SlideShare a Scribd company logo
Assessing the Reliability of a Human Estimator http:// nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Gary D. Boetticher  Nazim Lokhandwala   Univ. of Houston - Clear Lake, Houston, TX, USA [email_address]   [email_address]
Current Configuration of PROMISE Repository Defect Prediction – 18 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Others - 9 Effort Estimation - 9
Research vs. Reality according to Jörgensen TSE ’07: 300+ software est. papers, 76 journals, 15+ Years http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop JSS ’04: Compendium of expert estimation studies 52 26 19 7 Misc. 46 21 22 3 Human 74 41 32 1 ML 255 70 137 48 Algorithm Total 00-04 89-99 -89 68% Algorithm 20% ML 12% Human 72% Kitchenham 02 100% Hill 00 84% Jørgensen 97 86% Paynter 96 62% Heemstra 91 89% Hihn 91 Human Paper 82% Human 18% Formal
Research vs. Reality How to resolve? http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Researchers coerce/entice/exhort/nudge practitioners Practitioners ignore researchers Researchers meet practitioners where they are COCOMO
Statement of Problem How do human demographics affect human-based estimation? Can predictive models be constructed using human demographics?   http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
PROMISE 2006 Addressed the problem using Genetic Programs and non-linear regression (up to 5 th  order) models Produced some accurate(77 – 93%) models, GP solutions got lengthy: The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html (( MgmtGCourses  ^ ((( Log  ((( TotLangExp /  ( TotLangExp /  ( TechGCourses  *  HWPMExp )))  -  ( TechGCourses * HWPMExp ))  -  (( Sin  ( MgmtGCourses  ^ ( Sin  (( TechGCourses * HWPMExp )  -  ( MgmtGCourses  ^ ((( Log  ( HWPMExp  ^ ( TotLangExp /  ( TechGCourses * HWPMExp ))))  -  ( Abs  ( Log  (( TotLangExp /  ( TechGCourses * HWPMExp ))  -  (( Sin  (( Sin  ( Abs  ( TechUGCourses / MgmtGCourses )))  -  ( TotLangExp /  ( MgmtGCourses  ^ ((( Log  ((( TotLangExp /  ( HWPMExp / SWProjEstExp ))  -  ( Sin  ( TotLangExp /  ( TotLangExp /  (( MgmtGCourses  ^ (( Log  ( TechGCourses * HWPMExp ))  -  ( Sin  ( Abs  ( Log  (( HWPMExp / SWProjEstExp )  -  ( TechGCourses * HWPMExp )))))))  +  (( Sin  ( TechGCourses * HWPMExp ))  -  ( Sin  ( TechUGCourses / MgmtGCourses ))))))))  -  ( Sin  ( TechUGCourses / MgmtGCourses ))))  -  ( TechGCourses * HWPMExp ))  -  ( Sin  ( TechUGCourses / MgmtGCourses )))))))  -  ( HWPMExp / SWProjEstExp ))))))  -  ( Sin  ( TechUGCourses / MgmtGCourses ))))))))  -  (( Sin  ( Abs  ( Log  (( TotLangExp /  ( TechGCourses * HWPMExp ))  -  (( Sin  (( Sin  ( Abs  ( Log  ( HWPMExp  ^ ( TotLangExp /  ( TechGCourses * HWPMExp ))))))  -  ( TechGCourses * HWPMExp )))  -  ( HWPMExp / SWProjEstExp ))))))  -  ( Sin  ( TechUGCourses / MgmtGCourses ))))))  -  ( TotLangExp /  ( TechGCourses * HWPMExp )))  -  ( Sin  ( TechUGCourses / MgmtGCourses ))))  +  ( TotLangExp /  ( TechGCourses * HWPMExp)))   So for 2007…
PROMISE 2007 The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html Larger sample set. 2006 PROMISE    122 samples 2007 PROMISE    178 samples Many learners.   51 classifiers, 4142 experimental trials Attribute analysis.   Simpler models.   Focus is on classifiers    Human readable models
Strategy Create a Web-based survey Users    demographics Users    Estimate software components Feedback    Users Build models: demographics    estimates http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
The Survey  (2001 -2005) http:// nas.cl.uh.edu/boetticher/EffortEstimationSurvey.html http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Demographics Personal Academic  Background Work  Experience Domain  Experience
Ecommerce: Competitive Procurement Buyer Admin Buyer 1 Buyer n ... Buyer Software Distribution Server Supplier 1 Supplier 2 Supplier n : Supplier Software http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
Sample Estimation Screenshots   http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
Feedback to Users http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
User Demographics - 1 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Average age: 31.43 148 males, 30 females 1% Ph.D., 24% Master, 72% Bach., 5% High School 25 countries: 42% India, 32% U.S., 6% Romania, 4% Vietnam.
