SlideShare a Scribd company logo
http://www.uneeducationpourdemain.org	
  
	
  
Page 1 sur 5	
  
Humanising Mathematical Education
Chris Breen
In attempting to look more closely at mathematical activities in an attempt to explore their
possibilities, I believe we must start from the words and ideas of maths educators such as
David Kent, Caleb Gattegno and David Wheeler rather than from our pre-conceived
judgements.
For example, what are our views on children's mathematical powers?
Do we agree with Gattegno when he writes: "Children spontaneously stay with problems.
And they stay for as long as is required. They consider abstraction (the simultaneous use of
stressing and ignoring) naturally as their birthright. They give proof that they know many
concepts but, more than that, that they know how to generate them in their awareness....
Moreover, they live close to their powers of transformation and their mental dynamics."
(Gattegno, 1981)
I believe that we have to take time to watch young children learning to make sense of the
world to re-discover and appreciate the powers that children possess of their own. If we are
sensitized by some of the questions posed by Gattegno in the above article, we may begin to
share Wheeler's "strong rational conviction that children have the necessary functionings to
mathematize." (Wheeler, 1975)
Gattegno feels strongly about the lessons to be learnt from such observations. "A method of
educating for the future does exist - if we know how to acknowledge what is given us and
already is in us, and with this, encounter what is but is not yet part of us... It happened that
every one of us as a child did precisely this. For a while we did not talk, we did not speak, and
after a while we did both. That is to say, we met what was and we managed to make it our
own." (Gattegno, 1970)
It is important to start with a belief in the powers of children and their ability to mathematize
before the tackling of the issue of pupil-centered activities in mathematics, because if we do
not recognize these powers we can never be in a position to set suitable tasks.
Wheeler (1975) provides an additional insight into the ways in which we have allowed
mathematical activities to become constrained. "We need to consider how to avoid the danger
that mathematical activity becomes a label for something too diffused and generalized, a way
of learning in which almost anything goes. It may be another step... to substitute for the
encouragement of mathematical activity an education which zeroes in on mathematization...
the shift of emphasis can take us ever further away from an exclusive reliance on external
criteria of quality derived from the mathematics of the past.
http://www.uneeducationpourdemain.org	
  
	
  
Page 2 sur 5	
  
"Even though the aim of mathematical activity was designed to stress the importance of the
'process' over the 'product,' we have tended to reassure ourselves that what we were
encouraging was actually mathematical activity by making sure that the product was
recognizably familiar mathematics. So, in a way the nature of the product still dominates our
judgements."
I am certain that this is the major dilemma facing anyone attempting to allow pupil-centered
mathematical activity to take place in their classroom. How can I justify the time spent? Is the
work that they are doing obviously in the syllabus? Are they working reasonably quietly? Is it
just a fun lesson? Do I really believe the activity is benefiting their learning?
If all the activity is only to make the lesson more fun, we can learn from John Trivett's
insights. "I began to see what I had been doing over the previous years: glamorize the
mathematics, obscure it... to make it attractive and pleasing to the learners. I had dressed up
the subject matter and the learning of it with the subtle implication that real mathematics is
hard, is dull, is unattainable for the majority of boys and girls and that the best we teachers
can therefore do is to sweeten the outward appearance, give extraneous rewards and indulge
in entertainment to sweeten the bitter pill." (Trivett, 1981)
These comments bring into question the whole role of the mathematics teacher during pupil-
centered activities. Perhaps the key answer to this problem lies in a genuine belief in the
following views expressed over a century ago
"That if real success is to attend the effort to bring a man to a definite position, one must first
of all take pains to find HIM where he is and begin there. ...For to be a teacher does not mean
simply to affirm that such a thing is so, or to deliver a lecture, etc. No, to be a teacher in the
right sense is to be a learner, put yourself in his place so that you understand what he
understands and in the way that he understands it..." (Kierkegaard, 1854
I maintain that the only way in which we can attempt to fulfill what I believe are essential
requirements of teaching is to remove ourselves from the center of the stage. To realistically
do this, we need to design material that occupies children and this gives mathematical
activities an added attraction. David Wheeler describes his vision of the role of the teacher as
follows:
"...the teacher must withdraw as much of himself as possible in the teaching situation... He
must use every means he can to focus the attention of the children on the problem, and this
means that he must efface himself from their attention...
"If we watch the teacher at work we see that: --He sets the situation, giving essential
information, but beyond that he tells the children nothing;
--He obtains as much information from the children as possible, by observing, asking
questions, and asking for particular actions;
--He works with this feedback immediately;
--Except on rare occasions he does not indicate whether a response is right or not, though he
often asks the children which it is;
--He accepts errors as important feedback telling him more than correct responses, and by
directing children's attention back to the problem he urges them to use what they know to
correct themselves..." (Wheeler, l970)
The main problem that remains if we accept the value of this teaching model is to "set the
situation." Certainly we will not easily feel free to ignore the syllabus and satisfy ourselves
(and the inspectors!) that it does not matter that the end-point of the activity is not
http://www.uneeducationpourdemain.org	
  
