SlideShare a Scribd company logo
A Multi-Population Genetic Algorithm for UAV
Path Re-Planning under Critical Situation
Jesimar S. Arantes (USP)
Márcio S. Arantes (USP)
Claudio F. M. Toledo (USP)
Brian C. Williams (MIT)
São Carlos, SP
November – 2015
Jesimar S. Arantes (USP)Márcio S. Arantes (USP)Claudio F. M. Toledo (USP)Brian C. Williams (MIT) (USP)IEEE ICTAI 2015 November – 2015 1 / 41
Outline
1 Introduction
2 Problem Description
3 Methods
4 Computational Results
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 2 / 41
Introduction
Overview
Figure 1: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 3 / 41
Introduction
Overview
Figure 2: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 4 / 41
Introduction
Overview
Figure 3: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 5 / 41
Introduction
Overview
Figure 4: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 6 / 41
Introduction
Overview
Figure 5: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 7 / 41
Introduction
Overview
Figure 6: Illustrative scenario for mission planning.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 8 / 41
Problem Description
Types of Regions and Critical Situation
Regions
1 No-Fly Zone (φn)
2 Penalty Region (φp)
3 Bonus Region (φb)
4 Remainder Region (φr )
Critical Situation
1 Motor Failure (ψm)
2 Battery Failure (ψb)
3 Aerodynamic Surfaces Failure
type 1 (ψs1 )
4 Aerodynamic Surfaces Failure
type 2 (ψs2 )
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 9 / 41
Problem Description
Types of Regions and Critical Situation
Regions
1 No-Fly Zone (φn)
2 Penalty Region (φp)
3 Bonus Region (φb)
4 Remainder Region (φr )
Critical Situation
1 Motor Failure (ψm)
2 Battery Failure (ψb)
3 Aerodynamic Surfaces Failure
type 1 (ψs1 )
4 Aerodynamic Surfaces Failure
type 2 (ψs2 )
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 9 / 41
Methods
Codification, Decodification and Solution
Codification ut:
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
Methods
Codification, Decodification and Solution
Codification ut:
Decodification FΨ:
xt+1 = FΨ(xt , ut )


px
t+1
py
t+1
vt+1
αt+1

 =


px
t + vt · cos(αt ) · ∆T + at · cos(αt ) · (∆T)2/2
py
t + vt · sen(αt ) · ∆T + at · sen(αt ) · (∆T)2/2
vt + at · ∆T − Fd
t
αt + εt · ∆T


Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
Methods
Codification, Decodification and Solution
Codification ut:
Decodification FΨ:
xt+1 = FΨ(xt , ut )


px
t+1
py
t+1
vt+1
αt+1

 =


px
t + vt · cos(αt ) · ∆T + at · cos(αt ) · (∆T)2/2
py
t + vt · sen(αt ) · ∆T + at · sen(αt ) · (∆T)2/2
vt + at · ∆T − Fd
t
αt + εt · ∆T