User Demographics - 2 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop 5.3856 28 3.6629 Process Industry  4.4391 25 1.4382 Procurement & Billing Domain Experience 5.3856 28 3.6692 Software Projects 4.4390 25 1.4382 Hardware Projects No. of Projects estimated 2.4757 15 1.6967 Software Project Manager 3.0633 25 1.0169 Hardware Project Manager Years of Experience as a Std. Dev. Max. Ave. Years
Data preprocessing & Experiments http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop 178  Samples WEKA:   51 Classifiers, 4 seeds, 10-fold   Attribute Reduction: 2 configs. Remove outliers: Estimate > 10 * Actual or Estimate < 0.1*Actual 163 Extract: 25 Worst  under -estimators 25  Best  estimators 25 Worst  over -estimators
Results: Under vs. Best http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Ave. Accuracy 48.22% 64% VFI 64% ThresSel 64% Logistic 68% J48 76% PART Accuracy Classifier Y Y Y Total Lang Exp. Y Y Y Total Workshops Y Total Conferences Y Tech Undergrad Courses Y Y Software Proj. Mgmt Exp. Y Y Level of College Y Y Y Y # of Hardware Proj. Est. Y Y Y Mgmt Undergrad Crses Y Mgmt Grad. Courses Y Y Y Y Hardware Project Management Exp. Y Y Y Domain Exp. VFI Thresh. PART Logistic J48 Demographic Evaluator Classifier 68% Logistic/ Logistic 70% VFI / VFI 74% PART/J48 74% J48/J48 74% LogitBoost/J48 74% Bagging/J48 76% ThresholdSel/ ThresholdSel 78% ADTree/Part Accuracy Class./Eval.
Under vs. Best: Attribute Reduction http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Y Y Total Lang Experience Y Y Total Workshops Y Y Total Conferences Y Y Tech Undergrad Crses Y Y Soft. Proj. Mgmt Exp. Y Y Y Level of College Y # of Software Proj. Est. Y Y Y Y # of Hardware Proj. Est. Y Y Y Mgmt Undergrad Crses Y Y Y Mgmt Grad. Courses Y Y Y Y Hardware Proj. Mgmt Exp. Y Y Y Y Domain Experience VFI Thresh PART Logistic J48 Demographic Evaluator Classifier 68% Logistic / Logistic 70% VFI / VFI 74% PART / J48 74% ADTree / J48 74% PART/ PART 74% J48/ PART 76% ADTree/ ThreshSel Accuracy Class / Eval
Under vs. Best: Attribute Reduction http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Domain Exp <= 3 | No Of Hardware Proj Estimated <= 4 | | Hardware Proj Mgmt Exp <= 1 | | | MgmtUGCourses <= 0:   BEST (23.0/8.0) | | | MgmtUGCourses > 0:   UNDER (13.0/1.0) | | Hard. Proj Mgmt Exp > 1:   BEST (5.0) | No Of Hard. Proj Est. > 4:   UNDER (5.0) Domain Exp > 3:  BEST (4.0) J48 Rule: 74% Accuracy BEST  UNDER  <-- classified as 21  4  |  BEST  9  16  |  UNDER
Results: Best vs. Over http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop Ave. Accuracy 42.86% 60% Ridor 60% ThresholdSel 60% RandComm 62% Decorate 66% RndTree Accuracy Classifier Y Y Total Lang Experience Y Total Workshops Y Y Total Conferences Y Tech Undergrad Courses Y Y Soft. Proj. Mgmt Exp. Y # of Software Proj. Est. Y Mgmt Undergrad Crses Y Y Y Mgmt Grad. Courses Y Y Y Hard. Proj Mgmt Exp. Threshold Selector Ridor Rnd Comm Demographic 62% ADTree / ThresholdSel 66% ThresholdSel / ThreshSel 72% Rand. Comm./ RandComm 80% IB1 / Ridor Accuracy Class/ Eval