	
  
Page 3 sur 5	
  
recognizable as mathematics.
What sort of activity can we set that will allow us to meet these requirements as to our role? I
believe that there are at least three different levels at which we can choose to work, and for
each of them some guidelines are available as help.
1. Investigations.
Lingard (1980) presents an account of the use of mathematical investigations in the
classroom. An investigation is typified by the presentation of a situation whose question is
posed as an open-ended invitation to investigate. This leaves the pupil with the power to
select an aspect of the problem that she finds interesting, identify and define her own
parameters and rules, and to decide when the task has been completed, e.g. Draw 4 straight
lines on a piece of plain paper so that you get the maximum number of crossing points. How
many inside regions are there? Outside regions? Investigate for other numbers of lines.
The advantage of this type of activity is that the problems are interesting and give the teacher
an opportunity to practice using a different, listening role. The disadvantage is obviously that
the topics covered tend not to be in the syllabus, and anyway, if the teacher has withdrawn
from a position of authority, she cannot guarantee what route will be taken nor can she know
the destination.
Nevertheless my experience of using the ATM books listed below as resources for an
introduction to pupil-centered lessons both for myself and for my students has been extremely
positive, and I strongly recommend their use to anyone seriously contemplating this approach.
2. Do, Talk and Record activities.
The Open University has prepared an excellent course entitled "Developing Mathematical
Thinking." In a reader (Floyd 1981) and a series of five topic books (using accompanying
sound and video accessories) they develop the idea of designing activities that pupils can stay
with for a long time, forcing them to become involved in doing, then talking to one another
about what they did, and finally attempting to record their work. A particularly useful booklet
is "Topic 5," on fractions. The booklet takes the student through the process of designing and
refining a set of suitable activities using available resource material as a starting point.
Promising ideas are identified, discussed and refined until the presenter feels that the activity
is reasonable.
For example, to play the "Shade-In Game," you will each need four pieces of scrap paper.
You'll have to fold each piece of paper in half and then in half again. Then fold the piece
twice more. When you unfold the paper you should find that the fold lines mark out sixteen
equal sections. Each group will then need one die marked with one-sixteenth, one eighth, one
fourth, two eighths, three sixteenths, and one half. Each of you should throw the die in turn.
The score on the die tells you how much of one piece of paper to shade in. Gradually, the first
piece of paper will become completely shaded-in and you will need to move on to the next
sheet of paper. The first to shade all four bits of paper is the winner of round one. By turning
the four bits of paper over, you can play a second round.
BUT nobody is allowed to shade in any part of their paper without first telling everybody else
in the group what areas they are going to shade and why. That's why the game is called
"What-and-Why-Shade-in Game."
Student teachers have found that this approach to designing suitable resource materials for
mathematical activities has been extremely useful and informative.
http://www.uneeducationpourdemain.org	
  
	
  