Solution xt:
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 11 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 12 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 13 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 14 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 15 / 41
Methods
Greedy Heuristic
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 16 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 17 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 18 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 19 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 20 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 21 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 22 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 23 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 24 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 25 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 26 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 27 / 41
Methods
Multi-Population Genetic Algorithm
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 28 / 41
Methods
Objective Function
minimize fitness = −Cφb
·
|φb|
i=1
(P(xK ∈ Zi
φb
)) + Cφp ·
|φp|
i=1
(P(xK ∈ Zi
φp
)) +
Cφn · max(0, 1 − ∆ − P
K
t=0
|φn|
i=1
xt /∈ Zi
φn
) + 1
|εmax |
·
K
t=0
ut · |εt | +
shortestDist(xK , Zφb
) +
Cφb
, vK − vmin > 0
0 , otherwise
+ Cφb
· 2
(K−T)
10 , ψ = ψb
0 , otherwise
Landing on φb
Landing on φp
Landing and fly on φn
Curves of the UAV
Distance to φb
Time violation
Battery failure
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 29 / 41
Methods
Methods Used
In this work, the following methods were used.
GH: Greedy Heuristic
MPGA1(–GH): Multi-Population Genetic Algorithm 1
Without greedy operator
MPGA2(+GH): Multi-Population Genetic Algorithm 2
With greedy operator
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 30 / 41
Computational Results
Automatically Generated Maps
Level of Difficulty
1 ME : a), b)
2 MN: c), d)
3 MH: e), f)
Level of Coverage
1 C25%: a), c), e)
2 C50%: b), d), f)
Legend Colors
1 φb
2 φp
3 φn
4 φr
(a) (b) (c)
(d) (e) (f)
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 31 / 41
Computational Results
Parameters and Settings used in the Experiments
Model Parameters Value
Map
Dimension X [m] 1000
Dimension Y [m] 1000
UAV
Initial Position (px
0 , py
0 ) [m] (0; 0)
Initial Velocity (v0) [m/s] 24
Initial Angle (α0) [o
] 90
Linear Velocity (vmin; vmax ) [m/s] [11; 30]
Angular Variation (εmin; εmax ) [o
/s] [−3; 3]
Acceleration (amin; amax ) [m/s2
] [0; 2]
Number of time steps to land (T) [s] 60
Time Discretization (∆T) [s] 1
Probability of failure (∆) 0.001
MPGA
Populations 3
Individuals/Pop 13
Individuals Total 39
Mutation Rate 0.5
Crossover Rate 0.75
Stop Criterion 10000
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 32 / 41
Computational Results
Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH)
GH MPGA1(–GH) MPGA2(+GH)
Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf.
ψm
ME and C25% 79 21 0 81 19 0 90 10 0
ME and C50% 92 6 2 92 7 1 96 3 1
MN and C25% 58 39 3 60 39 1 71 28 1
MN and C50% 86 12 2 84 16 0 96 4 0
MH and C25% 30 52 18 36 64 0 40 60 0
MH and C50% 62 28 10 60 33 7 82 15 3
Avg 67.8 26.3 5.8 68.8 29.7 1.5 79.2 20.00 0.83
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 33 / 41
Computational Results
Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH)
GH MPGA1(–GH) MPGA2(+GH)
Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf.
ψb
ME and C25% 99 0 1 100 0 0 100 0 0
ME and C50% 97 0 3 99 0 1 99 0 1
MN and C25% 93 3 4 94 5 1 99 0 1
MN and C50% 98 0 2 99 0 1 100 0 0
MH and C25% 67 5 28 73 27 0 94 6 0
MH and C50% 83 0 17 68 17 15 95 2 3
Avg 89.5 1.3 9.2 88.8 8.2 3.0 97.8 1.3 0.8
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 34 / 41
Computational Results
Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH)
GH MPGA1(–GH) MPGA2(+GH)
Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf.
ψs1
ME and C25% 81 8 11 90 8 2 91 7 2
ME and C50% 88 0 12 89 0 11 93 0 7
MN and C25% 68 16 16 76 18 6 86 8 6
MN and C50% 82 1 17 84 3 13 89 0 11
MH and C25% 41 23 36 49 46 5 67 28 5
MH and C50% 56 0 44 46 23 31 78 4 18
Avg 69.3 8.0 22.7 72.3 16.3 11.3 84.0 7.8 8.2
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 35 / 41
Computational Results
Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH)
GH MPGA1(–GH) MPGA2(+GH)
Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf.
ψs2
ME and C25% 90 4 6 94 4 2 99 0 1
ME and C50% 90 0 10 95 1 4 95 1 4
MN and C25% 70 20 10 79 16 5 92 5 3
MN and C50% 87 1 12 83 8 9 94 0 6
MH and C25% 40 17 43 62 35 3 74 24 2
MH and C50% 61 3 36 57 13 30 76 4 20
Avg 73.0 7.5 19.5 78.3 12.8 8.8 88.3 5.7 6.0
Avg Final 74.9 10.8 14.3 77.1 16.7 6.2 87.3 8.7 4.0
Time (Sec)
GH MPGA1 MPGA2
0.07 1.017 0.874
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 36 / 41
Computational Results
Experiments: Example of Routes
S
E
(a)
S
E
(b)
Figure 7: Routes determined by the planner MPGA2(+GH) in a map MN with
coverage C25%: (a) ψm. (b) ψb.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 37 / 41
Computational Results
Experiments: Example of Routes
S
E
(c)
S
E
(d)
Figure 8: Routes determined by the planner MPGA2(+GH) in a map MN with
coverage C25%: (c) ψs1 . (d) ψs2 .
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 38 / 41
Computational Results
Experiments: Example of Routes
(a) Wind Velocity 10 Knots - MN with C25% (b) Wind Velocity 50 Knots - MN with C25%
Figure 9: (a), (b) FG simulation with winds 10 and 50 knots. Wind direction:
west.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 39 / 41
Computational Results
Video FlightGear Simulator
Figure 10: Video FlightGear Simulator.
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 40 / 41
Acknowledgements
Questions send email to:
jesimar.arantes@usp.br
marcio, claudio@icmc.usp.br
williams@mit.edu
Thank You!
Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 41 / 41