Experiment: Best vs. Over http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop 62% Ridor Ridor 62% ThresholdSel Ridor 64% Ridor ThresholdSel 66% ThresholdSel NNge 72% Decorate PART 72% Decorate NNge 72% Decorate RndComm 74% Decorate RandomForest 74% Decorate IBk 74% Decorate IB1 80% RndComm RandomTree 80% RndComm RndComm Accuracy Evaluator Classifier Y Y Y Total Lang Experience Y Total Workshops Y Tech Undergrad Courses Y Y Tech Grad Courses Y Software Proj. Mgmt Exp. Y Y Procurement Industry Exp Y Level of College Y # of Hardware Proj. Est. Y Y Mgmt Undergrad Courses Y Mgmt Grad. Courses Y Y Y Hard. Proj Mgmt Exp Y Domain Experience Thresh Ridor Rand Comm. Decorate Demographic
Experiment: Best vs. Over TechUGCourses < 45.5 | Hardware Proj Mgmt Exp < 6 | | No Of Hardware Proj Estimated < 4.5 | | | No Of Hardware Proj Estimated < 3 | | | | TechUGCourses < 23 | | | | | Hardware Proj Mgmt Exp < 0.75 | | | | | | TechUGCourses < 18 | | | | | | | Hardware Proj Mgmt Exp < 0.13 | | | | | | | | TechUGCourses < 0.5 | | | | | | | | | TechUGCourses < -1 : F (1/0) | | | | | | | | | TechUGCourses >= -1 | | | | | | | | | | Degree < 3.5 : A (4/0) | | | | | | | | | | Degree >= 3.5 : A (5/2) | | | | | | | | TechUGCourses >= 0.5 | | | | | | | | | TechUGCourses < 5.5 | | | | | | | | | | Degree < 3.5 : F (5/0) | | | | | | | | | | Degree >= 3.5 | | | | | | | | | | | TechUGCrses < 2 : A (1/0) | | | | | | | | | | | TechUGCrses >= 2 : F (1/0) | | | | | | | | | TechUGCrses >= 5.5 | | | | | | | | | | Degree < 3.5 | | | | | | | | | | | TechUGCrs < 10.5 : A (3/0) | | | | | | | | | | | TechUGCrses >= 10.5 | | | | | | | | | | | | TechUGCrs<12.5 : F (3/0) | | | | | | | | | | | | TechUGCrses >= 12.5 | | | | | | | | | | | | | TechUGCrs<16: A (2/0) | | | | | | | | | | | | | TechUGCrs>15 : A (2/1) | | | | | | | | | | Degree >= 3.5 : F (1/0) | | | | | | | HardProjMgmt Exp >= 0.13 : A (2/0) | | | | | | TechUGCourses >= 18 : A (2/0) | | | | | Hard Proj Mgmt Exp >= 0.75 : F (1/0) | | | | TechUGCourses >= 23 : F (5/0) | | | No Of Hardware Proj Est >= 3 : F (1/0) | | No Of Hardware Proj Est >= 4.5 : A (5/0) | Hardware Proj Mgmt Exp >= 6 : F (4/0) TechUGCrses >= 45.5 : A (2/0) The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop BEST  OVER  <-- classified as 23  2  |  BEST  8  17  |  OVER
Conclusions Very Good accuracy rates, especially after attribute reduction Bridges expert and model groups http://nas.cl.uh.edu/boetticher/publications.html The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
http://nas.cl.uh.edu/boetticher/publications.html Questions? The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
http://nas.cl.uh.edu/boetticher/publications.html Thank You   ! The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop
References Jorgensen, M., “A review of studies on Expert Estimation of Software Development Effort,” Journal of Systems and Software, 2004. J ø rgensen, Shepperd, A Systematic Review of Software Development Cost Estimation Studies, IEEE Transactions on Software Engineering, 33, 1, January, 2007, Pp. 33-53. The 3 rd  International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html

More Related Content

PPT
Complexity Measures for Secure Service-Orieted Software Architectures
PPT
Using Developer Information as a Prediction Factor
PPT
Promise Keynote
PPT
Experiments on Design Pattern Discovery
PDF
A defect prediction model based on the relationships between developers and c...