Page 4 sur 5	
  
3. Deeper Structures.
While both the previous sections make a start in the search towards genuine pupil-centered
mathematical activities, I will not feel content until an attempt has been made to investigate
the activity into the key concepts that are to be found in the syllabus. The task now becomes
extremely difficult.
For me, the critical understandings that I have to show in trying to penetrate to this deep
structure of the topic are:
(a) What are the key concepts in the topic, (b) What awarenesses are required to gain access
to the topic, (c) What entry points will help the student?
Gattegno (1982) discusses the dilemma of designing activities. "How can I present this
challenge so that
[a] I make sure everyone will find an entry into it, [b] Everyone will find it engaging and
rewarding, and [c] It will be easily extended into other challenges?"
Wheeler (1975) expresses it slightly differently: "We must accept the responsibility of
presenting them with meaningful challenges:
--Not too far beyond their reach --Not so easy as to appear trivial --Not so mechanical as to be
soul killing --But assuredly capable of exciting them."
"This sounds very daunting and abstract. What does it mean when we turn our attention to the
syllabus, for example, the teaching of geometry? Perhaps the sort of questions we should be
asking are:
"What do children already know, before we try to teach them geometry, that we could use?
What appropriate functionings or powers do children bring with them?
"Given that children already have relevant experiences and the capabilities to work with them,
what special structurings of their experience will lead to geometry?" (Wheeler 1975)
The progress from these questions to carefully worded instructions for a mathematical activity
that forces each pupil to become involved with the key concept will undoubtedly be slow and
painful. In order to show any progress at all we will need to become learners and
acknowledge our ignorance.
I believe that this is the final stage in the search toward genuine pupil-centered mathematical
activities. Perhaps we will never be able to tackle the challenge, but at least in making the
attempt, we move away from the pseudo activities that really constitute nothing more than a
sugar coating.
References
A. T. M. (1980) Points of Departure 1. Derby: ATM
A. T. M. (1982) Points of Departure 2. Derby: ATM
Floyd, A (ed) (1981) Developing Mathematical Thinking. London: Addison-Wesley
Gattegno, C. (1970) What We Owe Children. London: Routledge and Kegan Paul
__________ (1981) "Children and Mathematics: A New Appraisal." Mathematical Thinking,
94, 5-7.
__________ (1982) "Thirty Years Later." Mathematical Thinking, 100, 42-45.
http://www.uneeducationpourdemain.org	
  
	
  
Page 5 sur 5	
  
Kent, D. (1978) "Linda's Story." Mathematical Thinking, 83, 13-15
Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press
Lingard, D. (1980) Mathematical Investigations in the Classroom. Derby: ATM
Trivett, D (1981) "The Rise and Fall of the Coloured Rods." Mathematical Teaching, 96, 37-
41
Wheeler, D (1970) "The Role of the Teacher." Mathematical Thinking, 50, 23-29
Wheeler, D. (1975) "Humanistic Mathematical Education." Mathematical Thinking, 71, 4-9
© Chris Breen Education Department, University of Cape Town Cape Town, South Africa [A
slightly different version of this paper appeared previously in the Proceedings of the
Mathematical Association of South Africa, 8th National Congress] The Science of
Education in Questions - N° 12 - February 1999
"Humanising Mathematical Education" by C J Breen is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivs 3.0 Unported License.

More Related Content

PPTX
AAMT Connect with Maths webinar: The importance of talk for mathematical lear...
PPTX
Intelligent Adaptive Learning: A Powerful Element for 21st Century Learning &...
PDF
The Science of Education Part 2B: The Awareness of Mathematization by Caleb G...
PPTX
Mathematical opportunties in the Early Years
PDF
Newsletter marapril2021.docx
PPTX
The science of mindset
PDF
Newsletter Oct 2021
PDF
Newsletter janfeb2021
AAMT Connect with Maths webinar: The importance of talk for mathematical lear...
Intelligent Adaptive Learning: A Powerful Element for 21st Century Learning &...
The Science of Education Part 2B: The Awareness of Mathematization by Caleb G...
Mathematical opportunties in the Early Years
Newsletter marapril2021.docx
The science of mindset
Newsletter Oct 2021
Newsletter janfeb2021