More Related Content

PDF
Dissertação: Planejamento de rota para VANTs em caso de situação crítica: uma...
PDF
Журнал о металлоснабжении Сибирское металлоснабжение №3 (1172) 2017
PPTX
PPTX
Presentation jared brosey
PDF
El despertar espiritual
PPTX
Baby Block - Gamification in healthcare - Manu Melwin Joy
PPTX
Fit Bit - Gamification in healthcare - Manu Melwin Joy
PPTX
Gross anatomy of skull and facial bones
Dissertação: Planejamento de rota para VANTs em caso de situação crítica: uma...
Журнал о металлоснабжении Сибирское металлоснабжение №3 (1172) 2017
Presentation jared brosey
El despertar espiritual
Baby Block - Gamification in healthcare - Manu Melwin Joy
Fit Bit - Gamification in healthcare - Manu Melwin Joy
Gross anatomy of skull and facial bones

Viewers also liked (7)

PDF
Breve Antología Poética en Castellano
PDF
Absolutely Psychic Network
PDF
Vedic management fa qs
PPT
Descarga de Videos Por Internet y el Streaming
PDF
Modulo A - Radioprotezione per Odontoiatri
PDF
Artesanas de La Arena: Cultura Viva
PDF
1 chronicles 15 commentary
Breve Antología Poética en Castellano
Absolutely Psychic Network
Vedic management fa qs
Descarga de Videos Por Internet y el Streaming
Modulo A - Radioprotezione per Odontoiatri
Artesanas de La Arena: Cultura Viva
1 chronicles 15 commentary
Ad

Similar to Apresentação ICTAI: A Multi-Population Genetic Algorithm for UAV Path Re-Planning under Critical Situation (20)

PDF
Apresentação ICTAI 2017
PPT
IGARSS2011_TU1.T03.2_Zhan.ppt
PPT
reliability workshop
PDF
PDF
digital signal-processing-lab-manual
PDF
Model Selection and Multi-model Inference
PDF
talk_2015_07_01_Imperial_College_slides
PDF
Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...
PDF
Design of frequency selective surface comprising of dipoles using artificial ...
PDF
A Polynomial-Space Exact Algorithm for TSP in Degree-5 Graphs
PDF
Real time active noise cancellation using adaptive filters following RLS and ...
PDF
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
PDF
Decision Tree Algorithm Implementation Using Educational Data
PDF
Decision Tree Algorithm Implementation Using Educational Data
PDF
Decision Tree Algorithm Implementation Using Educational Data
PDF
Decision Tree Algorithm Implementation Using Educational Data
PPT
Ee2365 nol part 2
PDF
Aircraft gas-turbine-engines-technical-condition-identification-system
PPTX
Computer vision labs for improving in the subject
Apresentação ICTAI 2017
IGARSS2011_TU1.T03.2_Zhan.ppt
reliability workshop
digital signal-processing-lab-manual
Model Selection and Multi-model Inference
talk_2015_07_01_Imperial_College_slides
Robust PID Controller Design for Non-Minimum Phase Systems using Magnitude Op...
Design of frequency selective surface comprising of dipoles using artificial ...
A Polynomial-Space Exact Algorithm for TSP in Degree-5 Graphs
Real time active noise cancellation using adaptive filters following RLS and ...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Decision Tree Algorithm Implementation Using Educational Data
Decision Tree Algorithm Implementation Using Educational Data
Decision Tree Algorithm Implementation Using Educational Data
Decision Tree Algorithm Implementation Using Educational Data
Ee2365 nol part 2
Aircraft gas-turbine-engines-technical-condition-identification-system
Computer vision labs for improving in the subject
Ad

More from Jesimar Arantes (10)