PPTX
Establishing A Defect Prediction Model Using A Combination of Product Metrics...
PDF
The adoption of machine learning techniques for software defect prediction: A...
PPT
Make the Most of Your Time: How Should the Analyst Work with Automated Tracea...
Complexity Measures for Secure Service-Orieted Software Architectures
Using Developer Information as a Prediction Factor
Promise Keynote
Experiments on Design Pattern Discovery
A defect prediction model based on the relationships between developers and c...
Establishing A Defect Prediction Model Using A Combination of Product Metrics...
The adoption of machine learning techniques for software defect prediction: A...
Make the Most of Your Time: How Should the Analyst Work with Automated Tracea...

What's hot (20)

PDF
AI-Driven Software Quality Assurance in the Age of DevOps
PDF
Towards a Better Understanding of the Impact of Experimental Components on De...
PDF
An Empirical Comparison of Model Validation Techniques for Defect Prediction ...
PPTX
Odin2018_Minh_ML_Risk_Prediction
PDF
A survey of fault prediction using machine learning algorithms
PDF
Software Analytics In Action: A Hands-on Tutorial on Mining, Analyzing, Model...
PDF
Defect Prediction: Accomplishments and Future Challenges
PPT
Cukic Promise08 V3
PDF
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
PPT
Project Data Incorporating Qualitative Factors for Improved Software Defect P...
PDF
Model-Driven Run-Time Enforcement of Complex Role-Based Access Control Policies
PPTX
Software testing metrics | David Tzemach
PDF
Automated parameter optimization should be included in future 
defect predict...
PPT
'Continuous Quality Improvements – A Journey Through The Largest Scrum Projec...
PDF
Explainable Artificial Intelligence (XAI) 
to Predict and Explain Future Soft...
PPT
Rob Baarda - Are Real Test Metrics Predictive for the Future?
DOCX
Metrics used in testing
PPTX
Data collection for software defect prediction
PDF
Speeding-up Software Testing With Computational Intelligence
PDF
The Impact of Class Rebalancing Techniques on the Performance and Interpretat...
AI-Driven Software Quality Assurance in the Age of DevOps
Towards a Better Understanding of the Impact of Experimental Components on De...
An Empirical Comparison of Model Validation Techniques for Defect Prediction ...
Odin2018_Minh_ML_Risk_Prediction
A survey of fault prediction using machine learning algorithms
Software Analytics In Action: A Hands-on Tutorial on Mining, Analyzing, Model...
Defect Prediction: Accomplishments and Future Challenges
Cukic Promise08 V3
Leveraging HPC Resources to Improve the Experimental Design of Software Analy...
Project Data Incorporating Qualitative Factors for Improved Software Defect P...
Model-Driven Run-Time Enforcement of Complex Role-Based Access Control Policies
Software testing metrics | David Tzemach
Automated parameter optimization should be included in future 
defect predict...
'Continuous Quality Improvements – A Journey Through The Largest Scrum Projec...
Explainable Artificial Intelligence (XAI) 
to Predict and Explain Future Soft...
Rob Baarda - Are Real Test Metrics Predictive for the Future?
Metrics used in testing
Data collection for software defect prediction
Speeding-up Software Testing With Computational Intelligence
The Impact of Class Rebalancing Techniques on the Performance and Interpretat...
Ad

Viewers also liked (6)

PPS
If you want loyalty...
PPT
Spring Trip 2007 Texas Style
PPS
APRENDA PORTUGUES
PPT
06 Dic09
PPS
DESFILADEIRO DE COLORADO
PPT
Plan De Trabajo
If you want loyalty...
Spring Trip 2007 Texas Style
APRENDA PORTUGUES
06 Dic09
DESFILADEIRO DE COLORADO
Plan De Trabajo
Ad

Similar to Assessing the Reliability of a Human Estimator (20)

PPT
Boetticher Presentation Promise 2008v2
PDF
Software Testing: Test Design and the Project Life Cycle
PPT
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
PDF
LIFT: A Legacy InFormation retrieval Tool
ODP
Munna Vai Project Presentation Demo
PDF
Search-Based Software Testing Tool Competition 2021 by Sebastiano Panichella,...