What's hot (20)

PPT
How do you make lessons stick?
PPT
Learning Theories
PPTX
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
PDF
February 2013 pdf
PDF
Newsletter Sept 2021
PPTX
Supporting children as mindful mathematicians
PPTX
2nd That Emotion: Support for the Affective Domain
PPTX
From novice to expert: A critical evaluation of direct instruction
PDF
Franke productive struggle_5pmtalk
PPTX
Chest of Secrets - TOC program for children who can't write or read
PPTX
Ba pt ppp directed task week 15
PPTX
JAM 2015 Session Shouting through their fingertips
PDF
Kazemi am talk_powerpoint
PDF
Franke std explan_11amtalk
PDF
Philipp pm slides
PDF
Getting feedback right
PDF
Anatomy of outstanding article
PPTX
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
PDF
Kazemi pm talk_powerpoint
PDF
Pedagoo London 2014
How do you make lessons stick?
Learning Theories
Stereotype Threats’ Influence on Elementary Pre-service Teachers\' Attitude T...
February 2013 pdf
Newsletter Sept 2021
Supporting children as mindful mathematicians
2nd That Emotion: Support for the Affective Domain
From novice to expert: A critical evaluation of direct instruction
Franke productive struggle_5pmtalk
Chest of Secrets - TOC program for children who can't write or read
Ba pt ppp directed task week 15
JAM 2015 Session Shouting through their fingertips
Kazemi am talk_powerpoint
Franke std explan_11amtalk
Philipp pm slides
Getting feedback right
Anatomy of outstanding article
USAFA - JiTT Success Brown Bag - Aug 2014 - Jeff Loats
Kazemi pm talk_powerpoint
Pedagoo London 2014
Ad

Viewers also liked (18)

PPTX
Case power point
PPTX
Android App Security Solution
PDF
16267 Holiday Survival Guide FINAL E
PPTX
Megrette Fletcher
PDF
Las normas APA
PDF
Automated testing for client-side - Adam Klein, 500 Tech
PDF
FAMILIA Paulette Rodriguez Gallegos
PDF
How to actually use promises - Jakob Mattsson, FishBrain
PDF
Row Houses and Villas in Sarjapur Road
PDF
RECICLAJE
PPT
Old local railway
PPTX
Le professioni
PDF
A psb
PPSX
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
PPT
Alma De Agave Tequila presentation
PDF
UCR New Grid Project
PDF
마마인하우스No17 web
PDF
New pdf portfolio
Case power point
Android App Security Solution
16267 Holiday Survival Guide FINAL E
Megrette Fletcher
Las normas APA
Automated testing for client-side - Adam Klein, 500 Tech
FAMILIA Paulette Rodriguez Gallegos
How to actually use promises - Jakob Mattsson, FishBrain
Row Houses and Villas in Sarjapur Road
RECICLAJE
Old local railway
Le professioni
A psb
روابط بین دختر و پسر و روابط آسیب زا - روان شناس خانم روحی بروجنی
Alma De Agave Tequila presentation
UCR New Grid Project
마마인하우스No17 web
New pdf portfolio
Ad

Similar to Articles en mathematics_2 (20)

