (3 1) x x   6 1 x  2 6 1 '( ) 2 3 1 x g x x x    
  • 21. The Chain Rule (Example E) 2 7 Differentiate: ( ) (2 3) h x x    '( ) h x  14 3 ( ) 2 3 x  (2) 2 ( ) 7(2 3) h x x     '( ) h x  3 (2 3) x  28
  • 22. The Chain Rule (Example F) 2 60 Differentiate: ( ) (2 4 1) f x x x    '( ) f x  60 59 ( ) 2 2 4 1 x x   (4 4) x  '( ) f x  60 59 ( ) 2 2 4 1 x x   (4)( 1) x  '( ) f x  240 59 ( ) 2 2 4 1 x x   ( 1) x 
  • 23. The Chain Rule (Example G) 2 2 3 Differentiate: ( ) ( 1) g x x   '( ) g x  2 3 1 3 ( )  2 1 x  (2 ) x 2 2 3 ( ) ( 1) g x x   '( ) g x  3 1 2 3 ( 1) x  2 3 2 4 '( ) 3 1 x g x x   (2 ) x
  • 24. The Chain Rule (Example H) 5 3 1 Differentiate: ( ) (2 7) h x x   '( ) h x  3  4 ( ) 5 2 7 x  4 (10 ) x 5 3 ( ) (2 7) h x x    '( ) h x  5 4 (2 7) x  3  4 (10 ) x 4 5 4 30 '( ) (2 7) x h x x   
  • 25. The Chain Rule (Example I) 2 3 Differentiate: ( ) 1 j x x   '( ) j x  3  2 ( ) 2 1 x  (2 ) x 2 1 ( ) 3( 1) j x x    '( ) j x  2 2 ( 1) x  3  (2 ) x 2 2 6 '( ) ( 1) x j x x   
  • 26. Conclusion  Remember: When a function is inside another function, use the Chain Rule to find the derivative.  First, differentiate the outside function, leaving the inside function alone.  Last, differentiate the inside function.