DOCX
Fall 2016 Insurance Case Study – Finance 360Loss ControlLoss.docx
PPT
TAG Manufacturing Kick Off Meeting, The Future of Manufacturing
PDF
Thesis+of+étienne+duclos.ppt
PDF
Machine programming
PDF
Crude-Oil Scheduling Technology: moving from simulation to optimization
PPTX
Application of or for industrial engineers
PDF
Test Case Optimization and Redundancy Reduction Using GA and Neural Networks
PPTX
An Investigation Of EXtreme Programming Practices
PDF
Technology & innovation Management Course - Session 2
PDF
Richard Gonzalez Resume 01 14 10
PPT
EO notes Lecture 27 Project Management 2.ppt
PPTX
An investigation of extreme programming practices and its impact on software ...
DOCX
Carol Harstad Thesis - Directed Research Project
PPTX
Jakub Setfaniak: Write your own CTA scenario
Boetticher Presentation Promise 2008v2
Software Testing: Test Design and the Project Life Cycle
Derivación y aplicación de un Modelo de Estimación de Costos para la Ingenier...
LIFT: A Legacy InFormation retrieval Tool
Munna Vai Project Presentation Demo
Search-Based Software Testing Tool Competition 2021 by Sebastiano Panichella,...
Fall 2016 Insurance Case Study – Finance 360Loss ControlLoss.docx
TAG Manufacturing Kick Off Meeting, The Future of Manufacturing
Thesis+of+étienne+duclos.ppt
Machine programming
Crude-Oil Scheduling Technology: moving from simulation to optimization
Application of or for industrial engineers
Test Case Optimization and Redundancy Reduction Using GA and Neural Networks
An Investigation Of EXtreme Programming Practices
Technology & innovation Management Course - Session 2
Richard Gonzalez Resume 01 14 10
EO notes Lecture 27 Project Management 2.ppt
An investigation of extreme programming practices and its impact on software ...
Carol Harstad Thesis - Directed Research Project
Jakub Setfaniak: Write your own CTA scenario

Recently uploaded (20)

PDF
Getting Started with Data Integration: FME Form 101
PDF
Accuracy of neural networks in brain wave diagnosis of schizophrenia
PDF
NewMind AI Weekly Chronicles - August'25-Week II
PPTX
Group 1 Presentation -Planning and Decision Making .pptx
PPTX
1. Introduction to Computer Programming.pptx
PPTX
A Presentation on Touch Screen Technology
PDF
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
PPTX
cloud_computing_Infrastucture_as_cloud_p
PDF
A comparative analysis of optical character recognition models for extracting...
PDF
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
PDF
gpt5_lecture_notes_comprehensive_20250812015547.pdf
PPTX
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
PPTX
SOPHOS-XG Firewall Administrator PPT.pptx
PDF
DP Operators-handbook-extract for the Mautical Institute
PDF
August Patch Tuesday
PPTX
Digital-Transformation-Roadmap-for-Companies.pptx
PDF
Enhancing emotion recognition model for a student engagement use case through...
PPTX
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
PDF
Mushroom cultivation and it's methods.pdf
PPTX
TLE Review Electricity (Electricity).pptx
Getting Started with Data Integration: FME Form 101
Accuracy of neural networks in brain wave diagnosis of schizophrenia
NewMind AI Weekly Chronicles - August'25-Week II
Group 1 Presentation -Planning and Decision Making .pptx
1. Introduction to Computer Programming.pptx
A Presentation on Touch Screen Technology
Transform Your ITIL® 4 & ITSM Strategy with AI in 2025.pdf
cloud_computing_Infrastucture_as_cloud_p
A comparative analysis of optical character recognition models for extracting...
From MVP to Full-Scale Product A Startup’s Software Journey.pdf
gpt5_lecture_notes_comprehensive_20250812015547.pdf
KOM of Painting work and Equipment Insulation REV00 update 25-dec.pptx
SOPHOS-XG Firewall Administrator PPT.pptx
DP Operators-handbook-extract for the Mautical Institute
August Patch Tuesday
Digital-Transformation-Roadmap-for-Companies.pptx
Enhancing emotion recognition model for a student engagement use case through...
TechTalks-8-2019-Service-Management-ITIL-Refresh-ITIL-4-Framework-Supports-Ou...