DOC
Fractions Rationale
PDF
November 2012
PDF
MATATAG-Mathematics-CG-Grades1-4-and-7.pdf
PDF
Mathematics.pdf is the difference between ethikits and manners in a supreme b...
PDF
Mathematics CG 2023.pdf
PDF
Mathematics Curriculum Guide 2023 Mathematics Curriculum Guide 2023
PDF
Mathematics-CG-2023.pdfasASADASDASDSADSA
PDF
P. 19 Teacher Math Anxiety
PDF
Authentic Tasks And Mathematical Problem Solving
PPT
Numeracy tablet inset sept15 (grazio)
PDF
Maths,teaching,methods
DOCX
An overview of the field of education
DOCX
An overview of the field of education
PDF
Jan 2013
DOCX
Mathematics Education at Upper Secondary School, College and University Trans...
PPT
Effective Pedagogy
PDF
Standards for Mathematical Practice
PPTX
Foundational Numeracy.pptx
PDF
PPTX
Effectively Differentiating Mathematics Instruction to Help Struggling Students
Fractions Rationale
November 2012
MATATAG-Mathematics-CG-Grades1-4-and-7.pdf
Mathematics.pdf is the difference between ethikits and manners in a supreme b...
Mathematics CG 2023.pdf
Mathematics Curriculum Guide 2023 Mathematics Curriculum Guide 2023
Mathematics-CG-2023.pdfasASADASDASDSADSA
P. 19 Teacher Math Anxiety
Authentic Tasks And Mathematical Problem Solving
Numeracy tablet inset sept15 (grazio)
Maths,teaching,methods
An overview of the field of education
An overview of the field of education
Jan 2013
Mathematics Education at Upper Secondary School, College and University Trans...
Effective Pedagogy
Standards for Mathematical Practice
Foundational Numeracy.pptx
Effectively Differentiating Mathematics Instruction to Help Struggling Students

More from Centre de ressources pédagogique : formations et matériels (20)

PDF
La « classe » en pédagogie des Mathématiques - Caleb Gattegno
PDF
PDF
PDF
PDF
La « classe » en pédagogie des Mathématiques - Caleb Gattegno