PDF
Tese 2019
PDF
Apresentação Tese 2019
PDF
Apresentação GECCO-2017
PDF
Palestra: Planejamento de Rota para VANTs em Caso de Situação Crítica
PDF
Palestra: Algoritmos Genéticos Aplicados em Planejamento de Rota para VANTs e...
PDF
Apresentação: Modelagem e Implementação de um Visualizador para Simulações Co...
PDF
Apresentação: Utilizando Robótica Evolutiva para o Desenvolvimento da Morfolo...
PDF
Apresentação: Planejamento de rota para VANTs em caso de situação crítica: Um...
PDF
MODELAGEM E IMPLEMENTAÇÃO DE UM VISUALIZADOR PARA SIMULAÇÕES COMPUTACIONAIS D...
PDF
UTILIZANDO ROBÓTICA EVOLUTIVA PARA O DESENVOLVIMENTO DA MORFOLOGIA DE ROBÔS
Tese 2019
Apresentação Tese 2019
Apresentação GECCO-2017
Palestra: Planejamento de Rota para VANTs em Caso de Situação Crítica
Palestra: Algoritmos Genéticos Aplicados em Planejamento de Rota para VANTs e...
Apresentação: Modelagem e Implementação de um Visualizador para Simulações Co...
Apresentação: Utilizando Robótica Evolutiva para o Desenvolvimento da Morfolo...
Apresentação: Planejamento de rota para VANTs em caso de situação crítica: Um...
MODELAGEM E IMPLEMENTAÇÃO DE UM VISUALIZADOR PARA SIMULAÇÕES COMPUTACIONAIS D...
UTILIZANDO ROBÓTICA EVOLUTIVA PARA O DESENVOLVIMENTO DA MORFOLOGIA DE ROBÔS

Recently uploaded (20)

PPTX
neck nodes and dissection types and lymph nodes levels
PPTX
Cell Membrane: Structure, Composition & Functions
PPTX
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
PDF
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
PPTX
BIOMOLECULES PPT........................
PPTX
2Systematics of Living Organisms t-.pptx
PPT
POSITIONING IN OPERATION THEATRE ROOM.ppt
PPTX
famous lake in india and its disturibution and importance
PDF
Placing the Near-Earth Object Impact Probability in Context
PPTX
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
PPTX
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
PPTX
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
PDF
An interstellar mission to test astrophysical black holes
PDF
AlphaEarth Foundations and the Satellite Embedding dataset
PPTX
microscope-Lecturecjchchchchcuvuvhc.pptx
PPT
protein biochemistry.ppt for university classes
PPT
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
PPTX
Taita Taveta Laboratory Technician Workshop Presentation.pptx
PDF
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
PPTX
Classification Systems_TAXONOMY_SCIENCE8.pptx
neck nodes and dissection types and lymph nodes levels
Cell Membrane: Structure, Composition & Functions
Protein & Amino Acid Structures Levels of protein structure (primary, seconda...
Formation of Supersonic Turbulence in the Primordial Star-forming Cloud
BIOMOLECULES PPT........................
2Systematics of Living Organisms t-.pptx
POSITIONING IN OPERATION THEATRE ROOM.ppt
famous lake in india and its disturibution and importance
Placing the Near-Earth Object Impact Probability in Context
GEN. BIO 1 - CELL TYPES & CELL MODIFICATIONS
ANEMIA WITH LEUKOPENIA MDS 07_25.pptx htggtftgt fredrctvg
DRUG THERAPY FOR SHOCK gjjjgfhhhhh.pptx.
An interstellar mission to test astrophysical black holes
AlphaEarth Foundations and the Satellite Embedding dataset
microscope-Lecturecjchchchchcuvuvhc.pptx
protein biochemistry.ppt for university classes
The World of Physical Science, • Labs: Safety Simulation, Measurement Practice
Taita Taveta Laboratory Technician Workshop Presentation.pptx
IFIT3 RNA-binding activity primores influenza A viruz infection and translati...
Classification Systems_TAXONOMY_SCIENCE8.pptx

Apresentação ICTAI: A Multi-Population Genetic Algorithm for UAV Path Re-Planning under Critical Situation