Mushroom cultivation and it's methods.pdf
TLE Review Electricity (Electricity).pptx

Assessing the Reliability of a Human Estimator

  • 1. Assessing the Reliability of a Human Estimator http:// nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Gary D. Boetticher Nazim Lokhandwala Univ. of Houston - Clear Lake, Houston, TX, USA [email_address] [email_address]
  • 2. Current Configuration of PROMISE Repository Defect Prediction – 18 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Others - 9 Effort Estimation - 9
  • 3. Research vs. Reality according to Jörgensen TSE ’07: 300+ software est. papers, 76 journals, 15+ Years http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop JSS ’04: Compendium of expert estimation studies 52 26 19 7 Misc. 46 21 22 3 Human 74 41 32 1 ML 255 70 137 48 Algorithm Total 00-04 89-99 -89 68% Algorithm 20% ML 12% Human 72% Kitchenham 02 100% Hill 00 84% Jørgensen 97 86% Paynter 96 62% Heemstra 91 89% Hihn 91 Human Paper 82% Human 18% Formal
  • 4. Research vs. Reality How to resolve? http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Researchers coerce/entice/exhort/nudge practitioners Practitioners ignore researchers Researchers meet practitioners where they are COCOMO
  • 5. Statement of Problem How do human demographics affect human-based estimation? Can predictive models be constructed using human demographics? http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 6. PROMISE 2006 Addressed the problem using Genetic Programs and non-linear regression (up to 5 th order) models Produced some accurate(77 – 93%) models, GP solutions got lengthy: The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html (( MgmtGCourses ^ ((( Log ((( TotLangExp / ( TotLangExp / ( TechGCourses * HWPMExp ))) - ( TechGCourses * HWPMExp )) - (( Sin ( MgmtGCourses ^ ( Sin (( TechGCourses * HWPMExp ) - ( MgmtGCourses ^ ((( Log ( HWPMExp ^ ( TotLangExp / ( TechGCourses * HWPMExp )))) - ( Abs ( Log (( TotLangExp / ( TechGCourses * HWPMExp )) - (( Sin (( Sin ( Abs ( TechUGCourses / MgmtGCourses ))) - ( TotLangExp / ( MgmtGCourses ^ ((( Log ((( TotLangExp / ( HWPMExp / SWProjEstExp )) - ( Sin ( TotLangExp / ( TotLangExp / (( MgmtGCourses ^ (( Log ( TechGCourses * HWPMExp )) - ( Sin ( Abs ( Log (( HWPMExp / SWProjEstExp ) - ( TechGCourses * HWPMExp ))))))) + (( Sin ( TechGCourses * HWPMExp )) - ( Sin ( TechUGCourses / MgmtGCourses )))))))) - ( Sin ( TechUGCourses / MgmtGCourses )))) - ( TechGCourses * HWPMExp )) - ( Sin ( TechUGCourses / MgmtGCourses ))))))) - ( HWPMExp / SWProjEstExp )))))) - ( Sin ( TechUGCourses / MgmtGCourses )))))))) - (( Sin ( Abs ( Log (( TotLangExp / ( TechGCourses * HWPMExp )) - (( Sin (( Sin ( Abs ( Log ( HWPMExp ^ ( TotLangExp / ( TechGCourses * HWPMExp )))))) - ( TechGCourses * HWPMExp ))) - ( HWPMExp / SWProjEstExp )))))) - ( Sin ( TechUGCourses / MgmtGCourses )))))) - ( TotLangExp / ( TechGCourses * HWPMExp ))) - ( Sin ( TechUGCourses / MgmtGCourses )))) + ( TotLangExp / ( TechGCourses * HWPMExp))) So for 2007…
  • 7. PROMISE 2007 The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html Larger sample set. 2006 PROMISE  122 samples 2007 PROMISE  178 samples Many learners. 51 classifiers, 4142 experimental trials Attribute analysis. Simpler models. Focus is on classifiers  Human readable models
  • 8. Strategy Create a Web-based survey Users  demographics Users  Estimate software components Feedback  Users Build models: demographics  estimates http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 9. The Survey (2001 -2005) http:// nas.cl.uh.edu/boetticher/EffortEstimationSurvey.html http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Demographics Personal Academic Background Work Experience Domain Experience
  • 10. Ecommerce: Competitive Procurement Buyer Admin Buyer 1 Buyer n ... Buyer Software Distribution Server Supplier 1 Supplier 2 Supplier n : Supplier Software http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 11. Sample Estimation Screenshots http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 12. Feedback to Users http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 13. User Demographics - 1 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Average age: 31.43 148 males, 30 females 1% Ph.D., 24% Master, 72% Bach., 5% High School 25 countries: 42% India, 32% U.S., 6% Romania, 4% Vietnam.