Articles en mathematics_2

  • 1. http://www.uneeducationpourdemain.org     Page 1 sur 5   Humanising Mathematical Education Chris Breen In attempting to look more closely at mathematical activities in an attempt to explore their possibilities, I believe we must start from the words and ideas of maths educators such as David Kent, Caleb Gattegno and David Wheeler rather than from our pre-conceived judgements. For example, what are our views on children's mathematical powers? Do we agree with Gattegno when he writes: "Children spontaneously stay with problems. And they stay for as long as is required. They consider abstraction (the simultaneous use of stressing and ignoring) naturally as their birthright. They give proof that they know many concepts but, more than that, that they know how to generate them in their awareness.... Moreover, they live close to their powers of transformation and their mental dynamics." (Gattegno, 1981) I believe that we have to take time to watch young children learning to make sense of the world to re-discover and appreciate the powers that children possess of their own. If we are sensitized by some of the questions posed by Gattegno in the above article, we may begin to share Wheeler's "strong rational conviction that children have the necessary functionings to mathematize." (Wheeler, 1975) Gattegno feels strongly about the lessons to be learnt from such observations. "A method of educating for the future does exist - if we know how to acknowledge what is given us and already is in us, and with this, encounter what is but is not yet part of us... It happened that every one of us as a child did precisely this. For a while we did not talk, we did not speak, and after a while we did both. That is to say, we met what was and we managed to make it our own." (Gattegno, 1970) It is important to start with a belief in the powers of children and their ability to mathematize before the tackling of the issue of pupil-centered activities in mathematics, because if we do not recognize these powers we can never be in a position to set suitable tasks. Wheeler (1975) provides an additional insight into the ways in which we have allowed mathematical activities to become constrained. "We need to consider how to avoid the danger that mathematical activity becomes a label for something too diffused and generalized, a way of learning in which almost anything goes. It may be another step... to substitute for the encouragement of mathematical activity an education which zeroes in on mathematization... the shift of emphasis can take us ever further away from an exclusive reliance on external criteria of quality derived from the mathematics of the past.
  • 2. http://www.uneeducationpourdemain.org     Page 2 sur 5   "Even though the aim of mathematical activity was designed to stress the importance of the 'process' over the 'product,' we have tended to reassure ourselves that what we were encouraging was actually mathematical activity by making sure that the product was recognizably familiar mathematics. So, in a way the nature of the product still dominates our judgements." I am certain that this is the major dilemma facing anyone attempting to allow pupil-centered mathematical activity to take place in their classroom. How can I justify the time spent? Is the work that they are doing obviously in the syllabus? Are they working reasonably quietly? Is it just a fun lesson? Do I really believe the activity is benefiting their learning? If all the activity is only to make the lesson more fun, we can learn from John Trivett's insights. "I began to see what I had been doing over the previous years: glamorize the mathematics, obscure it... to make it attractive and pleasing to the learners. I had dressed up the subject matter and the learning of it with the subtle implication that real mathematics is hard, is dull, is unattainable for the majority of boys and girls and that the best we teachers can therefore do is to sweeten the outward appearance, give extraneous rewards and indulge in entertainment to sweeten the bitter pill." (Trivett, 1981) These comments bring into question the whole role of the mathematics teacher during pupil- centered activities. Perhaps the key answer to this problem lies in a genuine belief in the following views expressed over a century ago "That if real success is to attend the effort to bring a man to a definite position, one must first of all take pains to find HIM where he is and begin there. ...For to be a teacher does not mean simply to affirm that such a thing is so, or to deliver a lecture, etc. No, to be a teacher in the right sense is to be a learner, put yourself in his place so that you understand what he understands and in the way that he understands it..." (Kierkegaard, 1854 I maintain that the only way in which we can attempt to fulfill what I believe are essential requirements of teaching is to remove ourselves from the center of the stage. To realistically do this, we need to design material that occupies children and this gives mathematical activities an added attraction. David Wheeler describes his vision of the role of the teacher as follows: "...the teacher must withdraw as much of himself as possible in the teaching situation... He must use every means he can to focus the attention of the children on the problem, and this means that he must efface himself from their attention... "If we watch the teacher at work we see that: --He sets the situation, giving essential information, but beyond that he tells the children nothing; --He obtains as much information from the children as possible, by observing, asking questions, and asking for particular actions; --He works with this feedback immediately; --Except on rare occasions he does not indicate whether a response is right or not, though he often asks the children which it is; --He accepts errors as important feedback telling him more than correct responses, and by directing children's attention back to the problem he urges them to use what they know to correct themselves..." (Wheeler, l970) The main problem that remains if we accept the value of this teaching model is to "set the situation." Certainly we will not easily feel free to ignore the syllabus and satisfy ourselves (and the inspectors!) that it does not matter that the end-point of the activity is not