  • 1. A Multi-Population Genetic Algorithm for UAV Path Re-Planning under Critical Situation Jesimar S. Arantes (USP) Márcio S. Arantes (USP) Claudio F. M. Toledo (USP) Brian C. Williams (MIT) São Carlos, SP November – 2015 Jesimar S. Arantes (USP)Márcio S. Arantes (USP)Claudio F. M. Toledo (USP)Brian C. Williams (MIT) (USP)IEEE ICTAI 2015 November – 2015 1 / 41
  • 2. Outline 1 Introduction 2 Problem Description 3 Methods 4 Computational Results Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 2 / 41
  • 3. Introduction Overview Figure 1: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 3 / 41
  • 4. Introduction Overview Figure 2: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 4 / 41
  • 5. Introduction Overview Figure 3: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 5 / 41
  • 6. Introduction Overview Figure 4: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 6 / 41
  • 7. Introduction Overview Figure 5: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 7 / 41
  • 8. Introduction Overview Figure 6: Illustrative scenario for mission planning. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 8 / 41
  • 9. Problem Description Types of Regions and Critical Situation Regions 1 No-Fly Zone (φn) 2 Penalty Region (φp) 3 Bonus Region (φb) 4 Remainder Region (φr ) Critical Situation 1 Motor Failure (ψm) 2 Battery Failure (ψb) 3 Aerodynamic Surfaces Failure type 1 (ψs1 ) 4 Aerodynamic Surfaces Failure type 2 (ψs2 ) Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 9 / 41
  • 10. Problem Description Types of Regions and Critical Situation Regions 1 No-Fly Zone (φn) 2 Penalty Region (φp) 3 Bonus Region (φb) 4 Remainder Region (φr ) Critical Situation 1 Motor Failure (ψm) 2 Battery Failure (ψb) 3 Aerodynamic Surfaces Failure type 1 (ψs1 ) 4 Aerodynamic Surfaces Failure type 2 (ψs2 ) Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 9 / 41
  • 11. Methods Codification, Decodification and Solution Codification ut: Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
  • 12. Methods Codification, Decodification and Solution Codification ut: Decodification FΨ: xt+1 = FΨ(xt , ut )   px t+1 py t+1 vt+1 αt+1   =   px t + vt · cos(αt ) · ∆T + at · cos(αt ) · (∆T)2/2 py t + vt · sen(αt ) · ∆T + at · sen(αt ) · (∆T)2/2 vt + at · ∆T − Fd t αt + εt · ∆T   Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
  • 13. Methods Codification, Decodification and Solution Codification ut: Decodification FΨ: xt+1 = FΨ(xt , ut )   px t+1 py t+1 vt+1 αt+1   =   px t + vt · cos(αt ) · ∆T + at · cos(αt ) · (∆T)2/2 py t + vt · sen(αt ) · ∆T + at · sen(αt ) · (∆T)2/2 vt + at · ∆T − Fd t αt + εt · ∆T   Solution xt: Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 10 / 41
  • 14. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 11 / 41
  • 15. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 12 / 41
  • 16. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 13 / 41
  • 17. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 14 / 41
  • 18. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 15 / 41
  • 19. Methods Greedy Heuristic Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 16 / 41
  • 20. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 17 / 41
  • 21. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 18 / 41
  • 22. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 19 / 41
  • 23. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 20 / 41
  • 24. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 21 / 41
  • 25. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 22 / 41
  • 26. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 23 / 41
  • 27. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 24 / 41
  • 28. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 25 / 41
  • 29. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 26 / 41
  • 30. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 27 / 41
  • 31. Methods Multi-Population Genetic Algorithm Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 28 / 41
  • 32. Methods Objective Function minimize fitness = −Cφb · |φb| i=1 (P(xK ∈ Zi φb )) + Cφp · |φp| i=1 (P(xK ∈ Zi φp )) + Cφn · max(0, 1 − ∆ − P K t=0 |φn| i=1 xt /∈ Zi φn ) + 1 |εmax | · K t=0 ut · |εt | + shortestDist(xK , Zφb ) + Cφb , vK − vmin > 0 0 , otherwise + Cφb · 2 (K−T) 10 , ψ = ψb 0 , otherwise Landing on φb Landing on φp Landing and fly on φn Curves of the UAV Distance to φb Time violation Battery failure Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 29 / 41