  • 14. User Demographics - 2 http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop 5.3856 28 3.6629 Process Industry 4.4391 25 1.4382 Procurement & Billing Domain Experience 5.3856 28 3.6692 Software Projects 4.4390 25 1.4382 Hardware Projects No. of Projects estimated 2.4757 15 1.6967 Software Project Manager 3.0633 25 1.0169 Hardware Project Manager Years of Experience as a Std. Dev. Max. Ave. Years
  • 15. Data preprocessing & Experiments http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop 178 Samples WEKA: 51 Classifiers, 4 seeds, 10-fold Attribute Reduction: 2 configs. Remove outliers: Estimate > 10 * Actual or Estimate < 0.1*Actual 163 Extract: 25 Worst under -estimators 25 Best estimators 25 Worst over -estimators
  • 16. Results: Under vs. Best http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Ave. Accuracy 48.22% 64% VFI 64% ThresSel 64% Logistic 68% J48 76% PART Accuracy Classifier Y Y Y Total Lang Exp. Y Y Y Total Workshops Y Total Conferences Y Tech Undergrad Courses Y Y Software Proj. Mgmt Exp. Y Y Level of College Y Y Y Y # of Hardware Proj. Est. Y Y Y Mgmt Undergrad Crses Y Mgmt Grad. Courses Y Y Y Y Hardware Project Management Exp. Y Y Y Domain Exp. VFI Thresh. PART Logistic J48 Demographic Evaluator Classifier 68% Logistic/ Logistic 70% VFI / VFI 74% PART/J48 74% J48/J48 74% LogitBoost/J48 74% Bagging/J48 76% ThresholdSel/ ThresholdSel 78% ADTree/Part Accuracy Class./Eval.
  • 17. Under vs. Best: Attribute Reduction http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Y Y Total Lang Experience Y Y Total Workshops Y Y Total Conferences Y Y Tech Undergrad Crses Y Y Soft. Proj. Mgmt Exp. Y Y Y Level of College Y # of Software Proj. Est. Y Y Y Y # of Hardware Proj. Est. Y Y Y Mgmt Undergrad Crses Y Y Y Mgmt Grad. Courses Y Y Y Y Hardware Proj. Mgmt Exp. Y Y Y Y Domain Experience VFI Thresh PART Logistic J48 Demographic Evaluator Classifier 68% Logistic / Logistic 70% VFI / VFI 74% PART / J48 74% ADTree / J48 74% PART/ PART 74% J48/ PART 76% ADTree/ ThreshSel Accuracy Class / Eval
  • 18. Under vs. Best: Attribute Reduction http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Domain Exp <= 3 | No Of Hardware Proj Estimated <= 4 | | Hardware Proj Mgmt Exp <= 1 | | | MgmtUGCourses <= 0: BEST (23.0/8.0) | | | MgmtUGCourses > 0: UNDER (13.0/1.0) | | Hard. Proj Mgmt Exp > 1: BEST (5.0) | No Of Hard. Proj Est. > 4: UNDER (5.0) Domain Exp > 3: BEST (4.0) J48 Rule: 74% Accuracy BEST UNDER <-- classified as 21 4 | BEST  9 16 | UNDER
  • 19. Results: Best vs. Over http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop Ave. Accuracy 42.86% 60% Ridor 60% ThresholdSel 60% RandComm 62% Decorate 66% RndTree Accuracy Classifier Y Y Total Lang Experience Y Total Workshops Y Y Total Conferences Y Tech Undergrad Courses Y Y Soft. Proj. Mgmt Exp. Y # of Software Proj. Est. Y Mgmt Undergrad Crses Y Y Y Mgmt Grad. Courses Y Y Y Hard. Proj Mgmt Exp. Threshold Selector Ridor Rnd Comm Demographic 62% ADTree / ThresholdSel 66% ThresholdSel / ThreshSel 72% Rand. Comm./ RandComm 80% IB1 / Ridor Accuracy Class/ Eval