  • 3. http://www.uneeducationpourdemain.org     Page 3 sur 5   recognizable as mathematics. What sort of activity can we set that will allow us to meet these requirements as to our role? I believe that there are at least three different levels at which we can choose to work, and for each of them some guidelines are available as help. 1. Investigations. Lingard (1980) presents an account of the use of mathematical investigations in the classroom. An investigation is typified by the presentation of a situation whose question is posed as an open-ended invitation to investigate. This leaves the pupil with the power to select an aspect of the problem that she finds interesting, identify and define her own parameters and rules, and to decide when the task has been completed, e.g. Draw 4 straight lines on a piece of plain paper so that you get the maximum number of crossing points. How many inside regions are there? Outside regions? Investigate for other numbers of lines. The advantage of this type of activity is that the problems are interesting and give the teacher an opportunity to practice using a different, listening role. The disadvantage is obviously that the topics covered tend not to be in the syllabus, and anyway, if the teacher has withdrawn from a position of authority, she cannot guarantee what route will be taken nor can she know the destination. Nevertheless my experience of using the ATM books listed below as resources for an introduction to pupil-centered lessons both for myself and for my students has been extremely positive, and I strongly recommend their use to anyone seriously contemplating this approach. 2. Do, Talk and Record activities. The Open University has prepared an excellent course entitled "Developing Mathematical Thinking." In a reader (Floyd 1981) and a series of five topic books (using accompanying sound and video accessories) they develop the idea of designing activities that pupils can stay with for a long time, forcing them to become involved in doing, then talking to one another about what they did, and finally attempting to record their work. A particularly useful booklet is "Topic 5," on fractions. The booklet takes the student through the process of designing and refining a set of suitable activities using available resource material as a starting point. Promising ideas are identified, discussed and refined until the presenter feels that the activity is reasonable. For example, to play the "Shade-In Game," you will each need four pieces of scrap paper. You'll have to fold each piece of paper in half and then in half again. Then fold the piece twice more. When you unfold the paper you should find that the fold lines mark out sixteen equal sections. Each group will then need one die marked with one-sixteenth, one eighth, one fourth, two eighths, three sixteenths, and one half. Each of you should throw the die in turn. The score on the die tells you how much of one piece of paper to shade in. Gradually, the first piece of paper will become completely shaded-in and you will need to move on to the next sheet of paper. The first to shade all four bits of paper is the winner of round one. By turning the four bits of paper over, you can play a second round. BUT nobody is allowed to shade in any part of their paper without first telling everybody else in the group what areas they are going to shade and why. That's why the game is called "What-and-Why-Shade-in Game." Student teachers have found that this approach to designing suitable resource materials for mathematical activities has been extremely useful and informative.
  • 4. http://www.uneeducationpourdemain.org     Page 4 sur 5   3. Deeper Structures. While both the previous sections make a start in the search towards genuine pupil-centered mathematical activities, I will not feel content until an attempt has been made to investigate the activity into the key concepts that are to be found in the syllabus. The task now becomes extremely difficult. For me, the critical understandings that I have to show in trying to penetrate to this deep structure of the topic are: (a) What are the key concepts in the topic, (b) What awarenesses are required to gain access to the topic, (c) What entry points will help the student? Gattegno (1982) discusses the dilemma of designing activities. "How can I present this challenge so that [a] I make sure everyone will find an entry into it, [b] Everyone will find it engaging and rewarding, and [c] It will be easily extended into other challenges?" Wheeler (1975) expresses it slightly differently: "We must accept the responsibility of presenting them with meaningful challenges: --Not too far beyond their reach --Not so easy as to appear trivial --Not so mechanical as to be soul killing --But assuredly capable of exciting them." "This sounds very daunting and abstract. What does it mean when we turn our attention to the syllabus, for example, the teaching of geometry? Perhaps the sort of questions we should be asking are: "What do children already know, before we try to teach them geometry, that we could use? What appropriate functionings or powers do children bring with them? "Given that children already have relevant experiences and the capabilities to work with them, what special structurings of their experience will lead to geometry?" (Wheeler 1975) The progress from these questions to carefully worded instructions for a mathematical activity that forces each pupil to become involved with the key concept will undoubtedly be slow and painful. In order to show any progress at all we will need to become learners and acknowledge our ignorance. I believe that this is the final stage in the search toward genuine pupil-centered mathematical activities. Perhaps we will never be able to tackle the challenge, but at least in making the attempt, we move away from the pseudo activities that really constitute nothing more than a sugar coating. References A. T. M. (1980) Points of Departure 1. Derby: ATM A. T. M. (1982) Points of Departure 2. Derby: ATM Floyd, A (ed) (1981) Developing Mathematical Thinking. London: Addison-Wesley Gattegno, C. (1970) What We Owe Children. London: Routledge and Kegan Paul __________ (1981) "Children and Mathematics: A New Appraisal." Mathematical Thinking, 94, 5-7. __________ (1982) "Thirty Years Later." Mathematical Thinking, 100, 42-45.
  • 5. http://www.uneeducationpourdemain.org     Page 5 sur 5   Kent, D. (1978) "Linda's Story." Mathematical Thinking, 83, 13-15 Kierkegaard, S. (1854) The Journals. Oxford: Oxford University Press Lingard, D. (1980) Mathematical Investigations in the Classroom. Derby: ATM Trivett, D (1981) "The Rise and Fall of the Coloured Rods." Mathematical Teaching, 96, 37- 41 Wheeler, D (1970) "The Role of the Teacher." Mathematical Thinking, 50, 23-29 Wheeler, D. (1975) "Humanistic Mathematical Education." Mathematical Thinking, 71, 4-9 © Chris Breen Education Department, University of Cape Town Cape Town, South Africa [A slightly different version of this paper appeared previously in the Proceedings of the Mathematical Association of South Africa, 8th National Congress] The Science of Education in Questions - N° 12 - February 1999 "Humanising Mathematical Education" by C J Breen is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.