  • 33. Methods Methods Used In this work, the following methods were used. GH: Greedy Heuristic MPGA1(–GH): Multi-Population Genetic Algorithm 1 Without greedy operator MPGA2(+GH): Multi-Population Genetic Algorithm 2 With greedy operator Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 30 / 41
  • 34. Computational Results Automatically Generated Maps Level of Difficulty 1 ME : a), b) 2 MN: c), d) 3 MH: e), f) Level of Coverage 1 C25%: a), c), e) 2 C50%: b), d), f) Legend Colors 1 φb 2 φp 3 φn 4 φr (a) (b) (c) (d) (e) (f) Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 31 / 41
  • 35. Computational Results Parameters and Settings used in the Experiments Model Parameters Value Map Dimension X [m] 1000 Dimension Y [m] 1000 UAV Initial Position (px 0 , py 0 ) [m] (0; 0) Initial Velocity (v0) [m/s] 24 Initial Angle (α0) [o ] 90 Linear Velocity (vmin; vmax ) [m/s] [11; 30] Angular Variation (εmin; εmax ) [o /s] [−3; 3] Acceleration (amin; amax ) [m/s2 ] [0; 2] Number of time steps to land (T) [s] 60 Time Discretization (∆T) [s] 1 Probability of failure (∆) 0.001 MPGA Populations 3 Individuals/Pop 13 Individuals Total 39 Mutation Rate 0.5 Crossover Rate 0.75 Stop Criterion 10000 Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 32 / 41
  • 36. Computational Results Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH) GH MPGA1(–GH) MPGA2(+GH) Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf. ψm ME and C25% 79 21 0 81 19 0 90 10 0 ME and C50% 92 6 2 92 7 1 96 3 1 MN and C25% 58 39 3 60 39 1 71 28 1 MN and C50% 86 12 2 84 16 0 96 4 0 MH and C25% 30 52 18 36 64 0 40 60 0 MH and C50% 62 28 10 60 33 7 82 15 3 Avg 67.8 26.3 5.8 68.8 29.7 1.5 79.2 20.00 0.83 Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 33 / 41
  • 37. Computational Results Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH) GH MPGA1(–GH) MPGA2(+GH) Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf. ψb ME and C25% 99 0 1 100 0 0 100 0 0 ME and C50% 97 0 3 99 0 1 99 0 1 MN and C25% 93 3 4 94 5 1 99 0 1 MN and C50% 98 0 2 99 0 1 100 0 0 MH and C25% 67 5 28 73 27 0 94 6 0 MH and C50% 83 0 17 68 17 15 95 2 3 Avg 89.5 1.3 9.2 88.8 8.2 3.0 97.8 1.3 0.8 Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 34 / 41
  • 38. Computational Results Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH) GH MPGA1(–GH) MPGA2(+GH) Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf. ψs1 ME and C25% 81 8 11 90 8 2 91 7 2 ME and C50% 88 0 12 89 0 11 93 0 7 MN and C25% 68 16 16 76 18 6 86 8 6 MN and C50% 82 1 17 84 3 13 89 0 11 MH and C25% 41 23 36 49 46 5 67 28 5 MH and C50% 56 0 44 46 23 31 78 4 18 Avg 69.3 8.0 22.7 72.3 16.3 11.3 84.0 7.8 8.2 Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 35 / 41
  • 39. Computational Results Experiments: Result obtained for the GH, MPGA1(–GH) and MPGA2(+GH) GH MPGA1(–GH) MPGA2(+GH) Ψ Instance φb φr Inf. φb φr Inf. φb φr Inf. ψs2 ME and C25% 90 4 6 94 4 2 99 0 1 ME and C50% 90 0 10 95 1 4 95 1 4 MN and C25% 70 20 10 79 16 5 92 5 3 MN and C50% 87 1 12 83 8 9 94 0 6 MH and C25% 40 17 43 62 35 3 74 24 2 MH and C50% 61 3 36 57 13 30 76 4 20 Avg 73.0 7.5 19.5 78.3 12.8 8.8 88.3 5.7 6.0 Avg Final 74.9 10.8 14.3 77.1 16.7 6.2 87.3 8.7 4.0 Time (Sec) GH MPGA1 MPGA2 0.07 1.017 0.874 Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 36 / 41
  • 40. Computational Results Experiments: Example of Routes S E (a) S E (b) Figure 7: Routes determined by the planner MPGA2(+GH) in a map MN with coverage C25%: (a) ψm. (b) ψb. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 37 / 41
  • 41. Computational Results Experiments: Example of Routes S E (c) S E (d) Figure 8: Routes determined by the planner MPGA2(+GH) in a map MN with coverage C25%: (c) ψs1 . (d) ψs2 . Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 38 / 41
  • 42. Computational Results Experiments: Example of Routes (a) Wind Velocity 10 Knots - MN with C25% (b) Wind Velocity 50 Knots - MN with C25% Figure 9: (a), (b) FG simulation with winds 10 and 50 knots. Wind direction: west. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 39 / 41
  • 43. Computational Results Video FlightGear Simulator Figure 10: Video FlightGear Simulator. Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 40 / 41
  • 44. Acknowledgements Questions send email to: jesimar.arantes@usp.br marcio, claudio@icmc.usp.br williams@mit.edu Thank You! Jesimar S. Arantes (USP) IEEE ICTAI 2015 November – 2015 41 / 41