  • 20. Experiment: Best vs. Over http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop 62% Ridor Ridor 62% ThresholdSel Ridor 64% Ridor ThresholdSel 66% ThresholdSel NNge 72% Decorate PART 72% Decorate NNge 72% Decorate RndComm 74% Decorate RandomForest 74% Decorate IBk 74% Decorate IB1 80% RndComm RandomTree 80% RndComm RndComm Accuracy Evaluator Classifier Y Y Y Total Lang Experience Y Total Workshops Y Tech Undergrad Courses Y Y Tech Grad Courses Y Software Proj. Mgmt Exp. Y Y Procurement Industry Exp Y Level of College Y # of Hardware Proj. Est. Y Y Mgmt Undergrad Courses Y Mgmt Grad. Courses Y Y Y Hard. Proj Mgmt Exp Y Domain Experience Thresh Ridor Rand Comm. Decorate Demographic
  • 21. Experiment: Best vs. Over TechUGCourses < 45.5 | Hardware Proj Mgmt Exp < 6 | | No Of Hardware Proj Estimated < 4.5 | | | No Of Hardware Proj Estimated < 3 | | | | TechUGCourses < 23 | | | | | Hardware Proj Mgmt Exp < 0.75 | | | | | | TechUGCourses < 18 | | | | | | | Hardware Proj Mgmt Exp < 0.13 | | | | | | | | TechUGCourses < 0.5 | | | | | | | | | TechUGCourses < -1 : F (1/0) | | | | | | | | | TechUGCourses >= -1 | | | | | | | | | | Degree < 3.5 : A (4/0) | | | | | | | | | | Degree >= 3.5 : A (5/2) | | | | | | | | TechUGCourses >= 0.5 | | | | | | | | | TechUGCourses < 5.5 | | | | | | | | | | Degree < 3.5 : F (5/0) | | | | | | | | | | Degree >= 3.5 | | | | | | | | | | | TechUGCrses < 2 : A (1/0) | | | | | | | | | | | TechUGCrses >= 2 : F (1/0) | | | | | | | | | TechUGCrses >= 5.5 | | | | | | | | | | Degree < 3.5 | | | | | | | | | | | TechUGCrs < 10.5 : A (3/0) | | | | | | | | | | | TechUGCrses >= 10.5 | | | | | | | | | | | | TechUGCrs<12.5 : F (3/0) | | | | | | | | | | | | TechUGCrses >= 12.5 | | | | | | | | | | | | | TechUGCrs<16: A (2/0) | | | | | | | | | | | | | TechUGCrs>15 : A (2/1) | | | | | | | | | | Degree >= 3.5 : F (1/0) | | | | | | | HardProjMgmt Exp >= 0.13 : A (2/0) | | | | | | TechUGCourses >= 18 : A (2/0) | | | | | Hard Proj Mgmt Exp >= 0.75 : F (1/0) | | | | TechUGCourses >= 23 : F (5/0) | | | No Of Hardware Proj Est >= 3 : F (1/0) | | No Of Hardware Proj Est >= 4.5 : A (5/0) | Hardware Proj Mgmt Exp >= 6 : F (4/0) TechUGCrses >= 45.5 : A (2/0) The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop BEST OVER <-- classified as 23 2 | BEST  8 17 | OVER
  • 22. Conclusions Very Good accuracy rates, especially after attribute reduction Bridges expert and model groups http://nas.cl.uh.edu/boetticher/publications.html The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 23. http://nas.cl.uh.edu/boetticher/publications.html Questions? The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 24. http://nas.cl.uh.edu/boetticher/publications.html Thank You ! The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop
  • 25. References Jorgensen, M., “A review of studies on Expert Estimation of Software Development Effort,” Journal of Systems and Software, 2004. J ø rgensen, Shepperd, A Systematic Review of Software Development Cost Estimation Studies, IEEE Transactions on Software Engineering, 33, 1, January, 2007, Pp. 33-53. The 3 rd International Predictor Models in Software Engineering (PROMISE) Workshop http://nas.cl.uh.edu/boetticher/publications.html